Pb-Sn金属相图实验数据(综合版)
金属相图

实验 金属相图[实验目的]1.学会用热分析法测绘Pb - Sn 二组分金属相图。
2.掌握热分析法的测量技术与有关测量温度的方法。
[基本原理]热分析法是先将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间读体系温度一次,将所得温度值对时间作图,所得曲线即为步冷曲线(如下图1)。
每一种组成的Pb - Sn 体系均可根据其步冷曲线找出相应的转折点和水平台温度,然后在温度-成分坐标上确定相应成分的转折温度和水平台的温度,最后将转折点和恒温点分别连接起来,即为相图(如下图2)。
图1 步冷曲线 图2 步冷曲线与相图[仪器结构]图1 加热装置 图2 测量装置仪器参数设置法:最高温度:C 350℃ 加热功率:P1 400W保温功率:P2 40W 报警时间:E1 30s 报警声音:n 0 按设置键:显示温度时就是退出了设置状态,可以进行实验。
[实验步骤]1.配制样品。
配制含锡量分别为20%,40%,61.9%,80%的铅-锡混合物各100g,装入4个样品管中,然后在样品管内插入玻璃套管(管中应有硅油,增加热传导系数),并在样品上方盖一层石墨粉;2.将需加热的样品管放入一炉子中,将加热选择旋钮指向该加热炉(加热炉和选择旋钮上均有数字标号),并将测温传感器置于需加热的样品管中;3.设定具体需加热的温度,加热功率和保温功率,本实验中这些参数依次设定为350o C,400W, 40W,参数设定完成后, 按下“加热”键,即进入加热状态;4.当测量装置上的温度示值接近于330 O C时,可停止加热。
待样品熔化后,用玻璃套管小心搅拌样品;5.待温度降到需要记录的温度值时(比如305 C),可点击测量软件中的“开始实验”按钮,降温过程中,若降温速度太慢,可打开风扇;若降温速度太快,则可按“保温”键,适当增加加热量。
当温度降到平台以下,停止记录。
按照上述步骤,测定不同组成金属混合物的温度—时间曲线。
[数据处理]1.依实验数据绘制T-t步冷曲线,6根曲线绘制在同一张图上;2.依样品的组成和步冷曲线中转折点和平台的温度绘制出Pb-Sn的T-w金属相图;3.你所测得的Pb, Sn的熔点与教材(东北师大第90面)上的值的相对误差分别为:%, %.[问答题]金属相图的用途有哪些?----------------------------------------------------------------------------------------------------------------班级: 姓名: 学号: 实验日期: 分数: 教师:。
金属相图(Pb-Sn体系)

混合物步冷曲线如②、④所示,如②起 始温度下降很快(如a’b’/段),冷却到b’点时, 开始有固体A析出,这时体系呈两相,因 为液相的成分不断改变,所以其平衡温度 也不断改变。由于凝固热的不断放出,其 温度下降较慢,曲线的斜率较小(b’c’段)。 到了低共熔点c’后,体系出现三相平衡 L=A(s)+B(s),温度不再改变,步冷曲线又 出现水平段,直到液相完全凝固后,温度 又开始下降。
观察升温情况 及时停止加热
取出样品、放 入新样品测试
实验结束记录 数据恢复原状
准备样品
按以下比例配制
锡的百 分含量
0%
20%
锡(g) 0 20
铅(g) 100 80
40% 61.9% 80% 100%
40 61.9 80 100 60 38.1 20 0
何时停止加热?
纯Pb、纯Sn、含锡61.9%(低共熔物)三个样品, 如果出现转折点,则停止加热,利用电炉的余热加 热到熔点以上30~40 ℃ 。
曲线③表示其组成恰为最低共 熔混合物的步冷曲线,其形状与纯 物质相似,但它的水平段是三相平 衡。
即 L=A(s)+B(s)
分析2:
相图由一个单相区和三个两相区组成: 即 ①溶液相区;
②纯A(s)和溶液共存的两相区; ③纯B(s)和溶液共存的两相区; ④纯A(s)和纯B(s)共存的两相区; 水平线段表示:A(s)、B(s)和溶液共 存的三相线;水平线段以下表示纯A(s)和 纯B(s)共存的两相区;o为低共熔点。
思考题
1.是否可用加热曲线作相图,为什么? 2.为什么要用步冷曲线作相图? 3.为什么坩锅中的样品要加盖石墨,并严防 混入杂质? 4.实验用各样品的总重量为什么要求相等? 若总重量不相等有什么影响? 5.样品量和冷却速度对实验有何影响?
二元合金实验报告

