考研数学概率与统计题解析

合集下载

考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编15(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2002年] 设X1和X2是两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和.f2(x),分布函数分别为F1(x)和F2(x),则( ).A.f1(x)+f2(x)必为某一随机变量的概率密度B.F1(x)F2(x)必为某一随机变量的分布函数C.F1(x)+F2(x)必为某一随机变量的分布函数D.f1(x)f2(x)必为某一随机变量的概率密度正确答案:B解析:解一由命题3.2.1.2知,仅(B)入选.解二F1(x)F2(x)=P(X1≤x)P(X2≤x)=P(X1≤x,X2≤x).取X=max{X1,X2),并由于P(X1≤x,X2≤x)=P(max{X1,X2)≤x),则由定义可知,F1(x)F2(x)必为随机变量X=max{X1,X2}的分布函数.仅(B)入选.解三因故(A)不正确.又故(C)错误.取Xi在区间[0,2]上服从均匀分布,则于是有因而(D)也不成立.仅(B)入选.注:命题3.2.1.2 若F1(x),F2(x),…,Fn(x)分别是随机变量X1,X2,…,Xn的分布函数,则也是分布函数,且是随机变量max{X1,X2,…,X2)的分布函数.知识模块:概率论与数理统计2.[2011年] 设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是( ).A.f1(x)f2(x)B.2f2(x)F1(x)C.f1(x)F2(x)D.f1(x)F2(x)+f2(x)F1(x)正确答案:D解析:解一因f1(x),f2(x),F1(x),F2(x)分别为随机变量的密度函数与分布函数,故f1(x)≥0,f2(x)≥0,0≤F1(x)≤1,0≤F2(x)≤1,所以f1(x)F2(x)+f2(x)F1(x)≥0.而故f1(x)F2(x)+f2(x)F1(x)为概率密度.仅(D)入选.解二由题设有则f1(x)F2(x)+f2(x)F1(x)=F1’(x)F2(x)+F1(x)F2’(x)=(F1(x)F2(x))’.因F1(x)F2(x)为随机变量max{X1,X2)的分布函数(见命题3.2.1.2),故其导数f1(x)F2(x)+f2(x)F1(x)必为随机变量max{X1,X2}的概率密度.仅(D)入选.注:命题3.2.1.2 若F1(x),F2(x),…,Fn(x)分别是随机变量X1,X2,…,Xn的分布函数,则也是分布函数,且是随机变量max{X1,X2,…,X2)的分布函数.知识模块:概率论与数理统计3.[2018年] 设随机变量X的概率密度f(x)满足f(1+x)=f(1-x),且则P{X ≤0}=( ).A.0.2B.0.3C.0.4D.0.5正确答案:A解析:因为f(1+x)=f(1-x),所以f(x)的图形关于x=1对称,因此P(x≤0)=P(x≥2).又因为所以P(x≤0)+P(x≥2)=2P(x≤0)=1-0.6=0.4,从而P(x≤0)=0.2,故选(A).知识模块:概率论与数理统计4.[2010年] 设随机变量X的分布函数则P(X=1)=( ).A.0B.1/2C.1/2-e-1D.1-e-1正确答案:C解析:因P(X=1)=P(X≤1)-P(X<1)=F(1)-F(1-0),而故P(X=1)=1-e-1-1/2=1/2-e-1.仅(C)入选.知识模块:概率论与数理统计5.[2013年] 设X1,X2,X3是随机变量,且X1~N(0,1),X2~N(0,22),X3~N(5,32),pi=P{-2≤Xi≤2)(i=1,2,3),则( ).A.p1>p2>p3B.p2>p1>p3。

考研数学概统真题

考研数学概统真题

考研数学概统真题考研数学概统真题一直是考研学子备考的重点和难点之一。

通过解析和分析真题,可以帮助考生更好地理解和掌握数学概统的知识点,提高解题能力。

本文将从概率论、数理统计两个方面,结合真题进行探讨。

概率论部分,我们选取了一道经典的考研数学概率题目进行解析。

题目如下:某餐厅每天的顾客数目服从参数为λ的泊松分布,已知λ的先验分布为参数为α和β的伽玛分布。

现在观测到了该餐厅连续n天的顾客数目为x1,x2,...,xn,求λ的后验分布。

首先,我们需要明确题目中的一些概念。

泊松分布是一种离散型概率分布,它描述了单位时间内随机事件发生的次数。

伽玛分布是一种连续型概率分布,它常用于描述正数随机变量的分布。

先验分布是指在观测数据之前对参数的分布进行假设。

接下来,我们可以利用贝叶斯定理来求解该题。

根据贝叶斯定理,后验分布可以表示为先验分布与似然函数的乘积除以归一化常数。

似然函数是指在给定参数下,观测到数据的概率。

对于泊松分布,似然函数可以表示为λ^x1 * e^(-λ) / x1! * λ^x2 * e^(-λ) / x2!* ... * λ^xn * e^(-λ) / xn!。

