七年级等积变形应用题

合集下载

初中数学七年级《等积变形问题》

初中数学七年级《等积变形问题》

10%。如果商品的标价为33元,那么该商品的进价为( )
A.31元
B.30.2元
C.29.7元 D.27元
七、观察规律法
对题干和选项进行仔细观察,找出内在的隐含规律,从而 选出正确答案。于不知运算关系或规律探究类的题目,我们 可以先对
【例】 n个自然数按规律排成下表:
根据规律,从2002到2004,箭头的方向依次应为( ) A. ↑→ B. →↑ C. ↓→ D . →↓
练:如图1是一个小正方体的侧面展开图, 小正方体从如图2所示的位置依次翻到第1格、 第2格、第3格,这时小正方体朝上面的字是 () A、和 B、谐 C、社 D、会
用橡皮擦做道具模拟实验
小结
选择题具有知识覆盖面广、容量大、 解法灵活、评分客观等特点,能有效 地考查同学们识记、理解、比较、辨 别、计算、推理等各方面的能力,所 以是中考最主要的题型之一。因此, 掌握一些必要的解题方法,既能准确 地解答好试题,又能节省宝贵的考试 时间。
解:圆柱形玻璃杯装不下。
设圆柱形瓶内的水面还有x厘米高, 则剩余水的体积为 (5)2 x立方厘米 。
2
根据题意,列方程得
(6)2 10 (5)2 x (5)2 18
2
2
2
整理得 90 + 6.25x =112.5
解得 x = 3.6
经检验,符合题意。
答:圆柱形玻璃杯装不下,圆柱形瓶内的 水面还有3.6厘米高。
2
6 4
x
6
在一个底面直径5厘米、高18厘米的圆柱 形瓶内装满水,再将瓶内的水倒入一个 底面直径6厘米、高10厘米的圆柱形玻璃 杯中,能否完全装下?若装不下,那么 瓶内水面还有多高?若未能装满,求杯 内水面离杯口的距离?

七年级数学应用题能力训练(等积变形、行程、经济问题)(一元一次方程)拔高练习(含答案)

七年级数学应用题能力训练(等积变形、行程、经济问题)(一元一次方程)拔高练习(含答案)

七年级数学应用题能力训练(等积变形、行程、经济问题)(一元一次方程)拔高练习试卷简介:全卷共5道题,单选5道共100分。

整套试卷立足一元一次方程应用题的基础知识,考查学生对于知识的熟悉和灵活运用程度,题目设计源于课本,又高于课本。

虽然只是100分钟的小测试,但包含了不少中考中经常考察的知识点和解题策略。

学生在做题过程中可以回顾所学知识,认清自己对知识的掌握及灵活运用程度。

学习建议:本讲主要内容是一元一次方程的应用,是非常重要的题型,大家需要在熟练掌握这些知识的基础上,学会灵活运用。

题目设置灵活多变,但万变不离其宗,只要掌握了最基本的知识点,再多加练习,就能轻松掌握,灵活运用。

一、单选题(共5道,每道20分)1.某单位存入银行A、B两种存款共40万元,A中存款的年利率为5.5%,B中存款的年利率为4.5%,上缴国家的利息税率为20%,该单位一年可获利息共15200元,求A、B两种存款各()元?A.10万,30万B.30万,10万C.20万,20万D.25万,15万答案:A解题思路:设A存款为x万元,B存款为40-x万元,则可以列得方程为(1-20%)[5.5%x+4.5%(40-x)]=1.52可以解得x=10,所以可得A=10万,B=30万。

易错点:不能根据题意列出等量关系试题难度:三颗星知识点:一元一次方程应用--利率问题2.某种商品的零售价2010年比2009年上涨了25%,欲控制该商品的零售价2011年比2009年的基础上只上涨10%,则该商品2011年的零售价应在2010年的基础上降价的百分比是( ).A.15%B.10%C.12%D.11%答案:C解题思路:可以设2009年的零售价为m,设2011年比2010年下降了x,可以列出方程为m(1+25%)(1-x)=m(1+10%)解得x=12%。

