高一数学期末考试复习资料

合集下载

高一数学期末的复习知识点有哪些

高一数学期末的复习知识点有哪些

高一数学期末的复习知识点11、单调函数对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设x1、x2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(x)]的单调性若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。

因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.6、证明函数的单调性的方法(1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论.(2)设函数y=f(x)在某区间内可导.如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.高一数学期末的复习知识点21、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。

高一数学一年末考试章节复习知识点:第一章

高一数学一年末考试章节复习知识点:第一章

高一数学一年末考试章节复习知识点:第一章数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。

查字典数学网为大伙儿举荐了高一数学必修一期末考试章节复习知识点,请大伙儿认真阅读,期望你喜爱。

一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。

u 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{xR| x-32} ,{x| x-32}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的差不多关系1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.相等关系:A=B (55,且55,则5=5)实例:设A={x|x2-1=0} B={-1,1} 元素相同则两集合相等即:①任何一个集合是它本身的子集。

AA②真子集:假如AB,且A B那就说集合A是集合B的真子集,记作AB (或BA)③假如AB, BC ,那么AC④假如AB 同时BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

高一数学下册期末复习资料

高一数学下册期末复习资料

高一数学下册期末复习资料高一数学下册期末复习资料数学作为一门理科学科,对于学生来说是一门重要且必修的学科。

在高中阶段,数学的学习内容也逐渐加深和扩展,为了帮助同学们更好地复习数学下册的知识点,下面将为大家提供一些期末复习资料。

一、函数与方程函数与方程是数学的基础,也是高中数学的重要内容之一。

在高一下学期,我们学习了一元二次函数、指数函数、对数函数等。

复习时,可以从以下几个方面入手:1. 一元二次函数的性质和图像特征,如顶点、对称轴、开口方向等。

2. 一元二次函数的解法,包括因式分解、配方法、求根公式等。

3. 指数函数与对数函数的定义、性质和运算规律,如指数函数的增减性、对数函数的定义域等。

4. 解指数方程和对数方程的方法和步骤,如变底公式、对数换底公式等。

二、三角函数三角函数是高中数学中的重要内容,也是数学与实际应用结合的一个方面。

在高一下学期,我们学习了正弦函数、余弦函数、正切函数等。

复习时,可以从以下几个方面入手:1. 三角函数的定义、性质和图像特征,如正弦函数的周期、余弦函数的对称轴等。

2. 三角函数的基本关系式和恒等式,如和差化积、积化和差等。

3. 三角函数的解法,包括解三角方程和解三角不等式等。

4. 三角函数的应用,如三角函数在几何图形中的应用、三角函数在物理问题中的应用等。

三、数列与数学归纳法数列是数学中的一种重要概念,也是高中数学的基础内容之一。

在高一下学期,我们学习了等差数列、等比数列等。

复习时,可以从以下几个方面入手:1. 数列的定义、性质和常用记号,如等差数列的通项公式、等比数列的通项公式等。

2. 数列的运算,包括数列的加法、减法、乘法和除法等。

3. 数列的求和,包括等差数列的求和公式、等比数列的求和公式等。

4. 数学归纳法的原理和应用,如数列证明、不等式证明等。

四、概率与统计概率与统计是数学中的一门应用性较强的学科,也是高中数学的重要内容之一。

在高一下学期,我们学习了概率、统计、抽样调查等。

高一数学知识点总结,期末复习必看

高一数学知识点总结,期末复习必看

高一数学知识点总结,期末复习
必看
很多刚上高中的童鞋都觉得数学很难,快期末了。

复习好了吗?
学数学其实是一件很有趣的事情。

如果你掌握了一定的学习技巧,打好了基础,数学就是你最有优势的学科,但如果你掌握不了技巧,数学就是你夺冠的绊脚石。

作为一个小学数学几乎次次考试都是满分的人(呸,初中数学也不赖,高考数学135分)我把自己的学习技巧分享给大家,希望对正在学海中奋力划桨的你们有用
课前预习有巧妙的方法,上课不慌高效。

