材料力学压杆稳定概念欧拉公式计算临界力
材料力学10压杆稳定_1欧拉公式

◆ 本例中,三杆截面面积基本相等,但由于其形状不同, Imin 不
同,致使临界力相差很大。最合理的截面形状为圆环形。
14
[例3] 图示各杆均为圆形截面细长压杆。已知各杆的材料及直径相 等。问哪个杆先失稳? 解:由于各杆的材料及 截面均相同,故只需比
1.3 a F F F
较其相当长度 l 即可
a
杆A: 2 l 2a
F
F
2 1
0.7
压杆两端固定可轴向移动:
0.5
6
上述弹性压杆临界力的计算公式称为欧拉公式
Fc r
π 2 EI
l
2
说明: 1)欧拉公式的适用范围:线弹性( ≤ p)
2)在压杆沿各个方向约束性质相同的情况下(即各个方向上 的 相等),I 应取最小值 3) l 称为压杆的相当长度
2
2000年10月25日上午10 时,南 京电视台演播中心由于脚手架 失稳使屋顶模板倒塌,导致死 6 人,伤 34 人。
3
2010年1月3日,通往昆明新机场的一座在建桥梁施工时因 支撑结构中的压杆失稳而坍塌,共导致 40 余人死伤。
4
二、压杆的临界力 使压杆由稳定向失稳转化的轴向压力的界限值称为压杆的临界力, 记作 Fcr 。即当 F < Fcr : 压杆稳定 F ≥ Fcr : 压杆失稳 亦可将压杆的临界力 Fcr 理解为使压杆失稳的最小轴向压力
hb3 1 Iy 90 403 48 108 m 4 12 12
根据欧拉公式,此压杆的临界力
Fcr
π 2 EI y l
2
23.8 kN
11
[例2] 一端固定,一端自由的中心细长压杆。已知杆长 l = 1m , 材 料的弹性模量 E = 200 GPa。当分别采用图示三种截面时,试计算 其临界力。
临界荷载的欧拉公式

临界荷载的欧拉公式临界荷载的欧拉公式是结构力学中的重要概念。
它描述了当柱子或杆件受到轴向压力时,即压杆受到的最大压缩荷载时,突然发生屈曲的情况。
临界荷载是结构工程设计中需要考虑的重要参数,因为了解临界荷载可以帮助工程师设计更安全和稳定的结构。
欧拉公式是描述临界荷载的数学方程,由著名的数学家欧拉在18世纪中期提出。
该公式给出了临界荷载与压杆的几何形状和材料性质之间的关系。
欧拉公式的一般形式可以表示为:Pc = (π^2 * E * I) / (L^2)其中,Pc是临界荷载,E是弹性模量,I是截面惯性矩,L是杆件的有效长度。
这个公式适用于理想化的杆件,即杆件的截面形状是均匀的,材料是均匀的,且处于完全压缩状态。
根据欧拉公式,我们可以得出以下几个关键观察点:1. 杆件的临界荷载与其弹性模量成正比。
弹性模量越大,杆件的临界荷载就越大。
这是因为弹性模量反映了材料的刚度,刚度越大,杆件就越能够抵抗压缩荷载。
2. 杆件的临界荷载与其截面惯性矩成正比。
截面惯性矩是描述杆件截面形状和尺寸的参数,它反映了截面抵抗变形和变形的能力。
截面惯性矩越大,杆件的临界荷载就越大。
3. 杆件的临界荷载与其长度的平方成反比。
杆件长度越长,临界荷载就越小。
这是因为较长的杆件更容易发生屈服和屈曲。
根据以上几个观察点,我们可以得出一些结论和设计指导:1. 为了增加杆件的临界荷载,可以选择具有高弹性模量和大截面惯性矩的材料和截面形状。
2. 如果无法改变材料特性或截面形状,可以通过减小杆件的长度来增加其临界荷载。
在设计中,我们通常会选择较短的杆件,以增加其稳定性。
3. 在设计过程中,需要对杆件的临界荷载进行合理的估计和验证。
如果杆件承受的荷载超过了其临界荷载,就需要采取一些稳定措施,以防止结构的崩塌或失效。
综上所述,临界荷载的欧拉公式提供了一种估计杆件稳定性的方法。
通过理解临界荷载与材料特性、截面形状和长度之间的关系,工程师可以更好地设计结构,并确保其在实际使用中的安全和稳定性。
压杆稳定问题中,欧拉公式成立的条件