对于伽玛分布,先验分布可以表示为α^β * λ^(α-1) * e^(-βλ) / Γ(α)。

将似然函数和先验分布相乘,并进行化简,我们可以得到后验分布的表达式。

后验分布可以表示为α + Σxi和β + n的伽玛分布。

通过对该题的解析,我们可以看出,考研数学概率论部分的题目,不仅考察了对概率分布的理解和应用,还需要运用贝叶斯定理等概率统计的方法进行求解。

因此,考生在备考过程中,需要掌握概率论的基本概念和定理,熟练运用概率计算的方法。

接下来,我们来看一道数理统计的真题。

题目如下:某工厂生产的产品尺寸服从正态分布N(μ,σ^2),现从该工厂随机抽取10个产品,测得尺寸如下:(略)。

试估计μ的置信水平为0.95的置信区间。

对于这道题,首先我们需要明确正态分布的性质。

考研数学三(概率论与数理统计)历年真题试卷汇编1(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编1(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(87年)若二事件A和B同时出现的概率P(AB)=0,则【】A.A和B不相容(互斥).B.AB是不可能事件.C.AB未必是不可能事件.D.P(A)=0或P(B)=0.正确答案:C解析:由P(AB)=0不能推出AB=的结论,故A、B均排除.而D明显不对,应选C.知识模块:概率论与数理统计2.(89年)以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为:【】A.“甲种产品滞销,乙种产品畅销”.B.“甲、乙两种产品均畅销”.C.“甲种产品滞销”.D.“甲种产品滞销或乙种产品畅销”.正确答案:D 涉及知识点:概率论与数理统计3.(90年)议A、B为随机事件,且BA,则下列式子正确的是【】A.P(A+B)=P(A).B.P(AB)=P(A).C.P(B|A)=P(B).D.P(B-A)=P(B)-P(A).正确答案:A解析:∵AB,∴A+B=A,故选A.知识模块:概率论与数理统计4.(91年)设A和B是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是:【】A.不相容.B.相容.C.P(AB)=P(A)P(B).D.P(A-B)=P(A).正确答案:D 涉及知识点:概率论与数理统计5.(92年)设当事件A与B同时发生时,事件C必发生,则【】A.P(C)≤P(A)+P(B)-1.B.P(C)≥P(A)+P(B)-1.C.P(C)=P(AB).D.P(C)=P(A∪B).正确答案:B 涉及知识点:概率论与数理统计6.(93年)设两事件A与B满足P(B|A)=1,则【】A.A是必然事件.B.P(B|)=0C.AB.D.AB.正确答案:C 涉及知识点:概率论与数理统计7.(94年)设0<P(A)<1,0<P(B)<1,P(A|B)+P()=1,则事件A和B 【】A.互不相容.B.互相对立.C.不独立.D.独立.正确答案:D 涉及知识点:概率论与数理统计8.(96年)已知0<P(B)<1,且P[(A1+A2)|B]=P(A1|B)+P(A2|B),则下列选项成立的是【】A.P[(A1+A2)|]=P(A1|)+P(A2|)B.P(A1B+A2B)=P(A1B)+P(A2B)C.P(A1+A2)=P(A1|B)+P(A2|B)D.P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)正确答案:B解析:由已知得,化简得B项正确.知识模块:概率论与数理统计9.(00年)在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电.以E 表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于【】A.{T(1)≥t0}B.{T(2)≥t0}C.{T(3)≥t0}D.{T(4)≥t0}正确答案:C 涉及知识点:概率论与数理统计填空题10.(88年)设P(A)=0.4,P(A∪B)=0.7,那么(1)若A与B互不相容,则P(B)=_______;(2)若A与B相互独立,则P(B)=_______.正确答案:0.3;0.5.解析:由P(A∪B)=P(A)+P(B)-P(AB) (1)若A、B互不相容,则AB =,∴P(AB)=0,代入上式得0.7=0.4+P(B)-0,故P(B)=0.3 (2)若A、B相互独立,则P(AB)=P(A)P(B),代入得0.7=0.4+P(B)-0.4×P(B),故P(B)=0.5.知识模块:概率论与数理统计11.(88年)若事件A,B,C满足等式A∪C=B∪C,则A=B.该命题是否正确_______.(填正确或不正确)正确答案:不正确涉及知识点:概率论与数理统计12.(90年)一射手对同一目标独立地进行4次射击,若至少命中一次的概率为,则该射手的命中率为_______.正确答案:解析:设该射手的命中率为p,则4次射击(独立重复)中命中k次的概率为C4kpk(1-p)4-k.由题意=P(他至少命中一次)=1-P(他命中0次)=1-C40p0(1-p)4-0=1-(1-p)4 解得p=知识模块:概率论与数理统计13.(92年)将C,C,E,E,I,N,S这七个字母随机地排成一行,则恰好排成SCIENCE的概率为_______.正确答案:解析:这7个字母排一行共有71种排法(第1位置有7种放法,第2位置有6种放法,余类推,用乘法原则),这是总样本点个数.而在有利场合下,第1位置有1种放法(1个S),第2位置有2种放法(2个C中选1个),同理,第3位置有1种放法(1个D,第4位置有2种放法(2个E中选1个),后边都是1种选法(即使是C或E,只剩1个了),故有1×2×1×2×1×1×1=4种放法,这是有利样本点个数.故所求概率为知识模块:概率论与数理统计14.(07年)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为_______.正确答案:解析:设这两个数分别为χ,y,则二维点(χ,y)可能取的点为图4.3中的正方形内部(面积为1),而符合要求(即题中“两数之差的绝对值<”)的点集合{(χ,y):0<χ<1,0<y<1,|χ-y|<}为图中阴影部分G,而G的面积为1-2×.故所求概率为知识模块:概率论与数理统计15.(12年)设A,B,C是随机事件,A与C互不相容,P(AB)=,P(C)=,则P(AB|)=_______.正确答案:解析:∵AC=,∴A,得P(AB)=P(AB)=,又P()=1-P(C)=,故知识模块:概率论与数理统计16.(16年)设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为_______.正确答案:解析:用古典概型,4次取球共有34种取法;而“第1次取红球,第2、3次至少取得1白球且未取得黑球,第4次取黑球”共有3种取法:(按顺序)“红红白黑,红白红黑,红白白黑”,故上述事件(引号内的事件)的概率为.而红、白、黑3种颜色排列有31种,故本题所求概率为.知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学一概率统计-试卷6_真题(含答案与解析)-交互