易错点:对于上涨、下降的概念不清晰,导致方程出错试题难度:三颗星知识点:一元一次方程应用--打折问题3.火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过长96米的隧道。

初中数学 文档:一元一次方程应用之等积变形篇

初中数学 文档:一元一次方程应用之等积变形篇

一元一次方程——等积变形篇物体的形状虽然改变了,但是其面积或体积仍然保持不变.这类问题我们可以称为等积变形问题.在等积变形问题中,变化前后的体积或面积相等,往往是列方程所需的重要的相等关系.1.面积不变问题例 1 将图(1)三角形纸片沿虚线叠成图(2),原三角形图(1)的面积是图(2)(粗实线图形)面积的倍,已知图(2)中阴影部分的面积之和为1,求重叠部分的面积.解析:首先要看清题意,其中图(2)中粗实线图形面积就是图(3)中三个角上的小三角形面积和重叠部分面积的总和,这个题目中的等量关系我们可以从图中不难看出,就是整个三角形的面积是三个角上小三角形(从图(3)中看)面积和重叠(从图(2)中看)部分面积的总和的倍.如果设重叠部分面积为x,将折叠还原后,则原三角形的面积是(2x+1),图(2)中粗实线部分面积是(x+1),等量关系为:原三角形的面积=粗实线部分面积解:设重叠部分面积为x.根据题意,得(x+1)=2x+1.解得x=1.所以重叠部分的面积为1.例2 如图2,“回”字形的道路宽为1米,整个“回”字形的长为8米,宽为7米,一个人从入口点A沿着道路走到终点B,他共走了多少米?分析:如果我们直接解这个问题,这里有重复部分,是个十分麻烦问题,现在需要对这个问题转化,可以看作用一米宽的拖把把这块区域托一遍,我们以走直线方式拖地,那么拖把走过区域是长方形,长方形的宽是一定的,是一米.而长方形的长就是拖把走过路程.长方形的面积就等于回字形面积,直接就可以算出拖把走过的路程是56米.而这正是人要走的路程.这时候我们可以看到这和拖把是否走直线没有关系了,只要拖把的宽度一定,它走过的路程就定下来,就是56米.我们也可以这样来看:所有小路连在一起可以组成一个宽1米的长长的长方形,因为长方形场地“充满”了小路,所以小路的面积等于长方形场地的面积.解:设小路的总长度为x米.根据题意,得x×1=8×7.解得x=56.所以从入口A处走到终点B,至少要走56米.2.体积不变问题例3 用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131× 131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)分析:因为铁盒里水是满的,所以水的体积就等于铁盒的容积.根据长方体的体积公式可以计算出水的体积是131×131×81 mm3 ,圆柱形玻璃杯中减少的的体积为圆柱的底面积乘以水下降的高度.显然玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:玻璃杯里倒掉的水的体积=长方体铁盒的容积.解:设玻璃杯中水的高度下降了xmm.根据题意,得π·(90÷2)2x=131×131×81.解得π44.686x. 经检验,它符合题意.所以玻璃杯中水的高度下降了π44.686mm.例4将一个长、宽、高分别为15厘米、12厘米和8厘米的长方体钢块锻造成一个底面(正方形)边长为12厘米的长方体零件钢坯,试问是锻造前的长方体钢块表面积大还是锻造后的长方体零件钢坯表面积大?请你进行比较.分析:锻造前长方体钢块的体积为15×12×8cm3,锻造后长方体零件钢坯体积为12×12×它的高cm3.虽然钢块的形状发生了变化,但是钢块的体积没有变化.因此可得长方钢块体的体积=长方体零件钢坯体积,如果设长方体零件钢坯高为x厘米,得15×12×8=12×12×x.显然可以算出它的高=10厘米,但问题到此并没有结束,最终要比较它们的表面积的. 锻造前长方体钢块的表面积为为2×(12×15+15×8+12×8) 平方厘米, 锻造后长方体零件钢坯的表面积是2×(12×12+12×10+12×10) 平方厘米.解:设锻造后的长方体零件钢坯的高为x厘米.根据题意,得5×12×8=12×12×x.解得10x=.所以锻造后的长方体零件钢坯表面积为:2(121212101210)768⨯⨯+⨯+⨯=(平方厘米).而锻造前的长方体钢块表面积为:2(1512158128)792⨯⨯+⨯+⨯=(平方厘米).所以锻造前的长方体钢块表面积比锻造后的长方体零件钢坯表面积大.例5 一种圆筒状包装的,如图3所示,其规格为“20cm×60m”,经测量这筒保鲜膜的内径、外径的长分别是3.2cm、4.0cm,则这种保鲜膜的厚度约为多少厘米?