压杆稳定问题中,欧拉公式成立的条件以压杆稳定问题中,欧拉公式成立的条件为题,我们来探讨一下这个问题。
压杆稳定问题是工程力学中的一个经典问题,研究的是在受到外力作用下,压杆是否会发生失稳。
而欧拉公式则是描述了在何种条件下,压杆会发生失稳的公式。
我们来看一下欧拉公式的表达式。
欧拉公式可以用数学语言来表示为Fcr = π²EI / L²,其中Fcr表示压杆的临界压力,E表示杨氏模量,I表示截面惯性矩,L表示杆长。
这个公式告诉我们,只有当外力超过了临界压力时,压杆才会发生失稳。
那么,欧拉公式成立的条件是什么呢?欧拉公式的推导是基于一些假设条件的。
这些条件包括:杆件是理想的无限细杆,杆的截面是均匀的,杆材的弹性模量是常数,杆件的边界条件是完美固定或者挠度为零。
只有在满足这些条件的情况下,欧拉公式才能成立。
欧拉公式的成立还与杆件的形状有关。
对于不同形状的杆件,其欧拉公式的形式也会有所不同。
例如,对于长方形截面的杆件,欧拉公式可以写成Fcr = π²Ebh² / L²,其中b和h分别表示杆件的宽度和高度。
对于圆形截面的杆件,欧拉公式可以写成Fcr = π²Eπr⁴ / L²,其中r表示杆件的半径。
欧拉公式还要求杆件处于稳定的静力平衡状态。
也就是说,在外力作用下,杆件的挠度要小到可以忽略不计。
如果杆件的挠度过大,那么欧拉公式就不再适用。
欧拉公式成立的条件还包括杆件的材料特性。
杆件的弹性模量E是杆件材料的一个重要参数,它描述了杆件材料的刚度。
当杆件的材料刚度较大时,欧拉公式更加准确。
欧拉公式成立的条件包括:杆件是理想的无限细杆,杆的截面是均匀的,杆材的弹性模量是常数,杆件的边界条件是完美固定或者挠度为零;杆件处于稳定的静力平衡状态;杆件的形状和材料特性。
在工程实践中,我们经常使用欧拉公式来计算杆件的临界压力,以确定杆件是否会发生失稳。
通过合理选择杆件的形状和材料,我们可以满足欧拉公式成立的条件,从而保证杆件的稳定性。
压杆临界力的计算公式

压杆临界力的计算公式1.欧拉公式:欧拉公式是压杆稳定性分析中最常用的一种方法。
根据欧拉公式,压杆的临界力可以通过以下公式计算:Pcr = ((π^2)EI) / ((KL)^2)其中,Pcr表示压杆的临界力,E表示材料的弹性模量,I表示压杆的截面面积惯性矩,K表示杆的端部支座的系数,L表示杆的长度。
欧拉公式适用于较细长的压杆,在其它条件相同的情况下,杆的截面越大,临界力就越大;杆的长度越长,临界力就越小。
同时,欧拉公式适用于直线变形的杆,不能用于弯曲变形。
2.莱昂哈德公式:莱昂哈德公式是考虑了杆的端部支座的影响,在欧拉公式的基础上进行修正的公式。
该公式计算压杆的临界力如下:Pcr = ((KLEI) / (r + ((2L)/π)) ^ 2)其中,Pcr表示压杆的临界力,E表示材料的弹性模量,I表示压杆的截面面积惯性矩,K表示杆的端部支座的系数,L表示杆的长度,r表示杆的端部支座的半径。
3. Adomian分解法:Adomian分解法是一种近似求解非线性微分方程的方法,在压杆临界力的计算中也有应用。
该方法通过将非线性方程分解为无穷级数的形式,然后将其逐级近似求解。
Adomian分解法的具体步骤如下:-(1)将压杆的平衡方程进行分解:Mx''(x)+f(x)=0,其中,M表示压杆的弯矩,f(x)表示外力。
-(2)将平衡方程表示为无穷级数的形式:x''(x)=∑An(x)。
-(3)通过逐级近似求解无穷级数,得到压杆临界力。
Adomian分解法的优点是可以处理非线性问题,但是在具体应用中需要取不同级数的项进行求解,并选择适当的近似方法。
4.极限平衡法:极限平衡法是一种通过平衡条件来确定压杆临界力的方法,它适用于复杂的压杆分析问题。
该方法的基本思想是,在压杆失稳之前,杆的初始形状必须满足平衡条件。
具体步骤如下:-(1)假设杆的初始形状(如弯曲、扭转等)。
-(2)根据平衡条件计算外力和内力。
细长压杆的临界压力欧拉公式