考研数学一概率统计-试卷6_真题(含答案与解析)-交互

考研数学一(概率统计)-试卷6(总分70, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设X和Y分别表示扔n次硬币出现正面和反面的次数,则X,Y的相关系数为( ).SSS_SINGLE_SELA 一1B 0CD 1该题您未回答:х该问题分值: 2答案:A解析:设正面出现的概率为P,则X~B(n,p),Y=n一X~B(n,1一p),E(X)=np,D(X)=np(1一p),E(Y)=n(1一p),D(y)=np(1一p), Cov(X,Y)=Cov(X,n一X)=Cov(X,n)一Cov(X,X),因为Cov(X,n)=E(nX)一E(n)E(X)=nE(X)一nE(X)=0, Cov(X,X)=D(X)=np(1—p),所以ρXY= =一1,选(A).2.设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为( ).SSS_SINGLE_SELA 一1B 0CD 1该题您未回答:х该问题分值: 2答案:A解析:当P{Y=aX+b}=1(a>0)时,ρXY =1;当P{Y=aX+b}=1(a<0)时,ρXY=一1.因为arcsinx+arccosx= ,所以ρUV=一1,选(A).3.对于随机变量X1,X2,…,Xn,下列说法不正确的是( ).SSS_SINGLE_SEL A若X1,X2,…,Xn两两不相关,则D(X1,X2,…,Xn)= D(Xi )B若X 1 ,X 2 ,…,X n 相互独立,则D(X 1 ,X 2 ,…,X n )=D(X 1 )+D(X 2 )+…+D(X n )C若X 1 ,X 2 ,…,X n 相互独立同分布,服从N(0,σ 2 ),则D若D(X 1 +X 2 +…+X n )=D(X 1 )+D(X 2 )+…+D(X n ),则X 1 ,X 2 ,…,X n 两两不相关该题您未回答:х 该问题分值: 2 答案:D解析:若X 1 ,X 2 ,…,X n 相互独立,则(B),(C)是正确的,若X 1 ,X 2 ,…,X n 两两不相关,则(A)是正确的,选(D). 4.设(X ,Y)服从二维正态分布,其边缘分布为X ~N(1,1),Y ~N(2,4),X ,Y 的相关系数为ρ XY =一0.5,且P(aX+bY≤1)=0.5,则( ).SSS_SINGLE_SELABCD该题您未回答:х 该问题分值: 2 答案:D解析:因为(X ,Y)服从二维正态分布,所以aX+bY 服从正态分布,E(aX+bY)=a+2b , D(aX+bY)=a 2 +4b 2 +2abCov(X ,Y)=a 2 +4b 2 一2ab , 即aX+bY ~N(a+2b ,a 2 +4b 2 一2ab), 由P(aX+bY≤1)=0.5得a+2b=1,所以选(D).2. 填空题 1.设随机变量X 与Y 的相关系数为 ,且E(X)=0,E(Y)=1,E(X 2 )=4,E(Y 2)=10,则E(X+Y) 2 =___________.SSS_FILL该题您未回答:х 该问题分值: 2 答案:正确答案:18解析:D(X)=E(X 2 )一[E(X)] 2 =4,D(Y)=E(Y 2 )一[E(Y)] 2 =9, Cov(X ,Y)=ρ XY . =2, D(X+Y)=D(X)+D(Y)+2Cov(X ,Y)=4+9+4=17, 则E(X+Y) 2 =D(X+Y)+[E(X+Y)] 2 =17+1=18.2.设随机变量X的密度函数为f(x)=,则P{|X—E(X)|<2D(X)}=___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:解析:3.设X的分布函数为F(x)= ,且Y=X 2一1,则E(XY)=___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:—0.6解析:随机变量X的分布律为X~E(XY)=E[X(X 2一1)]=E(X 3一X)=E(X 3 )一E(X),因为E(X 3 )=一8×0.3+1×0.5+8×0.2=一0.3, E(X)=一2×0.3+1×0.5+2×0.2=0.3,所以E(XY)=一0.6.4.设随机变量X的密度函数为f(x)=,则E(X)=___________,D(X)___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:解析:因为5.设随机变量X~P(λ),且E[(X一1)(X一2)]=1,则λ=___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:1解析:因为X~P(λ),所以E(X)=λ,D(X)=λ,故E(X 2 )=D(X)+[E(X)] 2=λ 2+λ.