2021届广西桂林十八中2018级高三上学期第二次月考数学(理)试卷及答案

合集下载

2018届广西省桂林十八中高三上学期第二次月考 数学(理)试题

2018届广西省桂林十八中高三上学期第二次月考 数学(理)试题

2018届广西省桂林十八中高三上学期第二次月考数学(理)试题注意事项:①本试卷共4页,答题卡4页。

考试时间120分钟,满分150分;②正式开考前,请务必将自己的姓名、学号用黑色水性笔填写清楚填涂学号;③请将所有答案填涂或填写在答题卡相应位置,直接在试卷上作答不得分。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,若,,则不可能是A. B. C. D.2. 若复数满足,则的虚部是A.-1 B. C. D.13.若坐标原点到抛物线的准线的距离为2,则A.B.C.D.4.已知向量,则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5. 若为锐角,且,则A. B. C. D.6. 右上的程序框图所描述的算法称为欧几里得辗转相除法.若输入,则输出的值为A.0 B.11 C.22 D.887. 将函数图象上所有点的横坐标缩短至原来的一半,纵坐标不变,再把各点向左平移个单位长度,所得图象的对称轴可以为A. B. C. D.8.已知实系数一元二次方程的两个实根为且,则的取值范围是A.B.C.D.9.若,则A. B.C.D.10.某几何体的三视图如右图所示,则该几何体中,面积最大的侧面的面积为A. B.C. D.11. 已知双曲线的左、右焦点分别为,离心率为2,以双曲线的实轴为直径的圆记为圆,过点作圆的切线,切点为,则以为焦点,过点的椭圆的离心率为A.B.C.D.12.已知函数的导函数为,为自然对数的底数,若函数满足,且,则不等式的解集是A. B.C. D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.的展开式中,的系数是(用数字填写答案).14.由直线与曲线所围成的封闭图形的面积为.15.在中,在边上,且,则 . 16.若函数有5个不同的零点,则的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答. 第22,23题为选考题,考生根据要求作答.(一)必考题:共60分17.(本小题满分12分)设数列的前项和为,且,.(1)求证:数列为等比数列;(2)设数列的前项和为,证明:.18.(本小题满分12分)如图,在三棱柱中,已知(1)证明:;(2)若,求二面角的余弦值.19. (本小题满分12分)某产品按行业生产标准分成8个等级,等级系数依次,其中为标准,为标准.等级系数越高,产品品质越好,等级系数的产品为优质品.已知甲厂执行标准生产该产品,乙厂执行标准生产该产品,假定甲、乙两厂的产品都符合相应的执行标准.且的数学期望;为分析乙厂产品的等级系数,从该厂生产的产品中随机抽取件,相应的等级系数组成一个样本,得如下柱状图:用这个样本估计总体,将频率视为概率.(1)求的值;(2)从乙厂抽取的30件样品中任选3件,求所选的3件产品中优质品多于非优质品的概率;(3)根据你所学的知识,你认为哪个工厂的产品更具可购买性?说明理由.20.(本小题满分12分)在平面直角坐标系中,动点到定点的距离和它到直线的距离之比是常数,记动点的轨迹为.(1)求轨迹的方程;(2)过点且不与轴重合的直线,与轨迹交于两点,线段的垂直平分线与轴交于点,与轨迹交于点,是否存在直线,使得四边形为菱形?若存在,请求出直线的方程;若不存在,请说明理由.21.(本小题满分12分)已知函数.(1)若在上单调递减,求的取值范围;(2)若在处的切线斜率是,证明有两个极值点,且.(二)选考题:共10分.请考生在第22,23题中任选一题做答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,点的极坐标分别为,曲线是以为直径的圆;把极点作为坐标原点,极轴作为轴的正半轴建立平面直角坐标系,直线的参数方程为直线与曲线交于两点,与直线交于点.(1)求的极坐标和曲线的极坐标方程;(2)求.23.(本小题满分10分)选修4-5:不等式选讲已知的最小值为1.(1)证明:;(2)设,试确定所有值,使得恒成立.桂林十八中15级高三第二次月考试卷数学(理科)答案一、选择题:本大题共12小题,每小题5分,共60分.1-5 DADBA 6-10 BADAB 11-12 DC二、填空题:本大题共4小题,每小题5分,共20分.13. 14. 15. 16.三、解答题:本大题共6小题,共70分.17—21每题12分,22-23每题10分.17.解 (1)证明:整理得……2分而……4分∴数列是以1为首项, 2为公比的等比数列. ……5分(2)由(1)知,……6分……7分得……8分……9分……10分而由题知……11分,原等式得证. ……12分……9分……10分……11分由知,甲乙两厂等级系数期望值一样,但是甲厂产品品质比乙厂更稳定,故甲厂的产品更具可购买性. ……12分20.解:(1)设动点,由题意,得,……2分∴轨迹T的方程为.……4分(2)假设存在满足条件.依题意设直线方程为,代入消去,得,令,则,……6分∴的中点的坐标为.……7分∵,∴直线的方程为,令.……8分∵关于点对称,∴,解得. ……9分∵点在椭圆上,∴,……11分……12分。

