二项分布 分布律公式
概率论中的二项分布与正态分布的关系

概率论是数学中一个非常重要的分支,研究的是随机事件发生的概率和规律。
而二项分布和正态分布是概率论中两个重要的概率分布,它们之间有着密切的关系。
首先,让我们来看一下二项分布。
二项分布是一种离散型概率分布,描述的是在一系列独立的伯努利试验中成功次数的概率分布。
在每次试验中,我们都有两种可能的结果,通常分别称为成功和失败。
成功的概率记为p,失败的概率记为q,且p+q=1。
而在进行n次独立的伯努利试验后,成功的次数的概率分布就是二项分布。
二项分布的概率质量函数为f(x) = C(n,x) * p^x * q^(n-x),其中C(n,x)是组合数,表示从n次试验中选择x次成功的组合数。
二项分布的期望值为E(x) = n * p,方差为Var(x) = n * p * q。
从这个公式我们可以看出,二项分布的期望值和方差与试验次数n以及成功的概率p有关。
接下来,我们来看一下正态分布。
正态分布是一种连续型概率分布,也被称为高斯分布。
正态分布在自然界中非常常见,例如身高、体重等连续型随机变量就可以用正态分布来描述。
正态分布的概率密度函数为f(x) = (1 / (sqrt(2*pi)sigma)) * exp(-(x-mu)^2 / (2sigma^2)),其中mu是均值,sigma是标准差。
正态分布的均值和方差分别就是mu和sigma的值。
正态分布具有对称性,曲线呈钟形,均值处的概率最高。
那么,二项分布和正态分布之间有何种关系呢?事实上,当试验次数n很大时,二项分布在逼近正态分布。
这是由于中心极限定理。
中心极限定理是概率论中一个非常重要的定理,它表明在一定条件下,独立随机变量之和的分布在试验次数足够大的情况下逼近于正态分布。
具体来说,对于n次独立的伯努利试验,成功的次数之和x满足二项分布B(n,p),当n足够大时,x的分布近似于参数为μ=np,标准差为σ=sqrt(npq)的正态分布N(μ,σ^2)。
这个关系可以通过计算来进行验证。
三大分布--二项分布

三、常见的题型:
1.
明考 暗考
单变量 2. 双变量 a b
多变量 a b
练习1.背定义、熟公式:
(1)若 X ~ B(n , 3) ,且 P(X 1) 96 ,则 n =_____
5
625
析:由题意得
PX
1
C1n
( 3 )(1 5
为ξ的数学期望或均值,简称为期望.
② 则称 D (x1 E )2 p1 (x2 E )2 p2 ... (xn E )2 pn
为ξ的方差 ,称 = D 为ξ的标准差
随机变量期望与方差的作用(目的)
(1)期望:将随机事件“虚拟”成一确定事件 体现了总体的平均水平(聚中性)
(2)方差:体现了总体的稳定性(波动性)
注1.三大步骤
S1.将样本空间Ω划分成n个基本事件
S2.计算出所求事件A中基本事件的个数
S3.套用公式
P(
A)
A中基本事件的个数 Ω中基本事件的个数
注2.使用的两前提
①有限性
②等可能性
古典概型个数比 几何概型测度比 有限无限分水岭 卅六整点二骰子 旋转问题用角度 模拟试验四大步
几何定义法(几何概型)求概率
③和积互补公式 P(A1 A2 An ) 1 P(A1 • A2 • • An ) 注:若A,B对立,则有 P( A) P(B) 1,反之则不然 ④对偶律 P(A• B •C) P(A B C) P(A• B •C) P(A B C)
古典定义法(等可能概型)求概率
一分二算三相除 有限等分是前提
2.表示:三大语言……
3.分类:
①
离散型 连续型
②
有限型 无限型
二项分布概念及图表和查表方法

目录1 定义▪统计学定义▪医学定义2 概念3 性质4 图形特点5 应用条件6 应用实例定义统计学定义在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。
这样的单次成功/失败试验又称为伯努利试验。
实际上,当时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。
医学定义在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。
二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。
考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。
如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X)二项分布公式式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomial coefficient)。
所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。
概念二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果。
二项分布公式如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。
二项分布的分布律公式