(2)
Fc r正 Fc r圆
π2EI正
( l)2
π2 EI圆
I正 I圆
a4
12 πd 4
( l)2
64
πd 2 4
2
12 πd 4
64
π 3
例2:图示两桁架中各杆的材料和截面均相同,设 F1和F2 分别为这两个
桁架稳定的最大载荷,则
(A) F1 = F2;
π2EI
( l )2
称为长度因数,l 称为相当长度
π2EI (0.5l ) 2
0.5
Fc r
π2EI (0.7l ) 2
0.7
Fc r
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~
π2EI (2l ) 2
2
Fc r
π2EI l2
1
Fc r
例1:圆截面的细长压杆,材料、杆长和杆端约束保持不变,若将压杆的
直径缩小一半,则其临界力为原压杆的多少倍?若将压杆的横截面改变为面
积相同的正方形截面,则其临界力为原压杆的多少倍?
解:(1)
Fc r
π2EI
(l)2
π2E πd 4 64
第一讲 基本概念与欧拉公式
一:压杆稳定的概念
钢板尺:一端固 定 一端自由
Fcr :临界压力
二:细长压杆的临界压力
一、两端铰支细长压杆的临界压力
M (x) F w
EI w M (x) F w
压杆稳定计算简介

压杆的稳定条件为
p j[ ]
A
9.5 压杆稳定计算简介
了解压杆稳定的概念。 熟悉临界力和欧拉公式的计算。 掌握压杆稳定的校核。
一、临界压力和欧拉公式
杆件所受压力逐渐增加到某个限度时,压杆将 由稳定状态转化为不稳定状态。这个压力的限
度称为临界压力Pcr。它是压杆保持直线稳定形
状时所能承受的最小压力。
欧拉公式
pcr
2EI ( L) 2
1、熏烟的成分及作用
熏烟的成分很复杂,由气体、液体、固体微粒组成 的混合物,因熏材种类和熏烟的产生温度不同而不同, 且其状态和变化迅速,一般认为熏烟中最重要的成分是 酚、醇、有机酸、羰基化合物和烃类等。
2、熏制加工目的
1、赋予制品特殊的烟熏风味,增加香味 2、使制品外观产生特有的烟熏色,对加硝制品有促进发 色的作用 3、杀菌消毒,防止腐败变质,使制品耐贮藏
醇类:
木材熏烟中的醇种类繁多,最常见的为甲醇,又称木 醇,熏烟中还有伯醇、仲醇和叔醇等,为挥发性物质的载 体,杀菌能力较弱。
3、影响熏制的因素
熏烟质量
熏制的作用取决于熏烟质量如熏烟中成分种类和浓度等,而熏烟质量 的高低与燃料种类、燃烧温度等产生方式和条件有关。
熏制温度
熏制时温度过低,不会得到预期的熏制效果。但温度过高,会由于脂 肪融化、肉的收缩,达不到制品质量要求。常用的熏制温度为35~50℃, 一般熏制时间为12~48h。
EI-抗弯刚度 ;L-压杆的长度
μ-长度(支座)系数 ;固定 一端固定 两端铰支 一端固定
束情况
一端铰支
临界力和欧拉公式定理