【高三数学试题精选】2018届高三数学上册第二次月考检测试题(含答案)

【高三数学试题精选】2018届高三数学上册第二次月考检测试题(含答案)

2018届高三数学上册第二次月考检测试题(含答案)
5
桂林十八中09级高三第二次月考试卷
数学(科)
注意1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。

考试时间120分钟。

答卷前,考生务必将自己的姓名和考号填写或填涂在答题卷指定的位置。

2、选择题答案用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试题卷上。

3、主观题必须用黑色字迹的钢笔或签字笔在答题卷上作答,答案必须写在答题卷各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原的答案,然后再写上新的答案。

第Ⅰ卷
一、选择题本大题共12小题,每小题5分,共60分
1 化简
A B c D
2 已知函数,则
A B c D
3 已知,,则
A B c D
4 为了得到函数的图像,只需把函数的图像上所有的点
A.向左平移3个单位长度,再向上平移1个单位长度
B.向右平移3个单位长度,再向上平移1个单位长度
c.向左平移3个单位长度,再向下平移1个单位长度
D.向右平移3个单位长度,再向下平移1个单位长度
5 从6名男生和2名女生中选出3名志愿者,其中至少有1名女。

广西桂林十八中2021届高三上学期第二次月考数学(理)试题 Word版含答案

广西桂林十八中2021届高三上学期第二次月考数学(理)试题 Word版含答案

桂林十八中18级高三第二次月考试卷数 学(理科)命题:霍荣友 审题:谭振枝注意事项:① 试卷共4页,答题卡2页。

考试时间120分钟,满分150分;②正式开考前,请务必将自己的姓名、学号用黑色水性笔填写清楚填涂学号; ③请将所有答案填涂或填写在答题卡相应位置,直接在试卷上做答不得分。

一.选择题:本大题共12小题,每小题5分,共60分.{}{}{}{}{}2|3100,|22,.|21.|51..0x A x x x B x A B A x x B x x C D =--<=<=-<<-<<∅1.已知集合则2+32=32.1.1.2.2iz z iA B C D ---.设,则的虚部为00200222200003:2,.2.2.2.=2n n n nnp n N n p A n N n B n N n C n N n D n N n ∃∈>⌝∀∈>∃∈≤∀∈≤∃∈.已知命题,则为,,,,{}256439,.36.32.28.24n n S a n a a S A B C D ===.记为等差数列的前项和,若,则153,2.6.9.12.6ABC BD DC AD AC A B C D =⋅=-.在边长为的等边三角形中,则 ()(26202,22,22.22..22y px p M F MF A B C D =>-.已知抛物线经过点焦点为,则直线的斜率为()()()()1212172cos ,23...2.42f x x x R f x f x f x x x A B C D πππππ⎛⎫=-∈≤≤- ⎪⎝⎭.设函数若对任意都有成立,则的最小值为()()4238121.8.6.8.6x x x x A B C D -++--.的展开式中含的项的系数为0.40.8890.8,0.4,log 4,....a b c A a b cB a c bC c a bD b c a===<<<<<<<<.已知则()()(]()()()1010,132,20192020.0.1.1.2x f x R f x x f x f f A B C D +∈=-+=-.已知是定义在上的奇函数,是偶函数,且当时,则112902,,,3.15.20.25.30ABCD ABD ABD ABD BD A BD C A B C D A B C D πππππ∆∠=∆--.在平行四边形中,是腰长为的等腰直角三角形,,现将沿折起,使二面角的大小为,若四点在同一个球面上,则该球的表面积为()()()()()()()()())1122112112ln ,,,.19021,13021..0.1.2.3x l f x e g x x A x y B x y AOB O x x x x A B C D ==∠>∈-<->.已知直线与曲线和分别相切于点有以下命题:为原点;;当时,则真命题的个数为二.填空题:本大题共4小题,每小题5分,共20分.13tan 2tan 4παα⎛⎫=-=⎪⎝⎭.已知,则3014,11x y y x y x z x y +-≤⎧⎪≥=⎨⎪≥⎩.已知实数满足约束条件,则的最小值为{}()111021215,.22n n n n a n S a a a n N S n n*+=-+=∈=+.已知数列的前项和为,满足且则()22222216:1:2193x y F C A B E x y AB AF -=+=+.已知是双曲线的右焦点,动点在双曲线左支上,为圆+上一点,则的最小值为三、解答题:共70分。