二项分布的分布律公式二项分布的分布律是统计学中常用的一种离散概率分布,它描述了n 个正态独立随机试验中成功次数的概率分布。
在每次试验中,成功的概率为p,失败的概率为q=1-p,成功和失败是互斥且独立的。
一个二项分布的随机变量X可以表示为成功的个数,其取值范围为0到n。
P(X=k)=C(n,k)*p^k*q^(n-k)其中,P(X=k)表示成功次数为k的概率,C(n,k)表示组合数,即从n 个试验中选择k个成功的方式数。
p^k表示成功k次的概率,q^(n-k)表示失败n-k次(即成功n-k次)的概率。
在上述公式中,组合数C(n,k)可以使用以下的公式计算:C(n,k)=n!/(k!*(n-k)!)其中,n!表示n的阶乘,即从n到1的连乘。
阶乘表示将一个正整数和它之前的所有正整数相乘(n!=n*(n-1)*(n-2)*...*3*2*1),并且定义0!=1E(X)=n*pVar(X) = n * p * q其中,E(X)表示期望值,也就是随机变量X的平均值;Var(X)表示方差,描述了X的取值在平均值附近的分散程度。
1.成功次数的分布具有对称性,即P(X=k)=P(X=n-k)。
2.二项分布的形状随着成功概率p的变化而变化。
当p接近0或1时,分布呈现出两侧尖峰,并且主要质量集中在边缘值。
而当p接近0.5时,分布是对称的,主要质量集中在期望值附近。
3.当n足够大时,二项分布可以通过正态分布进行近似。
这是由于中心极限定理的影响,即将多个独立随机变量的和近似为正态分布的情况。
总结起来,二项分布的分布律公式是用于计算n次独立成功/失败试验中成功次数为k的概率。
其公式中包括组合数的计算,成功和失败的概率,以及阶乘的运算。
掌握了二项分布的分布律公式,可以更好地理解和应用二项分布在统计学中的意义和作用。
概率论与数理统计考点

《概率论与数理统计》 第一章 随机事件与概率事件之间的关系: 事件之间的运算: 运算法则:交换律A ∪B=B ∪A A ∩B=B ∩A结合律(A ∪B)∪C=A ∪(B ∪C) (A ∩B)∩C=A ∩(B ∩C) 分配律(A ∪B)∩C=(AC)∪(BC) (A ∩B)∪C=(A ∪C)∩(B ∪C) 对偶律 A ∪B ‾‾ =A ‾∩B ‾ A ∩B ‾‾ =A ‾∪B ‾ 古典概型: 概率公式:求逆公式 P(A ‾)=1- P(A)加法公式 P(A ∪B)=P(A)+P(B)-P(AB)P(A ∪B ∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) 求差公式:P(A-B)=P(A)-P(AB); 当A ⊃B 时,有P(A-B)=P(A)-P(B)注意: A-B = A B ‾ = A-AB = (A ∪B)-B条件概率公式:P(A|B)=P(AB)P(B); (P(B)>0)P(A|B)表示事件B 发生的条件下,事件A 发生的概率。
乘法公式:P(AB)=P(A)P(B|A)= P(B)P(A|B) (其中P(A)>0, P(B)>0) 一般有P(ABC)=P(A)P(B|A)P(C|AB) (其中P(AB)>0)全概率公式:P(A)= ∑i=1nP(A|B i )P(B i ) 其中B 1,B 2,…,B n 构成Ω的一个分斥。
贝叶斯公式:P(A k |B)= P(B|A k )P(A k )P(B) = P(B|A k )P(A k )∑i=1nP(B|A i )P(A i )(由果溯因)概论的性质:事件的独立性:如果事件A 与事件B 满足P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。
结论:1. 如果P(A)>0,则事件A 与B 独立⇔2. 事件A 与事件B 独立⇔事件A 与事件B ‾独立⇔事件A ‾与事件B 独立⇔事件A ‾与事件B ‾独立贝努里概型:指在相同条件下进行n 次试验;每次试验的结果有且仅有两种A 与A ‾;各次试验是相互独立;每次试验的结果发生的概率相同P(A)=p, P(A‾)=1-p 。
2-2离散型随机变量及其分布律

