SPSS数据分析—混合线性模型
混合线性效应模型

• (3)一阶自回归结构(AR(1)),协方差矩阵中 含2个参数; • (4)循环相关结构(Toeplitz),协方差矩阵中含 有t个参数(t为矩阵维数); • (5)带状主对角结构(UN(1)),协方差矩阵中含t个 参数; • (6)空间幂相关结构(SP(POW)),协方差 矩阵中含有2个参数; • (7)独立结构(UN),又称无结构协方阵。
配合混合线性模型的步骤如下:
小结
• 混合线性模型保留了一般线性模型的Y具有正态 性假定条件,但放弃了独立性和方差齐性的假定。
SAS 程序
• /*程序1:建立例题1数据集,配合一般线性和混合效 应线性模型*/ • Data aaa; • Input student gender $ area $ scores @@;datalines; • 1 m A 56.3 2 F A 84.2 • 3 m A 56.8 4 m A 87.4 • 5 m B 70.1 6 F B 69.8 • 31 m A 78.5 •; • /*fixed-effects model with GLM procedure*/
• 该资料也可以看成是一个3水平资料。第一水平位 各时间点的测量值,第二水平位病人,第三水平 为手术方案。 • 把时间作为第一水平(测量值水平)上的协变量, 在第二水平(病人水平)上有2个协变量:年龄及 术后保留肝容积。手术前白蛋白含量也可作为协 变量处理。 • 在第三水平(手术方案水平)上无协变量。
/*程序2:建立例2资料的SAS数据集及配合混合效 应线性模型*/ Data pad; Input pnt plan $ age h_v pad0 pad2 pad10 pad20@@; Cards; 1 a 30 300 205 129 117 103 40 2 a 43 580 77 171 220 159 105 3 a 47 704 245 172 177 186 145 27 b 59 850 200 230 250 240 208;
数据统计分析及方法SPSS教程完整版

Cumulative Percent 76.6 82.3 100.0
二、程序方式
在Syntax编辑窗口中键入以下程序: Get file=‘c:\program files\spss\employee data.sav’. Frequencies variables = jobcat/order = analysis。
(3)定矩尺度(Interval Measurement):定矩尺度是对事物类 别或次序之间间距的测度。
特点:不仅能将事物区分为不同类型并进行排序,而且可能准确指 出类别之间的差距是多少;定居变量通常以自然或物理单位为计量 尺度,因此测量结果往往表现为数值,所以计量结果可以进行加减 运算。
(4)定比尺度(Scale Measurement):定比尺度是能够测算 两个测度值之间比值的一种计量尺度,它的测量结果同定距变 量一样表现为数值。
SPSS Categories SPSS Complex Sample SPSS Conjoint SPSS Exact Test SPSS Maps SPSS Missing Value
Analysis SPSS Regression
SPSS Tables
SPSS Trends
功能 一般线性模型、混合线性模型、对数线性模型、
注意:在输入数据时不应输入引号,否则双引号将会作为字 符型数据的一部分。
日期型:日期型数据是用来表示日期或时间的。日期型数据 的显示格式有很多,SPSS以菜单方式列出日期型数据的显 示格式以供用户选择。事实上,SPSS存储中的日期型变量 是该实践与1582年10月14日零点相差的秒数。
关于日期型格式的几点说明:
1.2.2 SPSS的5个窗口
(1)数据编辑窗口(SPSS Data Editor)
SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。
接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。
首先,准备好您的数据。
数据应该以特定的格式整理,通常包括自变量和因变量的列。
确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。
打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。
在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。
这将打开多元线性回归的对话框。
在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。
接下来,点击“统计”按钮。
在“统计”对话框中,您可以选择一些常用的统计量。
例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。
根据您的具体需求选择合适的统计量,然后点击“继续”。
再点击“图”按钮。
在这里,您可以选择生成一些有助于直观理解回归结果的图形。
比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。
选择完毕后点击“继续”。
然后点击“保存”按钮。
您可以选择保存预测值、残差等变量,以便后续进一步分析。
完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。
结果通常包括多个部分。
首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。
R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。
其次是方差分析表,用于检验整个回归模型是否显著。
如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。
最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。
回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。
应用spss软件实现二分类重复测量的GEE及GLMM分析