由E[(X一1)(X一2)]=E(X 2一3X+2)=E(X)一3E(X)+2=λ 2一2λ+2=1得λ=1.6.设每次试验成功的概率为0.2,失败的概率为0.8,设独立重复试验直到成功为止的试验次数为X,则E(X)=___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:5解析:X的分布律为P(X=k)=0.2×0.8 k—1,k=1,2,….7.设随机变量X,Y不相关,X~U(—3,3),Y的密度为fY(y)= ,根据切比雪夫不等式,有P{|X—Y|<3}≥___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:解析:8.将一均匀的骰子连续扔六次,所出现的点数之和为X,用切比雪夫不等式估计P(14<X<28)= ___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:解析:9.设X1,X2,…,X100相互独立且在区间[一1,1]上同服从均匀分布,则由中心极限定理≈___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:0.8413解析:3. 解答题解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(概率论与数理统计)历年真题试卷汇编12(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编12(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编12(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则A.D(XY)=D(X).D(Y).B.D(X+Y)=D(X)+D(Y).C.X与Y独立.D.X与Y不独立.正确答案:B解析:∵D(X+Y)=D(X)+D(Y)+2[E(XY)-E(X)E(Y)],可见选项B与E(XY)=E(X)E(Y)是等价的.知识模块:概率论与数理统计2.设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然A.不独立.B.独立.C.相关系数不为零.D.相关系数为零.正确答案:D解析:∵X与Y同分布,∴DX=DY 得cov(U,V)=cov(X-Y,X+Y)=cov(X,X)+cov(X,Y)~cov(Y.X)-cov(Y,Y) =DX-DY==0 ∴相关系数ρ=0 知识模块:概率论与数理统计3.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于A.-1B.0C.D.1正确答案:A解析:∵X+Y=n,∴Y=n-X 故DY=D(n-X)=DX,cov(X,Y)=cov(X,n-X)=-cov(X.X)=-DX.∴X和Y的相关系数ρ(X,Y)==-1.知识模块:概率论与数理统计4.设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(χ),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(χ|y)为A.fX(χ).B.fY(y).C.fX(χ)fY(y).D.正确答案:A解析:由(X,Y)服从二维正态分布,且X与Y不相关.故X与Y独立,∴(X,Y)的概率密度f(χ,y)=fX(χ).fY(y),(χ,y)∈R2.得fX|Y(X|Y)==fX(χ) 故选A.知识模块:概率论与数理统计填空题5.设随机变量Xij(i,j=1,2,…,n;n≥2)独立同分布,EXij=2,则行列式的数学期望EY=_______.正确答案:0解析:由n阶行列式的定义知Y=,p1,…,pn为(1,…,n)的排列,τ(p1p2…pn)为排列p1p2…pn的逆序数.而Xij(i,j=1,2,…,n)独立同分布且EXij=2,故知识模块:概率论与数理统计6.设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差DY=_______.正确答案:解析:由题意,X的概率密度为:则P(X>0)=∫0+∞f(χ)dχ=P(X <0)=∫-∞0=,而P(X=0)=0 故EY=1.P(X>0)+0.P(X=0)+(-1)P(x <0)=E(Y2)=12.P(X>0)+02.P(X=0)+(-1)2P(X<0)==1 ∴DY=E(Y)2-(EY)21-知识模块:概率论与数理统计7.设随机变量X和Y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=_______.