学数学很注重课前预习。

如果你能听懂大部分,那么在课堂上老师训练发散思维的时候,你就能迅速举一反三,正确回答老师提出的问题。

我预习数学不只是看数学书和课后习题。

我首先在书店购买了配套练习。

第二天先看了想学的东西,然后开始做题。

做完题后,我自己批改了答案。

(建议你买答案讲解更详细的配套练习,或许能帮你找到多种解题思路。

)
有了这种预习方法,我感觉我的数学课很轻松。

因为我知道哪里会,哪里不会。

我也通过做题猜测每个知识点怎么考,考什么样的题,需要注意什么。

在高中数学的学习中,每个人都必须掌握方法。

初入高中不要盲目学习刷题!。

高一数学复习题期末考试及答案

高一数学复习题期末考试及答案

高一数学复习题期末考试及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},则A∩B等于:A. {1,2}B. {2,3}C. {1,3}D. {2,4}2. 函数f(x)=x^2-4x+3的零点是:A. 1B. 3C. 1和3D. 无零点3. 若sinθ=1/3,且θ∈(0,π),则cosθ的值为:A. 2√2/3B. √2/3C. 2√6/3D. √6/34. 根据等差数列的通项公式an=a1+(n-1)d,若a1=2,d=3,则第5项a5为:A. 17B. 14C. 11D. 85. 已知直线l:y=2x+3与直线m:y=-x+5平行,则它们的斜率k_l和k_m的关系是:A. k_l > k_mB. k_l < k_mC. k_l = k_mD. k_l ≠ k_m6. 圆的方程为(x-2)^2 + (y-3)^2 = 9,圆心坐标为:A. (2,3)B. (-2,-3)C. (0,0)D. (3,2)7. 抛物线y^2=4x的焦点坐标为:A. (1,0)B. (2,0)C. (0,1)D. (0,2)8. 已知等比数列{an}的首项为2,公比为3,第5项a5的值为:A. 162B. 243C. 486D. 7299. 函数y=|x|的图像是:A. 一个V形B. 一个倒V形C. 一个U形D. 一个正弦波形10. 已知向量a=(2,3),b=(-1,2),向量a和b的夹角θ的余弦值为:A. 1/5B. 1/3C. 1/√5D. -1/√5二、填空题(每题2分,共20分)11. 函数f(x)=x^3-3x^2+2x-1的导数为:f'(x)=________。

12. 若a=3,b=-2,则(a+b)^2的值为:________。

13. 已知三角形ABC的三边长分别为a=5,b=6,c=7,则其面积为:________。

14. 函数y=√x的值域为:________。

完整)高一数学期末复习资料

完整)高一数学期末复习资料

完整)高一数学期末复习资料1.注重基础和通性通法在研究中,应该注重教材的研究和理解,深入挖掘教材的潜力。

避免只注重难题,而忽略基础知识和基本方法。

同时,也要注重一题多解的探索,经常利用变式训练和变式引申来提高自己的分析问题和解决问题的能力。

2.注重思维的严谨性在研究过程中,不能只停留在“懂”的层面。

要达到“美”的境界,即思维的严谨性。

我们的学生在解题的素养上也存在问题,如规范答题等。

希望大家能够遵循“三观”:审题观、思想方法观和步骤清晰、层次分明观。

3.注重应用意识的培养注重用数学的眼光观察和分析实际问题,提高数学的兴趣,增强学好数学的信心,达到培养创新精神和实践能力的目的。

4.培养研究与反思的整合研究是一个创造的过程,一个批判、选择、和存疑的过程,一个充满想象、探索和体验的过程。

数学研究不但要对概念、结论和技能进行记忆、积累和模仿,还要动手实践、自主探索,并在获得知识的基础上进行反思和修正。

平时研究中要注意反思,才能巩固知识、拓展知识、提高能力和优化思维。

5.注重平时的听课效率在平时的研究中,要注重听课效率,养成自学的好惯。

只有这样,才能够更好地掌握知识和技能。

高效听课不仅能够深刻理解知识,而且能够事半功倍,节省时间。

然而,有些同学认为在课堂上听不到什么,索性不听,抓紧时间做题。

这种认识是不科学的,因为如果上课没有用,国家为什么还要开设学校?只要印刷课本就足够了,学生买了书就可以自学,参加考试就行了。

在课堂上,我们可以听老师对问题的分析和解题技巧,以及老师是如何想到这些方法的。

我们应该记下比较重要的内容,跟随老师的思路,注重老师对题目的分析过程。

课后,我们应该花时间整理笔记,因为整理笔记实际上是一种知识的整合和再创造。

回忆老师在课堂上的讲解,记录下自己的想法,抓住思维的火花,因为深刻的思维火花往往是稍纵即逝的。

在听课时,我们要做到“五得”:听得懂、想得通、记得住、说得出、用得上。

另外,我们还要注重研究数学的思想方法,因为它是数学知识在更高层次上的抽象和概括,是历年来高考数学命题的特点之一。

高一必修一数学期末复习题及答案

高一数学期末复习(必修一)一、选择题:本大题10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I C M N 等于 ( )A.{0,4}B.{3,4}C.{1,2}D. ∅2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于( )A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}3、计算:9823log log ⋅=( )A 12B 10C 8D 64、函数2(01)x y a a a =+>≠且图象一定过点 ( ) X|k | b| 1 . c|o |mA (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数y =的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x |0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >> 二、填空题:本大题共4小题,每小题5分,满分20分11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫ ⎝⎛+3264=______ 13、函数212log (45)y x x =--的递减区间为______14、函数122x )x (f x -+=的定义域是______ 三、解答题 :共5小题,满分80分。

高一数学必修一期末考试复习知识点

一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的.图像总是过原点。

3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。

当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b①和y2=kx2+b②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

设水池中原有水量S。

g=S-ft。

六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)。

北京高一数学必修期末复习资料总复习题

期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.x y 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞) 3、若{|2},{|x M y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( ) A.a>5,或a<2 B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知x a x f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( ) A. 0>a B. 1>a C. 1<a D. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、y =D9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。

高一数学期末复习资料(1-5)总复习题(共5套)