(π取,结果保留两位有效数字)分析:当我们把圆筒状包装的保鲜膜展开时原来的形状可以看成长方体,根据长方体的体积公式可以计算出此时的体积为20ⅹ6000ⅹ保鲜膜的厚度,需要说明的是20 cm指展开后鲜膜的宽,也是展开前圆筒状包装的高,60 m是保鲜膜展开后的长度(单位要统一).圆筒状时可以看成圆柱体,我们要注意这个圆柱是空心的,计算时不能忘了减去空心部分.展开前后形状虽然改变了,但体积不变.即圆筒状包装体积=长方体的体积.解:设这种保鲜膜的厚度为cm.根据题意,得223.2202060002x ⎡⎤4⎛⎫⎛⎫π-=⨯⎢⎥⎪ ⎪2⎝⎭⎝⎭⎢⎥⎣⎦.解得0.00075x≈.所以这种保鲜膜的厚度约为0.00075cm.例6 一张桌子有一个桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3,现做一批这样的桌子,恰好用去木材3.8m3,共做了多少张桌子?分析:解决这个问题关键是找出一个能表示实际问题全部意义的相等关系,我们要注意的是:一张桌子有一个桌面和四条腿,那么整张桌子所需的木材的体积是四条腿的和一个桌面的,如果设共做桌子X张,我们就容易用X表示出做桌腿所需木材的体积是4ⅹ m3 ,做桌面所需的木材的体积是 m3 .因此这个问题中就有这样的相等关系:做桌面所需木材的体积+做桌腿所需木材的体积=3.8m3解:设共做了x张桌子.根据题意,得+4×=.解得x=100.所以共做100张桌子.同步练习1.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?2.德鑫轧钢厂要把一种底面直径6厘米,长1米的圆柱形钢锭,轧制成长4.5米,外径3厘米的无缝钢管,如果不计加工过程中的损耗,则这种无缝钢管的内径是()A.厘米 B. 2厘米C.1 厘米 D.厘米3.用直径为90 mm的圆柱形玻璃杯(已装满水)向一个由底面积为125×125 mm2内高为81mm的长方体铁盒倒水时,当倒满铁盒时玻璃杯中的水的高度下降多少?(结果保留整数π≈)4.圆柱(1)的底面直径为10厘米,高为18厘米;圆柱(2)的底面直径为8厘米.已知圆柱(2)的体积是圆柱(1)的体积的倍,求圆柱(2)的高.5.将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方体铁盒,正好倒满,求圆柱形水桶的水高(精确到1毫米,≈).6.一张圆桌由一个桌面和四条腿组成,如果1m 三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m 三次方,木料,请你设计一下,用多少木料.7.如图是两个圆柱体的容器,它们的半径分别是4cm 和8cm ,高分别为16cm 和10cm ,先在第一个容器中倒满水,然后将其全部倒入第二个容器中.(1)倒完后,第二个容器水面的高度是多少?(2)如右图把容器1口朝上插入容器2水位又升高多少?容器1容器2同步练习1.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?1、分析:变形前钢坯的体积等于变形后所有圆柱形机轴的总体积2.德鑫轧钢厂要把一种底面直径6厘米,长1米的圆柱形钢锭,轧制成长4.5米,外径3厘米的无缝钢管,如果不计加工过程中的损耗,则这种无缝钢管的内径是()A.厘米 B. 2厘米C.1 厘米 D.厘米3.用直径为90 mm的圆柱形玻璃杯(已装满水)向一个由底面积为125×125 mm2内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少?(结果保留整数π≈)4.圆柱(1)的底面直径为10厘米,高为18厘米;圆柱(2)的底面直径为8厘米.已知圆柱(2)的体积是圆柱(1)的体积的倍,求圆柱(2)的高.5.将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方体铁盒,正好倒满,求圆柱形水桶的水高(精确到1毫米,≈).6.一张圆桌由一个桌面和四条腿组成,如果1m 三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m 三次方,木料,请你设计一下,用多少木料.7.如图是两个圆柱体的容器,它们的半径分别是4cm 和8cm ,高分别为16cm 和10cm ,先在第一个容器中倒满水,然后将其全部倒入第二个容器中.(1)倒完后,第二个容器水面的高度是多少?(2)如右图把容器1口朝上插入容器2水位又升高多少?容器1容器2。