正确答案:-0.02解析:E(X2Y2)=02×(-1)2×0.07+02×02×0.18+02×12×0.15+12×(-1)2×0.08+12×02×0.32+12×12×0.20=0.28 而关于X的边缘分布律为:关于Y的边缘分布律为:∴EX2=02×0.4+12×0.6=0.6,EY2=(-1)2×0.15+02×0.5+12×0.35=0.5 故cov(X2,Y2)=E(X2Y2)-EX2.EY2=0.28-0.6×0.5=-0.02.知识模块:概率论与数理统计8.设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为_______.正确答案:0.9解析:因为D(Z)=D(X-0.4)=DX,且cov(Y,Z)=cov(Y,X-0.4)=cov(Y,X)=cov(X,Y) 故ρ(Y,Z)==ρ(X,Y)=0.9.知识模块:概率论与数理统计9.设随机变量X服从参数为λ的指数分布,则P{X>}=_______.正确答案:解析:由题意,DX=,而X的概率密度为故=e-1.知识模块:概率论与数理统计10.设随机变量服从参数为1的泊松分布,则P{X=EX2}=_______.正确答案:解析:由EX2=DX+(EX)2=1+12=2,故P{X=EX2}=P{X=2}=知识模块:概率论与数理统计11.设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=_______.正确答案:μ3+μσ2解析:由题意知X与Y独立同分布,且X~N(μ,σ2),解:由题意知X与Y独立同分布,且X~N(μ,σ2),故EX=μ,E(Y2)=DY+(EY)2=σ2+μ2 ∴E(XY2)=EX.E(Y2)=μ(σ2+μ2)=μ3+μσ2 知识模块:概率论与数理统计12.设随机变量X服从标准正态分布N(0,1),则E(Xe2X)=_______.正确答案:2e2解析:E(Xe2X)=而-χ2+2χ=-(χ2-4χ+4-4)=-(χ-2)2+2 ∴E(Xe2X)==2e2 知识模块:概率论与数理统计13.设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_______.正确答案:解析:由题意可知X~N(1,1),Y~N(0,1),且X与Y独立.可得X-1~N(0,1),于是P(Y>0)=P(Y<0)=,P(X-1>0)=P(X-1<0)=,可得P(XY -Y<0)=P{Y(X-1)<0}=P{Y>0,X-1<0}+P{Y<0,X-1>0} =P(Y >0)P(X-1<0)+P(Y<0)P(X-1>0) =知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(03年)将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件【】A.A1,A2,A3相互独立.B.A2,A3,A4相互独立.C.A1,A2,A3两两独立.D.A2,A3,A4两两独立.正确答案:C 涉及知识点:概率论与数理统计2.(07年)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<P<1),则此人第4次射击恰好第2次命中目标的概率为【】A.3p(1-p)2.B.6p(1-p)2.C.3p2(1-p)2.D.6p2(1-p)2.正确答案:C解析:P{第4次射击恰好第2次命中目标}=P{前3次射击恰中1枪,第4次射击命中目标} =P{前3次射击恰中1枪}.P{第4次射击命中目标}=C31p(1-p)2.P=3p2(1-p)2 知识模块:概率论与数理统计3.(09年)设事件A与事件B互不相容,则【】A.P()=0.B.P(AB)=P(A)P(B).C.P(A)=1-P(B).D.P()-1.正确答案:D 涉及知识点:概率论与数理统计4.(14年)设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=【】A.0.1B.0.2C.0.3D.0.4正确答案:B解析:∵A与B独立,∴P(AB)=P(A)P(B).故0.3=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B) =P(A)[1-P(B)]=P(A)(1-0.5)=0.5(P(A) 得P(A)==06,P(B-A)=P(B)-P(AB)=P(B)-P(A)P(B)=0.5-0.6×0.5=0.2.知识模块:概率论与数理统计5.(15年)若A,B为任意两个随机事件,则【】A.P(AB)≤P(A)P(B).B.P(AB)≥P(A)P(B).C.P(AB)≤.D.P(AB)≥.正确答案:C解析:由ABA,ABB得P(AB)≤P(A),P(AB)≤P(B),两式相加即得:P(AB)≤.