表4 不同作业相关矩阵的QIC值
Tab.4 QIC of each working correlation matrix
Working correlation matrix
QIC
Independent AR(1)
288.97256894205645 288.9725689420565
Exchangeable
1 GEE 在 SPSS 统计软件中的实现 GEE 是 1986 年 Liang[6]首次介绍,用于分析存在相
关性数据的一种回归模型。用 GEE 分析时,需要“工 作”相关性矩阵[7]。它表示的是反应变量(即检测结果)
收稿日期:2012-09-23 基金项目:全国统计科学研究计划项目(2010LC07);南方医科大学公共卫 生与热带医学学院课外科研基金 作者简介:安胜利,副教授,博士,电话:020-61360867,E-mail: ASL0418@
的各次重复测量值两两之间相关性的大小。GEE 对因 “工作”相关性矩阵的选择不当而引起的效率损失很小, 当然,若选择正确,会提高检验效能[8-9]。
例 1:某研究者在维 A 酸软膏治疗银屑病的临床试 验中,以 44 名静止期银屑病患者为对象,分别于治疗 前、治疗后 2、4、6 和 8 周共 5 个时间点观测和记录患者的 皮损面积,皮损面积分为“小”和“大”2 类,研究目的是分 析该药对银屑病的疗效。 1.1 数据简介与格式
合二分类重复测量的实例资料,按照 SPSS 19.0 软件的菜单操作过程,实现 GEE 与 GLMMs 模型的统计分析。结果 在 SPSS
19.0 软件上实现二分类重复测量资料 GEE 和 GLMMs 模型分析的菜单操作不需编程、结果直观清晰。 结论 SPSS 19.0 软件上
SPSS混合线性模型

The General Linear Model
1. The main effects general linear model can be parameterized as
Yij i b j ij where
Yij observation for ith
yijk ai b j ck abij acik bc jk abcijk eijk
16
The General Linear Model
• In matrix terminology, the general linear model may be expressed as
2
Outline-Cont’d
• Repeated Measures ANOVA • Advantages of Mixed Models over GLM.
3
Definition of Mixed Models by their component effects
1. Mixed Models contain both fixed and random effects 2. Fixed Effects: factors for which the only levels under consideration are contained in the coding of those effects 3. Random Effects: Factors for which the levels contained in the coding of those factors are a random sample of the total number of levels in the population for that factor.
SPSS数据分析—混合线性模型

之前介绍过的基于线性模型的方差分析,虽然扩展了方差分析的领域,但是并没有突破方差分析三个原有的假设条件,即正态性、方差齐性和独立性,这其中独立性要求较严格,我们知道方差分析的基本思想其实就是细分,将所有对因变量产生影响的因素逐一摘出,但是如果各观测值之间相互影响,这样在细分影响因素的时候,是很难分出到底是自变量的影响还是观测值之间自己的影响。
虽然随机抽样会最大程度的使数据满足独立性,但是有时候这种方法并不奏效,比如随机抽取受访者分析其消费特征,这里就假定所有受访者的之间是相互独立的,然而仔细想想,这其中存在问题,如果某些受访者来自同一个城市或地区,从个体角度讲,他们确实是独立的人,之间没有任何联系,但是如果从分析目的角度讲,由于区域因素他们之间的消费特征是趋于相似的,而产生这种相似性,正是由于相互作用导致,这些人是存在相互影响关系的,也就类以于相关样本,与此同时,这种相互作用也使得不同城市间的消费特征产生差异,我们称这种数据为具有层次聚集性的数据。
数据的聚集性除了表现在聚集因素间指标的均值水平不同外,还表现在不同城市间的指标离散度上。
从层次聚集性数据也可以看出,随机抽样只能保证数据被抽到的概率相同,但是对于抽到的是什么样的数据,却无法控制了。
对于这种具有层次结构的数据,如果分析目的仅限于这几种层次,比如就分析这几个城市,那么可以把它当做一种固定因子,只分析固定效应而不用考虑这种聚集性,但是如果想把结果推广到所有城市,那就不能忽略这种特征,否则会降低结果的准确性,因此还要加入随机效应。
混合线性模型就是同时包含固定效应和随机效应的线性模型,是解决此类层次聚集性数据的方法之一,对于具有层次结构的数据,我们需要将使观测值之间产生相互影响的层次因素也摘出来,比如上述中的城市因素,传统的方差分析模型中,将所有无法解释的因素都归在随机误差中,而随着我们对传统方差模型的不断拓展,对随机误差的分解也越来越精细,结果也越来越准确。
SPSS混合线性模型讲课讲稿

4
Classification of effects
1. There are main effects: Linear Explanatory Factors
2. There are interaction effects: Joint effects over and above the component main effects.
5
Interactions are Crossed Effects
All of the cells are filled Each level of X is crossed with each level of Y
Level 1
Variable Y
Level 2
Level 3
Level 4
Level 1
Pat 7
Pat 8
8
Between and WithinSubject effects
• Such effects may sometimes be fixed or random. Their classification depends on the experimental design Between-subjects effects are those who are in one group or another but not in both. Experimental group is a fixed effect because the manager is considering only those groups in his experiment. One group is the experimental group and the other is the control group. Therefore, this grouping
最新SPSS混合线性模型