9 P ( X 9 ) C10 (0.3)9 (0.7)109 0.00138
P ( X 9) P ( X 9 ) P ( X 10 )
(3)二项分布的图形特点:X∽b(n,p)
Pk Pk
0
...
n=10, p=0.7
n
0
..
n=20, p=0.5
.. n
说明:
a. 对于固定n及p,随着k的增加 ,概率P(X=k) 先是随之增加, 并在(n+1)p或者[(n+1)p] 达到最大值,随后单调减少。 b. 如果p>0.5,图形高峰右偏;如果p<0.5,图形高峰左偏。
说明:
k P ( X k ) C n p k (1 p )n k 0 a. 可验证二项分布满足概率充分条件 n k k C n p (1 p )n k ( p+1-p )n 1 k 0
k b. 式Cn pk (1 p)nk 为二项式( p 1 p)n 一般项,故二项分布.
c. n 1, B(n, p)即为0 1分布, P( X k ) pk qnk (k 0,1)
k d . n次试验中至多出现m次( m n): P (0 X m ) C n p k q n k k 0 m
np p或np p 1 np p N e. 事件A最可能发生次数k 其它 [np p] k (即使概率P ( X k ) C n p k (1 p)n k 达到最大值的k .
启示:一次试验中概率很小,但在大量重复试验中几乎必然发生
二项分布

二项分布科技名词定义中文名称:二项分布英文名称:binomial distribution定义:描述随机现象得一种常用概率分布形式,因与二项式展开式相同而得名。
所属学科:大气科学(一级学科);气候学(二级学科)本内容由全国科学技术名词审定委员会审定公布二项分布二项分布即重复n次得伯努里试验。
在每次试验中只有两种可能得结果,而且就就是互相对立得,就就是独立得,与其它各次试验结果无关,结果事件发生得概率在整个系列试验中保持不变,则这一系列试验称为伯努力试验。
目录概念医学定义二项分布得应用条件二项分布得性质与两点分布区别编辑本段概念二项分布(Binomial Distribution),即重复n次得伯努力试验(Bernoulli Experiment),用ξ表示随机试验得结果、如果事件发生得概率就就是P,则不发生得概率q=1-p,N次独立重二项分布公式复试验中发生K次得概率就就是P(ξ=K)=Cn(k)P(k)q(n-k)注意!:第二个等号后面得括号里得就就是上标,表示得就就是方幂。
那么就说这个属于二项分布、、其中P称为成功概率。
记作ξ~B(n,p)期望:Eξ=np方差:Dξ=npq如果1、在每次试验中只有两种可能得结果,而且就就是互相对立得;2、每次实验就就是独立得,与其它各次试验结果无关;3、结果事件发生得概率在整个系列试验中保持不变,则这一系列试验称为伯努力试验、在这试验中,事件发生得次数为一随机事件,它服从二次分布、二项分布可二项分布以用于可靠性试验、可靠性试验常常就就是投入n个相同得式样进行试验T 小时,而只允许k个式样失败,应用二项分布可以得到通过试验得概率、若某事件概率为p,现重复试验n次,该事件发生k次得概率为:P=C(k,n)×p^k×(1-p)^(n-k)、C(k,n)表示组合数,即从n个事物中拿出k个得方法数、编辑本段医学定义在医学领域中,有一些随机事件就就是只具有两种互斥结果得离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果得有效与无效,某种化验结果得阳性与阴性,接触某传染源得感染与未感染等。
二项分布与泊松分布