知识模块:概率论与数理统计6.(16年)设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则【】A.P()=1.B.P(A|)=0.C.P(A∪B)=1.D.P(B|A)=1.正确答案:A解析:由1=P(A|B)=,有P(B)=P(AB) 于是知识模块:概率论与数理统计7.(90年)设随机变量X和Y相互独立,其概率分布为则下列式子正确的是:【】A.X-YB.P{X-Y}=0C.P{X-Y}=D.P{X=Y}=1正确答案:C解析:P(X=Y)=P(X=-1,Y=-1)+P(X=1,Y=1) =P(X=-1)P(Y =-1)+P(X=1)P(Y=1) =知识模块:概率论与数理统计8.(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】A.F(-a)=1-∫0aφ(χ)dχB.F(-a)=-∫0aφ(χ)dχC.F(-a)=F(a)D.F(-a)=2F(a)-1正确答案:B解析:由概率密度的性质和已知,可得故选B.知识模块:概率论与数理统计9.(95年)设随机变量X~N(μ,σ2),则随着σ的增大,概率P(|X-μ|<σ) 【】A.单调增大.B.单调减小.C.保持不变.D.增减不定.正确答案:C解析:由已知X~N(μ,σ),得~N(0,1) 故P{|X-μ|<σ}==(1)Ф-Ф(-1) 故选C.知识模块:概率论与数理统计填空题10.(89年)设随机变量X的分布函数为则A=_______,P{|X|<}=_______.正确答案:1;解析:∵分布函数是右连续的,故得1=Asin ∴A=1 这时,F(χ)在(-∞,+∞)上都连续,于是知识模块:概率论与数理统计11.(91年)设随机变最X的分布函数为则X的概率分布为_______.正确答案:解析:F(χ)为一阶梯状函数,则X可能取的值为F(χ)的跳跃点:-1,1,3.P(X=-1)=F(-1)-F(-1-0)=0.4 P(X=1)=F(1)-F(1-0)=0.8-0.4=0.4 P(X=3)=F(3)-F(3-0)=1-0.8=0.2 知识模块:概率论与数理统计12.(94年)设随机变量X的概率密度为以Y表示对X的三次独立重复观察中事件{X≤}出现的次数P{Y=2}=_______.正确答案:解析:由题意,Y~B(3,p).其中p=故知识模块:概率论与数理统计13.(00年)设随机变量X的概率密度为若k使得P{X≥k}=,则k的取值范围是_______.正确答案:[1,3]解析:∵P(X≥k)=∫k+∞f(χ)dχ.可见:若k≤0,则P(X≥k)=1 若0<k<1,则P(X≥k)=若k>6,则P(X≥k)=0 若3<k≤6,则P(X ≥k)=若1≤k≤3,则P(X≥k)=综上,可知K∈[1,3].知识模块:概率论与数理统计14.(05年)从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P(Y=2}=_______.正确答案:解析:由题意,X的概率分布为而P(Y=2|X=1)=0,P(Y=2|X=2)=,P(Y=2|X=3)=,P(Y=2|X=4)=,故由全概率公式得知识模块:概率论与数理统计15.(05年)设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_______,b=_______.正确答案:0.4;0.1.解析:由题意知0.4+a+b+0.1=1,∴a+b=0.5 而P{X=0}=0.4+a,P{X+Y=1}=P{X=0,Y=1}+P{X=1,Y=0}=a+b=0.5,P{X =0,X+Y=1}=P{X=0,Y=1}=a 由P{X=0,X+Y=1)=P{X=0)P{X +Y=1} ∴a=(0.4+a)0.5,得a=0.4,从而b=0.1.知识模块:概率论与数理统计16.(06年)设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max(X,Y)≤1}=_______.正确答案:解析:由题意知X与Y的概率密度均为:则P(X≤1}=P{Y≤1}=∫-∞1f(χ)dχ=故P{max(X,Y)≤1}=P{X≤1,y≤1}=P{X≤1}P{y≤1}=知识模块:概率论与数理统计17.(99年)设随机变量Xij(i=1,2,…,n;n≥2)独立同分布,Eij=2,则行列式Y=的数学期望EY=_______.正确答案:0解析:由n阶行列式的定义知Y=,P1,…,Pn为(1,…,n)的排列,τ(p1p2…pn)为排列p1p2…pn的逆序数.而Xij(i,j=1,2,…,n)独立同分布且EXij=2,故知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研高等数学中概率统计试题分析