广西桂林市第十八中学2018届高三数学上学期第三次月考试卷 理(含解析)

广西桂林市第十八中学2018届高三数学上学期第三次月考试卷 理(含解析)

广西桂林市第十八中学2018届高三上学期第三次月考数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数满足,则()A. B. C. D.【答案】C【解析】,∴故选:C2.已知,若,则实数的取值范围是A. B.C. D.【答案】B【解析】∵,,∴,即又∵,即,∴故选:B3.已知随机变量服从正态分布,且,则实数的值为()A. B. C. D.【答案】A【解析】试题分析:正态分布曲线关于均值对称,故均值,选A.考点:正态分布与正态曲线.4.已知,则()A. B. C. D.【答案】B【解析】又选B5.下列程序框图中,输出的的值是()A. B. C. D.【答案】B【解析】由程序框图知:第一次循环后 2第二次循环后 3第三次循环后 4 …第九次循环后10 不满足条件,跳出循环.则输出的为.故选B.6.已知函数,若,则()A. B. C. 0 D. 3【答案】A【解析】,又为奇函数,∴,又∴故选:A7.若双曲线的焦距4,则该双曲线的渐近线方程为()A. B. C. D.【答案】D【解析】双曲线方程为:,m<0∴,,又∴,∴∴该双曲线的渐近线方程为故选:D8.已知函数在区间上是增函数,且在区间上恰好取得一次最大值,则的取值范围是()A. B. C. D.【答案】D【解析】是函数含原点的递增区间.又∵函数在上递增,∴得不等式组,得又∵又函数在区间上恰好取得一次最大值,根据正弦函数的性质可知,即函数在处取得最大值,可得综上,可得故选D【点睛】本题主要考查了复合函数单调区间,正弦函数的性质-:单调性和最值.注意对三角函数基础知识的理解和灵活运用.9.多面体的三视图如图所示,则该多面体的外接球的表面积为()A. B. C. D.【答案】D【解析】如图所示,由三棱锥的三视图得:该三棱锥的底面是腰长为6的等腰直角三角形,设该三棱锥的外接球的半径为球心为则故则该三棱锥的外接球的表面积为选D10.在中,分别为内角的对边,且,则()A. B. C. D.【答案】B【解析】由余弦定理可得:又∴即又,∴∴故选:B11.抛物线的焦点F已知点A和B分别为抛物线上的两个动点.且满足,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()A. B. C. D.【答案】D【解析】试题分析:如图所示,过分别作准线的垂线,垂足分别为,设,连接,由抛物线的定义,得,在梯形中,,由余弦定理得:,整理得,因为,则,即,所以,所以,故选D.考点:抛物线的定义及其简单的几何性质.【方法点晴】本题主要考查了抛物线的定义、标准方程及其简单的几何性质的应用、基本不等式求解最值、余弦定理等知识的应用,解答中由抛物线的定义和余弦定理得:,在利用基本不等式,得到是解答本题的关键,着重考查了学生分析问题和解答问题的能力及转化与化归思想的应用,属于中档试题.12.已知数列满足:且,数列与的公共项从小到大排列成数列,则()A. B. C. D.【答案】B【解析】∵对任意,令可得,则∴对任意,都有又,,∴数列是首项、公比均为2的等比数列,则设 .下面证明数列是等比数列证明:.假设,则,不是数列中的项;是数列中的第项.从而所以是首项为8,公比为4的等比数列.选B【点睛】本题考查数列的通项公式的求法,考查等比数列的证明,解题时要认真审题,注意等比数列性质的合理运用.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知满足不等式,则的最大值为__________.