实验五二元合金相图一、目的要求1.用热分析法测绘Pb-Sn二元金属相图。
2.了解热分析法的测量技术。
二、基本原理相图是多相(二相或二相相以上)体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡情况(相的数目及性质等),故称为相图。
二元或多元体系的相图常以组成为自变量,其物理性质则大多取温度。
由于相图能反映出多相平衡体系在不同自变量条什下的相平衡情况,因此,研究多相体系的性质,以及多相体系相平衡情况的演变(例如冶金工业冶炼钢铁或其他合金的过程,石油工业分离产品的过程等),都要用到相图。
图4.1是一种类型的二元简单低共熔物相图。
图中A、B表示二个组分的名称,纵轴是物理量温度T,横轴是组分B的百分含量B%。
在acb线的上方,体系只有一个相(液相)存在;在ecf线以下,体系有两个相(两个固相——晶体A、晶体B)存在;在ace所包为的面积中,一个固相(晶体A)和一个液相(A在B中的饱和熔化物)共存;在bcf所包围的面积中,也是一个固相(晶体B)和一个液相(B在A中的饱和熔化物)共存;图中c点是ace与bef 两个相区的交点,有三相(晶体A、晶体B、饱和熔化物)共存。
测绘相图就是要将相图中这些分隔相区的线画出来。
常用的实验方法是热分析法。
热分析法所观察的物理性质是被研究体系的温度。
将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间(例如半分钟或一分钟)读体系温度一次,以所得历次温度值对时间作图,得一曲线,通常称为步冷曲线或冷却曲线,图4.2是二元金属体系的一种常见类型的步冷曲线。
冷却过程中,若体系发生相变,就伴随着一定热效应,团此步冷曲线的斜率将发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点。
若图4.2是图4.1中组成为P 的体系的步冷曲线,则点2、3就分别相当于相图中的点G 、H 。
因此,取一系列组成不同的体系,作出它们的步冷曲线,找出各转折点,即能画出二元体系的最简单的相图(对复杂的相图,还必须有其他方法配合,才能画出)。
金属相图(Pb-Sn体系)

实验数据记录
实验日期:
;室温: ℃;气压:
KPa
锡的百 0% 分含量 (纯铅)
20%
40%
61.9%
80% 100%
(低共熔物)
(纯锡)
转折点
(t℃)
水平段
(t℃)
数据处理
1.温度换算( ℃ 2.作出Pb-Sn相图; 3.与文献值比较。
K);
T/K
600K
454K
L+Pb(s)
L(单相区)
505K
固态晶形转变点。
真实的Pb—Sn 金属相图
实验结果与讨论
⑴结果:实测值为T铅= T锡= T低共熔=
⑵计算实验偏差: ⑶分析产生偏差的原因: ⑷有何建议与想法?
注意事项
1.Pb-Sn混合物的液相必须均匀互溶(达最高温 度时,搅拌样品);
2.样品的降温速率必须缓慢; 3.操作过程中,要防止样品被氧化及混入杂质; 4.热电偶温度计要插到玻璃套的底部。
观察升温情况 及时停止加热
取出样品、放 入新样品测试
实验结束记录 数据恢复原状
准备样品
按以下比例配制
锡的百 分含量
0%
20%
锡(g) 0 20
铅(g) 100 80
40% 61.9% 80% 100%
40 61.9 80 100 60 38.1 20 0
何时停止加热?
纯Pb、纯Sn、含锡61.9%(低共熔物)三个样品, 如果出现转折点,则停止加热,利用电炉的余热加 热到熔点以上30~40 ℃ 。
含锡20%、含锡40%、含锡80%三个样品,如果出 现转折点,则停止加热,利用电炉的余热使温度再 升高30~50 ℃。
何时停止实验?
金属相图PbSn体系