第二节临界力和欧拉公式浏览字体设置:- 11pt+ 10pt12pt14pt16pt放入我的网络收藏夹第二节临界力和欧拉公式杆件所受压力逐渐增加到某个限度时,压杆将由稳定状态转化为不稳定状态。
这个压力的限度称为临界力P cr。
它是压杆保持直线稳定形状时所能承受的最小压力。
为了计算压杆的稳定性,就要确定临界力的大小。
通过实验和理论推导,压杆临界力与各个因素有关:(1) 压杆的材料,P cr与材料的弹性模量E成正比,即(2)压杆横截面的形状和尺寸,P cr与压杆横截面的轴惯性矩J成正比,即(3) 压杆的长度,P cr与长度的平方l2成反比,即(4) 压杆两端的支座形式有关,用一个系数表示,称为支座系数,列于表1-10。
表1-10 压杆长度系数杆端约束情况两端固定一端固定一端铰支两端铰支一端固定一端自由长度系数0.5 ≈0.7 1.0 2.0压杆的挠曲线形状为计算方便,写成细长中心受压直杆临界力的欧拉公式对于两端铰支的细长中心受压直杆,当其在临界力cr P,的作用下处于不稳定直线形式的平衡状态,若其材料仍处于理想的线弹性范围内,从力学的观点讲,这类稳定问题称为线弹性稳定问题。
这是压杆稳定问题中最简单的一种。
由临界力的定义可知,中心受压直杆只有在临界力的作用下才有可能在微弯形态下维持平衡(见图7-3)。
现假设压杆轴线在临界力cr P作用下呈图7-3(b)所示的曲线形态。
在图示的坐标系下,压力cr P取正值,位移忙V=f(x)以沿y轴正方向为正,弯矩的正负号规定同2.3节。
压杆任一x 截面上弯矩为将式(7-1a)代入挠曲线的近似微分方程(6-8h)中,并利用压杆支承处的边界条件就可求出压杆的挠曲线的表达式,并进一步导出压杆承受的临界力crP 。
这个临界力实际也就是使压杆维持微弯平衡的..........最小压力....。
将式(7-1a)代入公式(6-8h)可得其中I 为压杆横截面的最小形心主惯性矩。
令公式(7-1b)可改写为如下形式的二阶常系数线性微分方程其通解为式中A 、B 、k 三个待定常数可利用该挠曲线的三个边界条件来确定。
材料力学6-压杆稳定分析

)
2
]235
[10.43(
89.3 123
)2
]18
.7MPa
PcrA cr28.36710 4181 .7106304 kN
安全系数
nPcr 3042.02 P 150
➢ 计算临界压力基本步骤:
(1)判断杆件向哪个方向失稳:计算每个方向柔度 系数,找到最大柔度;
(2)判断柔度系数所在区间; (3)按所在区间分别按欧拉公式或经验公式、强度
我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
2E 0.56 S
c 时,由此式求临界应力 。
②s< 时:
cr s
例4 一压杆长L=1.5m,由两根 56568 等边角钢组成,两端铰支,压力P=150kN,角 钢为A3钢,试用欧拉公式或抛物线公式求临界压力和安全系数。
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 另端自由
两端固定但可沿 横向相对移动
Pcr
Pcr
Pcr
Pcr
Pcr
失
稳 时
B
B
B
l l 0.7l l 0.5l
l 2l l 0.5l
挠
D
曲
线 形
C
C
状
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr
欧拉公式
Pc
r
2
l
EI
2
解:一个角钢:
z y
A18.367cm2, I y123.63cm4
两根角钢图示组合之后
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。
压杆稳定是材料力
学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形
状上的变化,我们称之为杆件处于稳定状态。
然而,当作用力超过一定临
界值时,杆件就会发生失稳,产生形状上的变化。
因此,欧拉公式就是用
来计算杆件临界力的一种方式。
欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。
它的基本假设
是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。
根据
欧拉公式,杆件临界力可通过以下公式计算:
Pcr = (π^2 * E * I) / L^2
其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示
杆件的有效长度。
从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界
力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。
例子:
假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模
量为E。
根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为
I=(π*r^4)/4
Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2
通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。
这个临界力表示了该杆件能够承受的最大作用力。
如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。
总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。
欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。