等积变形应用题练习

等积变形应用题练习
10 10 10 分析:等量关系是 变形前后周长相等 6 6 10
பைடு நூலகம்

答案:小影所钉长方形的长是16厘米,宽是10厘米。
4、小明的爸爸想用10米铁丝网把墙 当一长边围成一个鸡棚,使长比宽大4 米,问小明的爸爸围成的鸡棚的长和宽 各是多少呢?
墙面
x
铁线
X+4
5、一个长方形的养鸡场的长边靠墙,墙长14 米,其他三边用竹篱笆围成,现有长为35米的 竹篱笆,小王打算用它围成一个鸡场,其中长 比宽多5米;小赵也打算用它围成一个鸡场, 其中长比宽多2米.你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?
相等关系:水面增高体积=长方体体积 解:设水面增高 x 厘米. 则
4 x 5 3 3
2
解得: x
45 0 .9 16
因此,水面增高约为0.9厘米.
3、 墙上钉着用一根彩绳围成的梯形形状的 装饰物,小颖将梯形下底的钉子去掉,并将这条 彩绳钉成一个长方形,那么,小颖所钉长方形的 长和宽各为多少厘米?
5.3 练习题
1、 将一个底面直径为10厘米、高为36厘 米的“瘦长”形圆柱锻压成底面直径为20厘 米的“矮胖”形的圆柱,高变成了多少?
想 什么发生了变化? 一 想
什么没有发生变化? 答案:高变成了9厘米。
2、把一块长、宽、高分别为5cm、3cm、3cm的 长方体木块,浸入半径为4cm的圆柱形玻璃杯 中(盛有水),水面大约增高多少?(水不外 溢,结果近似到0.1cm)
墙壁 篱笆
6、 在一个底面直径为3cm,高为22cm的量筒 内装满水,再将筒内的水到入底面直径为7cm,高 为9cm的烧杯内,能否完全装下?若装不下,筒内 水还剩多高?若能装下,求杯内水面的高度。

一元一次方程_等积变形应用题

一元一次方程_等积变形应用题

一元一次方程解应用题————等积变形问题复习:常用几何图形的计算公式长方形的周长 = 长方形的面积 =三角形的周长 = 三角形的面积 =圆的周长= 圆的面积=长方体的体积 = 圆柱体的体积 =想一想:请指出下列过程中,哪些量发生了变化,哪些量保持不变?1、把一小杯水倒入另一只大杯中;2、用一根15cm长的铁丝围成一个三角形,然后把它围成长方形;3、用一块橡皮泥先做成一个立方体,再把它改变成球。