药品仪器
1. 金属相图实验炉 ; 2. 镍铬—镍硅热电偶; 3. 邻苯二甲酸酐(AR); 4. 石墨; 5. 锡粉(AR),铅粉(AR); 6. 等等。
Department of Chemistry
实验步骤
准备样品 (按比例)
加石墨覆盖 加热
观察升温情况 及时停止加热
Department of Chemistry
注意事项:
1.Pb-Sn混合物的液相必须均匀互溶(达 最高温度时,搅拌样品);
2.样品的降温速率必须缓慢; 3.操作过程中,要防止样品被氧化及混
入杂质; 4.热电偶要插到玻璃套的底部,以及热
电偶两极不能相碰。
Department of Chemistry
实验数据记录
实验日期:
;室温: ℃;气压:
kPa
锡的百 分含量
0% (纯铅)
20%
转折点
(t℃)
水平段
(t℃)
30% 61.9%
80%
(低共熔物)
100% (纯锡)
Department of Chemistry
数据处理
1.温度换算(℃ K); 2.作出Pb-Sn相图; 3.与文献值比较。
Department of Chemistry
Department of Chemistry
混合物步冷曲线如②、④所示,如②起 始温度下降很快(如a/b/段),冷却到b/点时, 开始有固体A析出,这时体系呈两相,因为 液相的成分不断改变,所以其平衡温度也不 断改变。由于凝固热的不断放出,其温度下 降较慢,曲线的斜率较小(b/c/段)。到了低 共熔点c/后,体系出现三相平衡L=A(s)+B (s),温度不再改变,步冷曲线又出现水平 段,直到液相完全凝固后,温度又开始下降。
Pb-Sn二元相图测定及其组织分析报告

实验10 二组分合金相图班级:材料(硕)01 组长:丁斌组员:越凡门明达王光王晓宇瑛康何林温雅欣多雪俊杰实验日期:2013年5月221.1实验目的1.2①掌握用热分析法测定材料的临界点的方法;②学习根据临界点建立二元合金相图;③自制二元合金金相样品,并分析组织。
热分析法(冷却曲线法)热分析法(冷却曲线法)是绘制凝聚体系相图时常用的方法。
它是利用金属及合金在加热或冷却过程中发生相变时,潜热的释出或吸收及热容的突变,使得温度-时间关系图上出现平台或拐点,从而得到金属或合金的相转变温度。
由热分析法制相图,先做冷却曲线,然后根据冷却曲线作图。
通常的做法是先将金属或合金全部熔化。
然后让其在一定的环境中自行冷却,通过记录仪记录下温度随时间变化的曲线(步冷曲线)。
以合金样品为例,当熔融的体系均匀冷却时(1所示),如果系统不发生相变,则系统温度随时间变化是均匀的,冷却速率较快(如图中ab线段);若冷却过程中发生了相变,由于在相变过程中伴随着放热效应,所以系统的温度随时间变化的速率发生改变,系统冷却速率减慢,冷却曲线上出现转折(如图中b点)。
当熔液继续冷却到某一点时(如图中c点),此时熔液系统以低共熔混合物的固体析出。
在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线出现水平线段(如图中cd线段);当熔液完全凝固后,温度才迅速下降(如图中de线段)。
由此可知,对组成一定的二组分低共熔混合物系统,可根据它的冷却曲线得出有固体析出的温度和低共熔点温度。
根据一系列组成不同系统的步冷曲线的各转折点,即可画出二组分系统的相图(温度-组成图)。
不同组成熔液的冷却曲线对应的相图2所示。
测定一系列不同Pb-Sn合金成分下的由液体缓慢冷却至完全凝固的数据,作冷却曲线,找出转折点或者平台,即对应转变开始或者完成所对应的温度,由此,综合这一系列的温度和其所对应的成分即可作出平衡态下的相图。
图1 图2实验结果:金相组织分析:何林温雅欣多雪俊杰组:成分组织相理论相对量相实际相对量90%Pb-10%Sn α+βⅡα90% 87.1% β10% 12.9%最终为ɑ固溶体,其冷却到固溶度线以下,将析出二次β,通常呈粒状或小条状分布于晶界与晶。
BiSn二元金属相图的绘制(热电势法)实验报告