【答案】2【解析】作出不等式组对应的平面区域如图:由z=x+2y得y=﹣x+z,平移直线y=﹣x+z由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大,由,即,即A(0,1),此时z=0+2=2,故答案为:2点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14.的展开式中含项的系数为__________.(用数字作答)【答案】40【解析】的展开式的通项公式为令,得到项的系数为15.已知为的外心,且,则__________.【答案】2【解析】如图,分别取AB,AC中点D,E,连接OD,OE,AO,O为△ABC的外心;∴OD⊥AB,OE⊥AC;∴由得;;∵x+4y=2;∴①+②得:;4+②得:;∴③④联立得,;∴解得,;∴;∴.故答案为:2.16.已知函数,若,,则正数的取值范围是__________.【答案】【解析】a>0,f(x)=x+alnx,,∴f(x)在上单调递增,不妨设则,,,即,∴,即在上单调递增∴,即,又故三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知是正项数列的前项和,.(1)证明:数列是等差数列;(2)当时,,求数列的前项和.【答案】(1)详见解析;(2) .【解析】试题分析; (1)当时,分别得到,作差化简∵,可得,又当时,可得,即可证明数列是等差数列(2)由(1)及,得,∴,由错位相减法可得数列的前项和试题解析:(1)当时,有∴,∴又∵,∴当时,有∴,∴∴数列是以为首项,为公差的等差数列(2)由(1)及,得,∴,则,∴18.在某公司的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如图所示.食堂某天购进了 90个面包,以(个)(其中)表示面包的需求量,(元)表示利润.(1)根据直方图计算需求量的中位数;(2)估计利润不少于100元的概率;(3)在直方图的需求量分组中,以需求量落入该区间的频率作为需求量在该区间的概率,求的数学期望.【答案】(1)85个;(2) ;(3)142.【解析】试题分析:(1)需求量的中位数 (个)(2)由题意可得.设利润不少于100元为事件,利润不少于100元时,可得,即,由直方图可知,由此可估计当时的概率.(3)由题意,可得利润的取值可为:80,120,160,180,分别求得,得到利润的分布列,则的数学期望可求.试题解析:(1)需求量的中位数 (个)(其它解法也给分)(2)由题意,当时,利润,当时,利润,即.设利润不少于100元为事件,利润不少于100元时,即,∴,即,由直方图可知,当时,所求概率:(3)由题意,由于,故利润的取值可为:80,120,160,180,且,故得分布列为:利润的数学期望.19.如图,在三棱锥中,,分别为线段上的点,且,.(1)求证:平面;(2)若与平面所成的角为,求平面与平面所成锐二面角的余弦值.【答案】(1)详见解析;(2) .【解析】【详解】试题分析; (1)连接,据勾股定理可证,即进而证得平面,又由勾股定理证得,于是平面(2)由(1)知两两互相垂直,建立直角坐标系,由空间向量的夹角公式可求平面与平面所成锐二面角的余弦值.试题解析:(1)证明:连接,据题知∵在中,∴,且∴,∴,即∵∴平面,平面,∴∵在中,,∴则,∴∵,∴平面(2)由(1)知两两互相垂直,建立如图所示的直角坐标系,且与平面所成的角为,有,则∴又∵由(1)知,∴平面∴为平面的一个法向量设平面的法向量为,则∴,令,则∴为平面的一个法向量∴故平面与平面的锐二面角的余弦值为.20.