问题1(1)用一根长8米的铁丝围成一个长方形.使长方形的宽比长少1米,求这个长方形的面积.(2)用一根长8米的铁丝围成一个正方形,求这个正方形的面积.(3)用一根长8米的铁丝围成一个圆,求这个圆的面积.(4)在周长相等的长方形、正方形、圆中,谁的面积最大?谁的面积最小?精讲例题1.将一个底面直径为10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是 20厘米的“矮胖”形圆柱,高变成了多少?等量关系:解设锻压后圆柱的高为x厘米,填写下表锻压前锻压后底面半径高体积练习:1、如图,用直径为200毫米的圆钢,锻造一个长、宽、高分别为300毫米、300毫米和90毫米的长方体毛坯底板,应截取圆钢多少(计算时思考:题目中有哪些已知量和未知量?它们之间有什么关系?如何设未知数?已知:圆钢直径(200mm)、长方体毛胚的长宽高(300mm、300mm、90mm)未知:圆钢的高相等关系:圆钢体积=长方体毛胚的体积设未知数:设应截取圆钢 x 毫米。

2.已知一圆柱形容器底面半径为0.5m,高为1.5m,里面盛有1m深的水,将底面半径为0.3m,高为0.5m的圆柱形铁块沉入水中,问容器水面将升高多少?小结:说说列方程解应用题的一般步骤:1、分析题意,找出等量关系,分析题中数量及其关系,用字母(例如x),表示问题里的未知数.2、用代数式表示有关的量.3、根据等量关系列出方程.4、解方程,求出未知数的值.5、检验求得的值是否正确和符合实际情形,并写出答案.等积变形是以形状改变而体积不变为前提。

初一数学应用题含答案

初一数学应用题含答案

七年上册数学应用题提高练习训练七年上册数学应用题提高练习训练一、等积变形问题一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式①圆柱体的体积公式①圆柱体的体积公式 V= V= V=底面积×高=底面积×高=底面积×高=S S ·h =p r2h②长方体的体积②长方体的体积 V V V=长×宽×高==长×宽×高==长×宽×高=abc abc1.把一段铁丝围成长方形,发现长比宽多2cm 2cm;围成正方形时,边长刚好为;围成正方形时,边长刚好为4cm 4cm.求所.求所围成的长方形的长和宽各是多少?围成的长方形的长和宽各是多少?2.用一个底面半径为40mm 40mm,高为,高为120mm 的圆柱形玻璃杯向一个底面半径为100mm 的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm 10mm,大玻璃,大玻璃杯的高度是多少?杯的高度是多少?3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?多少?4.将一个装满水的内部长、宽、高分别为300毫米,毫米,300300毫米和80•80•毫米的长方体铁盒毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,p ≈3.143.14)).5.在一个底面直径为5cm 5cm,高为,高为18cm 的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm 6cm、、高是10cm 的圆柱形玻璃杯中,的圆柱形玻璃杯中,能否完全装下?若装不下,能否完全装下?若装不下,能否完全装下?若装不下,那么瓶内水还那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.二、打折销售问题二、打折销售问题(1)商品利润=商品售价-商品成本价商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100% (3)商品销售额=商品销售价×商品销售量(4(4)商品的销售利润=(销售价-成本价)×销售量)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如打8折出售,即按原标价的80%80%出售.出售.出售. 1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%30%,问去年该品牌电脑每台售出价为多少元?,问去年该品牌电脑每台售出价为多少元?2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%10%,则该商品的标,则该商品的标价为多少?价为多少?3、某种商品的进价是1000元,售价为1500元,元, 由于销售情况不好,商店决定降价出售,但又要售,但又要保证利润不低于5%5%,那么商店最多降多少元出售此商品。