二项分布的应用
2 正态近似法:应用条件:np及n(1−p)均≥5
p±uαsp
例:在某地随机抽取329人,做HBsAg检验,得阳性 率为8.81%,求阳性率95%置信区间。 已知:p=8.81%,n=329,故:
s p p ( 1 p ) /n 0 .0( 1 8 0 .0 8) 8 /3 1 8 2 0 .0 1 9 1 1 .5 % 5 6 6
第一节 二项分布和总体率的估计
一、二项分布 (一)二项分布的概念
在生命科学研究中,经常会遇到一些事物, 其结果可分为两个彼此对立的类型,如一个病 人的死亡与存活、动物的雌与雄、微生物培养 的阳性与阴性等,这些都可以根据某种性状的 出现与否而分为非此即彼的对立事件。这种非 此即彼事件构成的总体,就称为二项总体 (binomial population)。
二、二项分布的应用
(一 )、总体率的估计
1 查表法:附表6百分率的置信区间表直接
列出了X≤n/2的部分。其余部分可以查nx的阴性部分的QL~QU再相减得 PLand pU PL=1-QL 1-QU 例:某地调查50名儿童蛔虫感染情况,发现有10人大便
中有蛔虫卵,问儿童蛔虫感染率的95%置信区间是多少?
1份混合样本中含有k份阳性的概率为当k0时p0是说混合样品中没有1阳性样品的原始概率反映的是混合样品阴性的概率当收集的样本数量很大时全部检验费时费力可以用群检验的方法进行解决若每个标本的阳性概率为则其阴性概率为q1便是某个群m个标本均为阴性的概率一个群为阴性的群的概率而1q就为一个群阳性的概率
二项分布与泊松分布
第一节 二项分布和总体率的估计
二项分布(binomial distribution) 就是对这种只具有两种互斥结果的离散型 随机变量的规律性进行描述的一种概率分 布。由于这一种分布规律是由瑞士学者贝 努里(Bernoulli)首先发现的,又称贝努里 分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布分布律公式
二项分布是概率论中的一种离散概率分布,也被称为伯努利分布或0-1分布。
它描述了在进行一系列独立的重复试验中,成功事件发生的次数的概率分布情况。
在二项分布中,每次试验的结果只有两种可能,通常用0和1表示,分别代表失败和成功。
二项分布的分布律公式可以表示为:
P(X=k) = C(n,k) * p^k * (1-p)^(n-k)
其中,P(X=k)表示成功事件发生k次的概率,n表示试验的次数,p 表示每次试验中成功事件发生的概率,C(n,k)表示组合数,表示从n次试验中选出k次成功的组合数。
在实际问题中,二项分布可以广泛应用。
例如,在进行投掷硬币的试验中,每次试验的结果只有正面和反面两种可能,可以使用二项分布来描述正面朝上的次数。
又如,在进行商品质量检验时,每个产品的合格和不合格是两种可能的结果,可以使用二项分布来描述合格产品的数量。
二项分布具有以下特点:
1. 独立性:每次试验的结果都是独立的,前一次试验的结果不会影响后一次试验的结果。
2. 成功概率恒定:每次试验中成功事件发生的概率保持不变。
3. 试验次数固定:进行试验的次数是固定的,不会发生变化。
根据二项分布的分布律公式,我们可以计算出在给定参数下,各个事件发生次数的概率。
例如,在投掷一枚公平硬币10次的试验中,我们希望计算正面朝上5次的概率。
根据二项分布的公式,可以计算得到:
P(X=5) = C(10,5) * (0.5)^5 * (0.5)^(10-5) = 0.246
即正面朝上5次的概率为0.246,约为24.6%。
二项分布还可以用于计算累积概率。
例如,在上述硬币投掷的例子中,我们可以计算出正面朝上不超过5次的概率。
根据二项分布的性质,可以得知此时的累积概率为:
P(X<=5) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) = 0.623
即正面朝上不超过5次的概率为0.623,约为62.3%。
二项分布的期望和方差也是重要的统计量。
在二项分布中,期望和方差的计算公式为:
E(X) = n * p
Var(X) = n * p * (1-p)
其中,E(X)表示随机变量X的期望,Var(X)表示随机变量X的方差。
从公式中可以看出,期望和方差随着试验次数的增加而增加,成功事件发生的概率越大,期望和方差越大。
二项分布是概率论中重要的一种分布,可以用来描述在独立重复试验中成功事件发生次数的概率分布情况。
通过分布律公式,我们可以计算出各个事件发生次数的概率,以及累积概率、期望和方差等统计量。
这使得二项分布在实际问题中具有广泛的应用价值,能够帮助我们分析和解决各种概率问题。