已知椭圆的左,右焦点分别为.过原点的直线与椭圆交于两点,点是椭圆上的点,若,,且的周长为. (1)求椭圆的方程;(2)设椭圆在点处的切线记为直线,点在上的射影分别为,过作的垂线交轴于点,试问是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1) ;(2)1.【解析】试题分析; (1)设,则,∴,设,,以及,,由,由椭圆的定义可得,结合,综合可得:,可得椭圆的方程;(2)由(1)知,直线的方程为:,由此可得.,又∵,∴的方程为,可得则可得,又,∴.,故.当直线平行于轴时,易知,结论显然成立.综上,可知为定值1.试题解析:(1)设,则,∴,设,由,,将代入,整体消元得:,∴由,且,∴,由椭圆的对称性知,有,则∵,综合可得:∴椭圆的方程为:.(2)由(1)知,直线的方程为:即:,所以∴.∵,∴的方程为,令,可得,∴则又点到直线的距离为,∴. ∴.当直线平行于轴时,易知,结论显然成立.综上,.【点睛】本题考查的知识点是直线与圆锥曲线的关系,椭圆的标准方程,直线与圆的位置关系,是解析几何的综合应用,难度较大.21.已知函数.(1)当时,证明:有两个零点;(2)已知正数满足,若,使得,试比较与的大小.【答案】(1)详见解析;(2)详见解析.【解析】试题分析; (1)据题知定义域为,求导得:,由此可得函数的单调性,进而可得,发现;,由零点存在定理可知在和各有1个零点.即有两个零点.(2)由,而作差令,构造函数,讨论其单调性可知.故,又根据在上是增函数,∴,即. 试题解析:(1)据题知,求导得:令,有;令,得,所以在上单调递减,在上单调递增,∴令,有;令,有故在和各有1个零点.∴有两个零点.(2)由,而∴令,则,∴函数在上单调递增,故.∴,又∵在上是增函数,∴,即.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系中,圆的参数方程为(参数),以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求的极坐标方程;(2)若射线与圆的交点为,与直线的交点为,求的取值范围.【答案】(1);(2).【解析】试题分析:(1)圆C的参数方程消去参数φ,能求出圆C的普通方程,再由x=ρcosθ,y=ρsinθ,能求出圆C的极坐标方程.(2)设P(ρ1,θ1),则有ρ1=cosθ1,Q(ρ2,θ1),则,=ρ1ρ2,结合tanθ1>0,能求出的范围.试题解析:(1)圆的普通方程是,又,所以圆的极坐标方程是.(2)设,则有,设,且直线的方程是,则有所以因为,所以.23.(不等式选讲)已知函数,且不等式的解集为(其中). (1)求的值;(2)若的图象恒在函数的图象上方,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)通过分类讨论,化简不等式求出不等式解集,结合条件求出的值;(2)的图象恒在函数的上方,故,即求的最小值即可.试题解析:(1)若,原不等式可化为,解得,即若,原不等式可化为,解得,即;若,原不等式可化为,解得,即;综上所述,不等式的解集为,所以.(2)由(1)知,因为的图象恒在函数的上方,故,所以对任意成立.设,则.则在是减函数,在上是增函数,所以,当时,取得最小值4,故时,函数的图象恒在函数的上方,即实数的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