期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.xy 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)3、若{|2},{|xM y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( )A.a>5,或a<2B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知xax f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、yD9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________ 17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学期末考试复习资料(一)第一章 集合与函数的概念1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 3.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .3个B .5个C .7个D .8个4.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7C. 6D. 55.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 56.设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则=⋂)(N M C U ( )(A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 7.若集合A={x -2<x <1},B={x 0<x <2}则集合A ∩ B=( )A. {x -1<x <1}B. {x -2<x <1}C. {x -2<x <2}D. {x 0<x <1} 8.若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则=A C R ( ) A 、2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭B 、2,2⎛⎫+∞ ⎪ ⎪⎝⎭C 、2(,0][,)2-∞+∞D 、2[,)2+∞ 9.已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =( )A. 1[,)2+∞B. 10,2⎛⎫⎪⎝⎭C. ()0,+∞D. 1(,0][,)2-∞+∞10.若全集U R =,集合{|1}A x x =≥,则U C A = 。

11.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B = _____________. 12.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .13.已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求m 的取值范围。

14.判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =; ⑷343()f x x x =-,3()1F x x x =-;⑸21)52()(-=x x f ,52)(2-=x x fA .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸15.若函数234(0)()(0)0(0)x x f x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = .16.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32 C .1,32或3± D .3 17.已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = 。

18.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( )A. f :x →y =12xB. f :x →y =13x C. f :x →y =14x D. f :x →y =16x19、设{}{}M=22,02x x N y y -≤≤=≤≤,函数()f x 的定义域为M ,值域为N ,则()f x 的图象可以是( )yy2 x-22 0 x2 A .B .20.函数()2143f x x x =-+-的定义域为( )A [)(]22+∞-∞- ,, B [)()2,33+∞ , C [)()(]2,332+∞-∞- ,, D (]2-∞-, 21.已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为( ) A.(-1,0 B.(-1,1) C.(0,1) D.[0,1] 22、已知()f x 是一次函数且()()()()()22315,2011,f f f f f x -=--==则()A .32x +B .32x -C .23x +D .23x -23若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。

24.函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( ) A .3 B .3- C .33-或 D .35-或25.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).26、函数()x f x x x=+的图象是如图中的()A .B .C .D .27.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 O dtOdtOdtOdtA. B. C. D.1 y yy y 1110 -1 -1-1-1 xxxx-22 y0 y2 -2 0xx C .D .28.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .25 29.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞30.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥331.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A . 1 B . 2 C . 3 D . 432.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f33.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是A .增函数且最小值是5-B .增函数且最大值是5-C .减函数且最大值是5-D .减函数且最小值是5-34.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数35.已知)(x f 是奇函数,且当0>x 时,2)(-=x x x f (1)求)3(-f 的值;(2)求当0<x 时,求)(x f 的解析式。

36.用定义证明函数12)(2+-=x x x f 在[)+∞,1上为增函数。

37.已知函数[]2()22,5,5f x x ax x =++∈-.① 当1a =-时,求函数的最大值和最小值;② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数。

38.已知函数()f x 的定义域为()1,1-,且同时满足下列条件:(1)()f x 是奇函数;(2)()f x 在定义域上单调递减;(3)2(1)(1)0,f a f a -+-<求a 的取值范围。

高一数学期末考试复习资料(二)第二章 基本初等函数1.3334)21()21()2()2(---+-+----的值 ( )A 437B 8C -24D -8 2.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )A 2-aB 25-aC 2)(3a a a +-D 132--a a3.函数xy 24-=的定义域为 ( ) A ),2(+∞ B (]2,∞- C (]2,0 D [)+∞,14.下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B x y 2log = C 31x y = D xy 5.0=5.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( ) (A)k>12 (B)k<12 (C)k>12- (D).k<12- 6.函数x x f 4log )(=与xx f 4)(=的图象 ( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x y =对称7、函数y =log 2x +3(x≥1)的值域是 ( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞) 8.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 9、已知(10)x f x =,则()100f = ( )A 、100B 、10010C 、lg10D 、210.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是 ( )(A) 0,1a a >≠ (B) 1a = (C) 12a = (D) 121a a ==或11.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)12. 函数log (2)1a y x =++的图象过定点 ( ) A.(1,2) B.(2,1)C.(-2,1)D.(-1,1)13.函数12log (32)y x =-的定义域是 ( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D) (23,1]14.已知10<<a ,0log log <<n m a a ,则 ( ) A m n <<1 B n m <<1 C 1<<n m D 1<<m n15.已知f (x )=|lgx |,则f (41)、f (31)、f (2) 大小关系为 ( )A. f (2)> f (31)>f (41) B. f (41)>f (31)>f (2) C. f (2)> f (41)>f (31) D. f (31)>f (41)>f (2) 16.函数y= | lg (x-1)| 的图象是 ( )17.函数|log |)(21x x f =的单调递增区间是 ( )A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞ 18.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( ) A .42 B .22 C .41 D .21 20.已知幂函数的图像经过点(2,32)则它的解析式是 . 21.函数21()log (2)f x x =-的定义域是 .22.计算:(log )log log 2222545415-++= 。

相关文档
最新文档