考研高等数学中概率统计试题分析

考研高等数学中概率统计试题分析摘要:本文分析了概率论与数理统计的内容和题型,对其难度系数进行了打分;通过对难度系数的剖析,说明了概率论与数理统计部分的解答题(22分)常考的范围,便于考生复习时抓住重点,对于考研的同学有一定的指导作用.关键词:概率论与数理统计研究生考试高等数学在考研的高等数学中,满分是150分,概率论与数理统计的内容,34分,占大约22.7%,其中选择题8分(两小题),填空题4分(一小题),解答题22分(两大题);本文对于概率论与数理统计的内容,根据公式(或概念)的难度,将其难度划分为若干等级,进行打分;对于题型,根据解题时所用的知识点的多少,也将其难度划分为若干等级,进行打分.最后,根据这两个等级,对难度系数进行综合打分.具体解释如下:对于公式,根据其难度,分为三个等级,其难度系数分布赋予1、1.5、2.比如,古典概型的公式,p(a)=,其中n为事件a的样本点数,n为样本点总数,该公式很简单,难度系数定义为1;再比如,全概率公式,比较复杂,难度系数定义为1.5;至于连续型随机变量(简记为r.v)的条件密度公式f(y|x)=,其中f(x,y)是连续型随机变量(随机变量简记为r.v)(x,y)的联合密度函数,f(x)为(x,y)关于x的边缘密度函数,即使f(x,y)和f(x)都求出了,用条件密度公式f(y|x)=时,还需要考虑两者的公共定义域,因此难度系数规定为2.对于有关概念,也根据其难度,分为三个等级,其难度系数也分布赋予1、1.5、2.比如:独立性概念,比较简单,难度系数定义为1;再比如,t-分布的定义,涉及一个标准正态分布和一个?掊-分布,且还要求独立,涉及的内容较多,难度系数规定为1.5;至于极大似然估计的概念,比较难理解,且离散时和连续时,其似然函数还不一样,故难度系数规定为2.对于题型,根据其解题时所用到的知识点的多少,对其难度进行打分.所用的知识点多,难度系数就高,比如:古典概型的计算;一般只用到排列与组合的知识,难度系数定义为1;再比如:涉及极大似然估计的题,解题时要用到求导数的知识,解方程的知识,故难度系数定义为2,有时还需验证无偏性,因此难度系数定义为≥2.对于所用的知识点,也根据知识的难易和运算量进行打分,比如:对于一般的积分,难度系数规定为1;对于积分且需要讨论的,难度系数规定为1.5;对于在一个题目中,多次用积分运算的,比如:对于连续型r.v方差的计算,其难度系数也定义为1.5.下面我们分析概率论与数理统计的主要内容和题型,对其综合难度系数进行如下分析.难度系数表近年来,研究生考试中,解答题22分(两大题),基本上是考查学生综合运用知识的能力,这类考题其综合难度系数一般,下面针对近年来的试题作具体分析:(下面的1—10题,见文献[1].11—12题,见文献[2]).1.(2007年数学一、三(23),11分)设二维随机变量(x,y)的概率密度为f(x,y)=2-x-y,02y};(2)求z=x+y的概率密度f(z).难度分析:求概率,用积分,难度系数为1;求二维随机变量的函数的密度函数,公式难度系数1.5;再用积分计算,且涉及讨论,难度系数为1.本大题的难度系数为3.5.2.(2007年数学一、三(24),11分)设总体的概率密度为f(x;θ),0f(x,y)=ae,-∞2y).难度分析:已知边缘密度f(x)和条件密度f(y|x),求(x,y)的概率密度f(x,y),难度系数为1;求边缘概率密度,用积分且讨论,难度系数为1,5;求概率,难度系数为1.综合难度系数为3.5.12.(2013年数学三(23),11分)设总体x的概率密度为f(x,θ)=e,x>00,其他,其中θ为未知参数且大于零.x,...x为来自总体x的简单随机样本.(1)求θ的矩估计量;(2)求θ的极大似然估计量.难度分析:求的矩估计量,难度系数为3.5;求的极大似然估计量,难度系数为3.5.综合难度系数为7.从上面的分析可见,解答题的试题都是出现在难度系数≥3.5的部分.因此,同学们在考研复习时,要重点复习难度系数表中综合难度系数≥3.5的内容.至于填空题和选择题,主要考查同学们对基本概念的理解及一定的综合运算能力,只要按照大纲给定的内容认真进行复习就可以了.参考文献:[1]王松桂,张忠占,程维虎等人.概率论与数理统计(第三版)[m].科学出版社,2011:238-240.[2]2013年全国硕士研究生入学统一考试数学三试题.中国教育在线.。