广西桂林市第十八中学高三数学上学期第二次月考试题理

广西桂林市第十八中学高三数学上学期第二次月考试题理

数学( 理科)f x的增区是注意事 :1. 答卷前 , 考生势必自己的姓名、准考号填写在答卡上.2. 回答 , 出每小答案后 , 用笔把答卡上目的答案号涂黑.如需改 , 用橡皮擦干后 , 再涂其余答案号. 回答非 , 将答案写在答卡上 .写在本卷上无效 .3. 考束后 , 将本卷和答卡一并交回 .一.: 本共 12 小, 每小 5 分, 共 60 分. 在每小出的四个中 , 只有一是切合目要求的 .10. a21. 会合A{1,2}, B {1,2,3}, C{2,3,4}, 则( A I B)UC=A.{1,2,3}B.{1,2,4}2. 复数z32i i ( i 虚数位)的共复数 zA. 23iB.3. 右茎叶了甲 , 乙两各五名学生在一次英听力中的成(位:x9分 ) 已知甲数据的均匀数17, 乙数据的中位数17, x, y的分7A.3,6B.3,74. S n等比数列{ a n}的前n和 ,8a2a50 ,A. -11B.- 85. 已知“x 2 ”是“ x2 a (A.( -∞ ,4)B.(4,+6. 一个三棱的正和俯如右所示, 三棱的可能7. 量x, y足束条件x y 2 ,目函数z 2xA.3B.28. 已知直x是函数f x6三 . 解答题 : 共 70 分 . 解答应写出文字说明 , 证明过程或演算步骤 . 第 17~ 21 题为必考题 , 每个试题考生都一定作答 . 第 22,23 题为选考题 , 考生依据要求作答 .(一)必考题 :共60分17.(12分)在△ABC中,角 A,B,C 所对的边分别是a,b,c ,角 A,B,C 成等差数列,b13 .⑴若 3sin C4sin A ,求 c 的值;⑵求 a c 的最大值.18.(12 分 )某地域高考推行新方案, 规定 : 语文 , 数学和英语是考生的必考科目, 考生还须从物理 , 化学 , 生物 , 历史 ,地理和政治六个科目中选用三个科目作为选考科目. 若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确立; 不然 , 称该学生选考方案待确立. 比如 , 学生甲选择“物理, 化学和生物”三个选考科目 , 则学生甲的选考方案确立 , “物理 , 化学和生物”为其选考方案 .某学校为认识高一年级420 名学生选考科目的意愿 , 随机选用 30名学生进行了一次检查, 统计选考科目人数以下表 :性别选考方案确立状况物理化学生物历史地理政治选考方案确立的有8 人884211男生6 人430100选考方案待确立的有选考方案确立的有10 人896331女生6 人541001选考方案待确立的有⑴预计该学校高一年级选考方案确立的学生中选考生物的学生有多少人?⑵假定男生 , 女生选择选考科目是相互独立的. 从选考方案确立的8 位男生中随机选出 1 人 , 从选考方案确立的 10 位女生中随机选出 1 人 , 试求该男生和该女生的选考方案中都含有历史学科的概率;名男生选考方案同样,⑶从选考方案确立的 8 名男生中随机选出 2 名, 设随机变量1, 2的分, 求名男生选考方案不一样,2 , 2布列及数学希望 .19.(12分)如图在四周体D-ABC中,已知 AD=BC=AC=5,AB=DC=6,sin DAB 4,M为线段AB上的动点(不包括端点).5⑴证明 : AB⊥CD;⑵求二面角D-MC-B的余弦值的取值范围.DCAMB20.(12分)已知椭圆 C : 9x2y2m2 (m 0) ,直线l可是原点O且不平行于坐标轴,l 与C有两个AB的中点为 M.⑴证明 : 直线OM的斜率与l的斜率的乘积为定值;⑵若 l 过点(m, m) ,延伸线段OM与C交于点P,四边形OAPB可否为平行四边形?若能,3若不可以 , 说明原因 .21.(12分)设函数 f xax2x (a R).x ln x a2, 务实数a的取值范围 ;⑴若函数 f x 有两个不一样的极值点⑵若 a 2 ,k N , g x22x x2,且当 x 2 时不等式 k x 2 g x f x 试求 k 的最大值.( 二 ) 选考题 : 共 10 分 . 请考生在第 22,23 题中任选一题作答. 假如多做 , 则按所做的第一题计分22.[ 选修 4-4: 坐标系与参数方程 ](10分 )x t 1,( t为参数 ), 以原点为极点 , x轴正半平面直角坐标系中 , 直线l的参数方程为3t 1y极坐标系 , 曲线C的极坐标方程为2cos.1 cos2⑴写出直线 l 的一般方程与曲线C的直角坐标方程;⑵已知与直线 l 平行的直线 l '过点 M(2,0),且与曲线 C交于 A,B 两点,试求| MA|·| M23.