Sn—Bi二元金属相图的绘制(热电势法)一、实验目的1、用热电偶—电位差计测定Bi—Sn体系的步冷曲线,绘制相图;2、掌握热电势法测定金属相图的方法;3、掌握热电偶温度计的使用,学习双元相图的绘制;二、实验原理研究多相体系的状态随浓度、温度、压力等变量的改变而发生变化的规律,并用图形来表示体系状态的变化,这种图形就称为相图或称为状态图。
用热分析法可绘制相图,测绘一系列不同组成的金属混合物的步冷线,然后把各步冷曲线上物态变化的温度绘在温度--组成图上,即把图中各步冷曲线的转折点和水平段所对应的温度用。
表示在温度--组成图中,即得到该体系的相图。
液相完全互溶的二组分体系,在凝固时有的能完全互溶成为固溶体,有的仅部分互溶,如本实验的Bi--Sn体系。
本实验用热电偶作为感温元件,自动平衡电位差计测量各样品冷却过程中的热电势,作出电位—时间曲线(步冷曲线),再由热电偶的工作曲线找出相变温度,从而作出Bi-Sn体系的相图。
三、实验仪器和试剂坩埚电炉(含控温仪);自动平衡电位差计;冷却保温装置;样品管;杜瓦瓶;镍铬---镍铝(或含其他材料);热电偶.锡(AR)232;铋(AR)271四、实验步骤1、准备工作在杜瓦瓶中装入室温水,按图连接路线并检查线路。
热电偶调零:在测温热电偶为室温温度时开启记录仪开关,调量程为10mV,走纸温度为0,调节零旋纽使记录笔位于记录纸左边零线处。
这时位置所指温度热电势为0,代表温度为室温。
2、测量(1)加热试样:置纯Sn样品坩埚于管式电炉中,置电热偶温度计于坩埚中细玻璃管内,并插入底部.调调压器使加热电压为150mV,加热至坩埚中细玻璃管能动则说明试样已熔化,停止加热。
(2)测量步冷曲线当发现记录笔开始向左移动(降温)时,放下记录笔,调走纸速度为4mm/min,开始测量。
当平台出现后一会抬起记录笔并调节走纸速度为0。
同上步骤,依次测量含Bi 30%,58% 的混合物。
五、实验数据记录及处理1.测纯Sn的各样品电势变化各样品的步冷曲线如下: 纯Sn :0246810123.54.04.55.05.56.0电势(m v )时间(min )30%Bi :58%Bi :5101520251.52.02.53.03.54.04.55.05.5电势(m v )时间(min)5101520251.52.02.53.03.54.04.55.0电势(m v )时间(min )量程为10mV ,加热电压为150mV 时热电偶的工作曲线为:2、测纯Bi的各样品电势变化各样品的步冷曲线如下: 1.纯Bi :-112345678101112131415电势(m v )时间(min)2、58%Bi :-551015202530354045678910电势(m v )时间(min)3、80%Bi :-551015202530352468101214电势(m v )时间(min)量程为20mV由以上两组样品的相变温度的 Sn —Bi 二元金属的相图如下:Bis n温度(℃)组分(%)由图可知:合金的最低共熔温度是145℃,即含58% Bi 时,此点为三相点。
实验六、二组分合金相图

二组分合金相图一、实验目的1.用热分析法(步冷曲线法)测绘Pb—Sn二组分金属相图。
2.了解固液相图的特点,进一步学习和巩固相律等有关知识。
3.掌握金属相图(步冷曲线)测定仪的基本原理及方法。
二、实验原理1、二组分固-液相图人们常用图形来表示体系的存在状态与组成、温度、压力等因素的关系。
以体系所含物质的组成为自变量,温度为应变量所得到的T-x图是常见的一种相图。
二组分相图已经得到广泛的研究和应用。
固-液相图多应用于冶金、化工等部门。
二组分体系的自由度与相的数目有以下关系:自由度= 组分数–相数+ 2 (1)由于一般的相变均在常压下进行,所以压力P一定,因此以上的关系式变为:自由度= 组分数–相数+ 1 (2)又因为一般物质其固、液两相的摩尔体积相差不大,所以固-液相图受外界压力的影响颇小。
这是它与气-液平衡体系的最大差别。
图1以邻-、对-硝基氯苯为例表示有最低共熔点相图的构成情况:高温区为均匀的液相,下面是三个两相共存区,至于两个互不相溶的固相A、B和液相L三相平衡共存现象则是固-液相图所特有的。
从式(2)可知,压力既已确定,在这三相共存的水平线上,自由度等于零。
3、较为简单的二组分金属相图主要有三种;(1)是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu—Ni系统;(2)是液相完全互溶而固相完全不互溶的系统,最典型是Bi—Cd系统;(3)是液相完全互溶,而固相是部分互溶的系统,如Pb—Sn系统,本实验研究的系统就是这一种。
在低共熔温度下,Pb在固相Sn中最大溶解度为(质量百分数)。
2、热分析法(步冷曲线法)是绘制相图的基本方法之一。
热分析法是相图绘制工作中常用的一种实验方法。
按一定比例配成均匀的液相体系,让它缓慢冷却。
以体系温度对时间作图,则为步冷曲线。
曲线的转折点表征了某一温度下发生相变的信息。
由体系的组成和相变点的温度作为T-x图上的一个点,众多实验点的合理连接就成了相图上的一些相线,并构成若干相区。