考研数学一(概率论与数理统计)历年真题试卷汇编6(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编6(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编6(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于( )A.—1B.0C.D.1正确答案:A解析:掷硬币结果不是正面向上就是反面向上,所以X+Y=n,从而Y=n—X。

由方差的定义:D(X)=E(X2)一[E(X)]2,所以D(Y)=D(n—X)=E(n—X)2一[E(n—X)]2=E(n2—2nX+X2)—[n一E(X)]2=n2—2nE(X) +E(X2)一n2+ 2nE(X) —[E(X)]2=E(X2)一[E(X)]2=D(X)。

由协方差的性质:Cov(X,c)=0(c为常数);Cov(aX,bY)=abCov(X,Y);Cov(X1+X2,Y) = Cov(X1,Y) + Cov(X2,Y),所以Cov(X,Y) = Cov(X,n—X) = Cov(X,n) —Cov(X,X)=0—D(X)=—D(X),由相关系数的定义,得知识模块:概率论与数理统计2.设随机变量X~N(0,1),Y~N(1,4)且相关系数ρXY=1,则( ) A.P{Y=—2X—1}=1B.P{Y=2X—1}=1C.P{Y=一2X+1}=1D.P{Y=2X+1}=1正确答案:D解析:用排除法。

设Y=aX+b。

由ρXY=1,知X、Y正相关,得a>0。

排除A和C。

由X~N(0,1),Y~N(1,4),得E(X)=0,E(Y)=1,E(aX+b)=aE(X)+b,即1=a×0+b,故b=1。

从而排除B。

故应选D。

知识模块:概率论与数理统计3.将长度为1m的木棒随机地截成两段,则两段长度的相关系数为( ) A.1B.C.D.—1正确答案:D解析:设两段长度分别为X,Y,显然X+Y=1,即y=—X+1,故两者是线性关系,且是负相关,所以相关系数为—1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学概率与统计题解析
概率与统计是考研数学中的一大重点内容,是考生们需要掌握和熟练运用的知
识点。

下面,我将对一些常见的考研数学概率与统计题目进行解析,希望对大家能够有所帮助。

首先,我们来看一个概率问题。

题目如下:有一枚硬币,抛掷10次,问至少
出现3次正面的概率是多少?
对于这类概率问题,我们可以用排列组合的方法来求解。

设正面出现的次数为X,则X可能的取值范围为3到10,根据全概率公式,我们可以得到所求概率为
P(X≥3)=P(X=3)+P(X=4)+...+P(X=10)。

对于单次抛掷硬币的结果,我们可以用二项分布来描述。

设抛掷一次硬币正面
出现的概率为p,则反面出现的概率为q=1-p。

那么,抛掷10次硬币正面出现3次的概率P(X=3)可表示为C(10,3)*p^3*q^7。

同理,抛掷10次硬币正面出现4次的概率P(X=4)可表示为C(10,4)*p^4*q^6。

依此类推,我们可以计算出P(X=5)、P(X=6)、P(X=7)、P(X=8)、P(X=9)和
P(X=10)。

最后,将所有的概率值相加,即可得到所求概率P(X≥3)。

接下来,我们来看一个统计问题。

题目如下:某女生班级有60人,平均成绩
为80分,标准差为5分。

假设成绩服从正态分布,问有多少人的成绩在70分以下?
对于这类统计问题,我们可以利用正态分布的性质来求解。

根据标准正态分布表,我们可以查得Z=-1对应的累积概率为0.1587。

由于题目中给出的是平均成绩和标准差,我们需要将原始分数转化为标准分数,即Z分数。

计算公式为:Z = (X - μ) / σ,其中,X是原始分数,μ是平均成绩,σ是标准差。

将题目中的数据带入公式,可得Z = (70 - 80) / 5 = -2。

根据标准正态分布表,我们可以得到Z=-2对应的累积概率为0.0228。

因此,成绩在70分以下的人数为60 * 0.0228 ≈ 1.37人。

根据题目的要求,我们可以得到至少有1人的成绩在70分以下。

综上所述,对于考研数学概率与统计中的一些常见题目,我们可以通过排列组
合和正态分布的方法进行解答。

重点是理解概念和运用公式,通过大量的练习来提高解题的能力。

希望以上内容对大家有所帮助,祝愿各位考生取得好成绩!。

相关文档
最新文档