Level 3
X11
X12
X13
X14
X21
X22
X23
X24
X31
X32
X33
X34
7
Classification of Effectscont’d
Hierarchical designs have nested effects. Nested effects are those with subjects within groups.
1. Subject: the sample is a random sample of the target population
5
Classification of effects
1. There are main effects: Linear Explanatory Factors
2. There are interaction effects: Joint effects over and above the component main effects.
factor is a between- subject effect. Within-subject effects are experienced by subjects repeatedly over time. Trial is a random effect when there are several trials in the repeated measures design; all subjects experience all of the trials. Trial is therefore a within-subject effect. Operator may be a fixed or random effect, depending upon whether one is generalizing beyond the sample If operator is a random effect, then the machine*operator interaction is a random effect. There are contrasts: These contrast the values of one level with those of other levels of the same effect.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS数据分析—混合线性模型之前介绍过的基于线性模型的方差分析,虽然扩展了方差分析的领域,但是并没有突破方差分析三个原有的假设条件,即正态性、方差齐性和独立性,这其中独立性要求较严格,我们知道方差分析的基本思想其实就是细分,将所有对因变量产生影响的因素逐一摘出,但是如果各观测值之间相互影响,这样在细分影响因素的时候,是很难分出到底是自变量的影响还是观测值之间自己的影响。
虽然随机抽样会最大程度的使数据满足独立性,但是有时候这种方法并不奏效,比如随机抽取受访者分析其消费特征,这里就假定所有受访者的之间是相互独立的,然而仔细想想,这其中存在问题,如果某些受访者来自同一个城市或地区,从个体角度讲,他们确实是独立的人,之间没有任何联系,但是如果从分析目的角度讲,由于区域因素他们之间的消费特征是趋于相似的,而产生这种相似性,正是由于相互作用导致,这些人是存在相互影响关系的,也就类以于相关样本,与此同时,这种相互作用也使得不同城市间的消费特征产生差异,我们称这种数据为具有层次聚集性的数据。
数据的聚集性除了表现在聚集因素间指标的均值水平不同外,还表现在不同城市间的指标离散度上。
从层次堆积性数据也可以看出,随机抽样只能保证数据被抽到的几率相同,但是对于抽到的是什么样的数据,却无法控制了。
对于这种具有层次结构的数据,如果阐发目的仅限于这几种层次,比如就阐发这几个城市,那么可以把它当做一种固定因子,只阐发固定效应而不用考虑这种堆积性,但是如果想把结果推广到所有城市,那就不能忽略这种特征,否则会降低结果的准确性,因而还要加入随机效应。
混合线性模型就是同时包含固定效应和随机效应的线性模型,是解决此类层次聚集性数据的方法之一,对于具有层次结构的数据,我们需要将使观测值之间产生相互影响的层次因素也摘出来,比如上述中的城市因素,传统的方差分析模型中,将所有无法解释的因素都归在随机误差中,而随着我们对传统方差模型的不断拓展,对随机误差的分解也越来越精细,结果也越来越准确。
【例】我们想分析哪些因素会对16岁时毕业成绩的影响,显然毕业成绩和学校有关,好学校的学生成绩会好一些,而差学校的学生成绩会差一些,那么学校这个因素就是上述的层次因素,它使得因变量产生相关性,而且我们是想把结果推广到所有学校,因此学校这个变量应该被定为随机变量,我们首先按照一般线性模型来分析,不考虑层次因素
阐发—一般线性模型—单变量
在按照一般线性模型分析之后,我们再来看看按照混合线性模型分析的结果会有什么不同
分析—混合模型—线性
经过以上阐发,我们知道学校确实是一个层次堆积因素,不能按照一般线性模型举行阐发,那么影响16岁考试成绩的原因有很多,我们继续加入变量举行阐发。
第一加入11岁时的入学成绩,先将其加入固定因素,并观测和之前不加人任何因子相比有何变化
经由过程以上阐发,我们看到,在固定因素中加入入学成绩这个变量当前,对于层次堆积性起到了减弱的效果,但是该影响仍然存在,说明还需要引入其他变量以完善模型,之前讲过,数据堆积性除了表现在堆积因素间指标的均值水平不同外,还表现在不同堆积因素间的指标离散度上,我们现在将11岁时的入学成绩这个变量加入随机因素中。
在将11岁卒业成绩引入到随机效应以后,层次堆积性又进一步减弱了,实践上我们可以不断的引入变量,这样最终层次堆积性就会消失,下面我们再来引入性别、学校类型、各学校学生在11岁入学时的平均成这三个变量。