[ 选修 4-5: 不等式选讲 ](10分)已知函数 f x | x | | x1| .⑴解不等式 f x 3 ;⑵若 f x f y2,求 x y 的取值范围.桂林市第十八中学16 级高三第二次月考数学理答案一. 选择题题号 1 23 4 5 6 7 89 101112答案DCBADDABAB D B分析 :12.' 2 x cos , 设切点为x 0,f xexx 0 ,2e sin x 04则切线方程为 y2e x 0 sin x 042e x 0cos x 0x x 0 ,将1,0 代入 ,2得2e x 0sin x 04 2e x 0cos x 01 x 0 , 得 tan x 02 x 0,22由 ytan x , y 2 x2知两个函数均对于, 0 对称 , 所以切点也对于 对称且成对出现 .2299,101n内共有 100 对, 所以x i50 .2 2i 1二. 填空题13.514.11215.6 4216.1e分析 : uuuruuuruuur uuur15.uuur,由 C,F,D 共线, 故2 x y,AFx ABy AC 2x ADy AC11 4 1 4 2x y 68xy 642. x yx yyx16. exln x 0 , 得 exln x , 得 x exln x eln x恒成立 ,察看建立函数 ftte t, f ' tt 1 e t,当 t1时, f t 单一递减 ; 当 t1 时 , f t 单一递加 .⑴当 x1时 , t 1x 0 , t 2 ln x1 , 此时 f t 单一递加 ;e要 fx f ln x 恒成立 ( 即 f t 1 ft 2 ),只须x ln x 恒成立 ,ln x , 建立函数 F xln x, 求导最后可得1 .1xxe⑵当 0x时 , t 1 x 0 , t 2 ln x0 , 由 f 0 0 e 00 , 察看图像知 f t 1f t 2 恒成立e1即 fx fln x 对随意的恒成立 . 综上 , 得.e三. 解答题17. 解 : ⑴由角 A,B,C 成等差数列 , 得 2B=A+C,又 A+B+C=π , 得 B .3又由正弦定理 ,3sin C4sin A , 得 3c 4a , 即 a3c ,421, 解得 c由余弦定理 , 得 b 2a 2c 22ac cosB , 即 133cc 22 3 c c444 2⑵由正弦定理得a cb 2 13 , ∴ a2 13sin A , c2 13sin C ,sin A sinC sin B 333a c2 13sin A sin C2 13 sin A sin A B332 13 sin A sin A32 13 sin A6, 由 0 A2,知当 A2, 即336时 ,a cmax2 13 .18. ⑴由题可知 , 选考方案确立的男生中确立选考生物的学生有 4 人 , 选考方案确立的女生中确学生有 6 人 . 该学校高一年级选考方案确立的学生中选考生物的学生有10 18 18 420 140 人302 ⑵由数据可知 , 选考方案确立的 8 位男生中选出1 人选考方案中含有历史学科的概率为8选考方案确立的10 位女生中选出 1 人含有历史学科的概率为3, 所以该男生和该女生的选考1 3 310历史学科的概率为410.40⑶由数据可选 , 选考方案确立的男生中有 4 人选择物理 , 化学和生物 ; 有 2 人选择物理 , 化学和历择物理化学和地理 ;有 1人选择物理 , 化学和政治 . 由已知得的取值为 1,2.PC 42C 22 1; P2 C 41 C 21 C 211 C 212 1 31C 824C 82.4∴ E112 3 7 .44 419. ⑴证明 : 作取 AB 中点 O,连 DO,CO.由 AC=BC,O 为中点 , 故 OC ⊥ AB. D20. 解 : ⑴设直线 y kx b ( k 0,b 0 ), A x 1 , y 1 , B x 2 , y 2 , Mx M , y M,由 AD=5,AO=3, sin DAB4 知 OD=4,故 OD ⊥ AB,将 ykx b 代入 9x 2y 2m 2 ,5得 k29 x 2 2kbx b 2 m 20 , ∴ AB ⊥平面 DOC,CD 在平面 DOC 内 , ∴ AB ⊥ CD.C⑵由⑴知 AB ⊥平面 DOC,AB 在平面 ABC 内, 故平面 DOC ⊥平面 ABC.故 x Mx 1 x 2kb ,y Mkx Mb9b ,以 O 为原点 ,OB 为 x 轴 ,OC 为 y 轴,Oz 垂直平面 ABC,成立空间直角坐标 A2k 29 k 2系 O-xyz.9y M9故 O(0,0,0),B(3,0,0),C(0,4,0),A(-3,0,0),OM于是直线 OM 的斜率k OM, 即 k OMk9 , 所是命题得证 .x Mk设 OMm ( 3m 3 ), 则 M(m,0,0)B13 71 3 7⑵四边形 OAPB 能为平行四边形 .