等积变形例题

等积变形例题

解 在直角三角形CDH和直角三角形EKD 中,CD=DE 又∵∠EDK=180°-∠CDH-90° ∠DCH=180°-∠CDH-90° ∴ DCH与 EDK完全相等。 而ABCD是等腰梯形
K A
E
故CH=(BC-AD) ÷2 =(35-23) ÷2
23
D F
=6(厘米) ∴DK=CH=6厘米
B
35
求绿色四边形的面积。 解 连BF,则四边形BCDF为梯形。 4 6 6 ∵S黄÷S红=6÷4=1.5 ∴S白÷S红=1.5×1.5=2.25 ∴S白=S红×2.25=4 ×2.25=9(平方厘米) ∴S绿=S白+S黄-S红 =9+6-4=11(平方厘米) 答:绿色四边形ABEF的面积为11平方厘米。
S KGE=S C D S DGE=S F G P 所以 阴影部分面积= H A B 解:14÷4=3.5(厘米) 正方形BEFG的周长=14厘米, E K
FGE BGE
正方形BEFG的面积
3.5×3.5=12.25(平方厘米) 求阴影部分面积。 答:图中阴影部分面积是 12.25平方厘米。
分析与解: 分析与解:
答:丙、丁两个三角形面 积之和是甲、乙两个三角 形面积之和的1.25倍。
分析与解:
等积变形
例5
G
F
∵∠DAB=∠GAE=90° ∴ ∠GAD+ ∠EAB =360°-90 °×2 =180°
D
A C
E
∴三角形BAE绕A点顺时针旋转, 使AB与AD重合,这时,点E落 在点H,且G,A,H在一条直线上。 ∵AG=AE=AH,三角形DAH与 三角形DAG等底同高, ∴S DAH=S DAG 答:内圈三角形石板的总面积 与外圈石板的总面积一样大。

七年级数学课件等积变形

七年级数学课件等积变形

1.基本公式 (1)长方体体积= 长×宽×高 (2)正方体体积= 棱长×棱长×棱长
(3)圆柱体体积= 底面积×高
解决此类问题时,常用几何图形的面积、 周长、体积计算公式进行相关运算。
常用的相等关系是:
(1)形变积不变;
(2)形变积也变,但质量不变。
ห้องสมุดไป่ตู้
练习1:一个长、宽、高分别为20cm、10cm、 5cm长方体 ,容器装满水,把容器中的水注 入到长40cm、宽20cm的长方体容器中,问 这个长方体的高至少为多少?
练习2 某工厂锻造直径为60毫米,高20毫米的
圆柱形瓶内装水,再将瓶内的水倒入一个底 面直径6厘米、高厘米的圆柱形玻璃杯中, 能否完全装下?若装不下,那么瓶内水面还 有多高?若未能装满,求杯内水面离杯口的 距离。
练习3: 用一个底面半径为40mm,高为120mm
的圆柱形小玻璃杯向一个底面半径为100mm 的圆柱形大玻璃杯中倒水,倒了满满10小杯 水后,大玻璃杯的液面离杯口还有10mm,则 大玻璃杯的高度是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等积变形应用题
1、把一段铁丝围成长方形,可以使它的长比宽多2cm,如果围成正方形,边长刚好为5cm.求所围成的长方形的长和宽各为多少?
2、用一根20厘米的铁丝围成一个长方形(1)使得长方形的长比宽大2.6厘米,此时,长方形的长、宽各是多少厘米?(2)使得长方形的长与宽相等,此时正方形的面积是多少?(3)若围成一个圆,面积是多少?
3、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长2厘米、宽4厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?
4、某铜铁厂要锻造长、宽、高分别为260mm、150mm、130mm的长方体毛坯,需要截取底面积为130mm2的方钢多长?
5、某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是一个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?
6、将一罐满水的直径为40厘米,高为60厘米的圆柱形水桶里的水全部灌于另一半径为30厘米的圆柱形水桶里,问这时水的高度是多少?
7、一个直径为1.2米高为1.5米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒水,当铁盒装满水时,水桶中的水高度下降了多少米。

8、如图所示,一个养鸡场的一边靠着墙,墙长14米,其他三边用竹篱笆围成,现有竹篱笆的长为35米,小王打算建一个养鸡场,长比宽多5米;小赵打算建一个养鸡场,长比宽多2米.你认为谁的设计较合理?这时养鸡场的面积是多少?
Welcome !!! 欢迎您的下载,资料仅供参考!。

相关文档
最新文档