在△ DOC 内, 作 DE ⊥ OC,连 EO,由 OD=OC=4,DC=6,解得 EO, DE , 故 D 0,m22 , .由于直线l 过点, 所以 l 可是原点且与 C 有两个交点的充要条件是k0 且 k 3.22, mr uuuruuuur30, 9 , 3 7m, 4,0 由⑴得 OM 的方程为 y9 x . 设点 P 的横坐标为 x P . 设平面 DMC 的法向量为 nx, y, z , 则 CD, CM ,k229 xr uuur93 7x4 yy2k 2 m 2 , 即 x Pkmr由k , 得 x P.n CD 0z 0 , 得m , 令 y 7m4 7, 7m,3 m .y 2 23 k 2由 r uuuur , 得2 y2, 得 n 9x2m 29k 819n CM 0mx 4y 0 z 3 ym, mm 3 kmk k 37将点的坐标代入直线 l 的方程得 b,r r, 所以 x Mur | 3m | 3 , 由 3m 3333 k29平面 MCB 的法向量为 m 0,0,1 , 所以 | cos a,b | 112 16m 2112 四边形 OAPB 为平行四边形当且仅当线段AB 与线段 OP 相互均分 , 即 x P2 x M .16m 2kmmk k3r r, |3 9 , 设 为二面角 D-MC-B 的平面角 , 所以 9 cos9 . 于是k2922 9 故 | cos a, b3 3 k112 16 1616 16 解得 k 47 k 47 . 由于 k i 0, k i3 ,i=1,2,21,3所以当 l 的斜率为 47 或 47 时 , 四边形 OAPB 为平行四边形 .zDCyD6AO MB4EO4xC广西桂林市第十八中学高三数学上学期第二次月考试题理21. 解:⑴由题意知 , 函数 f x 的定义域为 (0,+ ∞ ), f ' xln x1 ax 1 ln x ax ,令 f ' x0 , 可得 ln x ax0 , ∴ aln x ln x ,, 令 h xxx1 ln x则由题可知直线 y a 与函数 hx 的图像有两个不一样的交点 , h', 令 h' x0 , 得 x e ,xx 222. 解 : ⑴ 把 直 线 l 的 参 数 方 程 化 为 普 通 方 程 为 y3 x 1 1 .由121 cos 22 cos , ∴曲线 C 的直角坐标方程为y 2 2x .⑵ 直 线 l 的 倾斜角 为, ∴直 线 l 的 倾 斜角也 为, 又直 线 l 过 点 M(2,0), ∴ 直线 l33可知 h x在 (0,e) 上单一递加,在 (e,+ ∞ ) 上单一递减, h x maxh e1,e当 x 趋势于 +∞时 ,h x 趋势于零 , 故实数 a 的取值范围为1 .0,e⑵当 a 2 时 , f xx ln x x22 x , k x 2 g xf x , 即 k x 2x ln x x ,由于 x2 , 所以 k x ln x x , 令 F xx ln x xx 2 ,x 2x 2则 F ' xx 42ln x令 m xx4 2ln x x2 ,x 2,2则 m ' x20 , 所以 m x 在 (2,+ ∞ ) 上单一递加 ,1xln e 22ln e 3m 84 2ln84 4 4 0 ; m 10 6 2ln10 666 0 ,故函数 mx 在(8,10) 上独一的零点 x 0 , 即 x 0 4 2ln x 00 ,故当 2x x 0 时 , m x 0 , 即 F ' x 0 ,x 04当 x 0x 时, F ' x0,所以x 0 ln x 0x 0x 0 12 x 0 , FxminF x 0x 0 2x 0 22所以 kx 0 , 由于 x 0 8,10 , 所以x 04,5 , 所以 k 的最大值为 4.221x 2t ,2( t 为参数 ), 将其代入曲线C 的直角坐标方程可得 3t 24t 16 0, y3t2设点 A,B 对应的参数分别为t 1 , t 2 . 由一元二次方程的根与系数的关系知t 1t 216 3|MB |16∴|MA|.3AB1 k2 t 1t 21 k 2t 1 t 24t 1t 2 242164 8132333.23. 解 : ⑴当 x0时 , 原不等式化为 x 1 x 3, 解得 x 1, 联合 x 0 , 得 x当 0 x 1 时 , 原不等式化为 x 1 x 3,无解.当 x 1时 , 原不等式化为 x x 1 3 , 解得 x 2 , 联合 x1, 得 x 2 . 综上 , 原不等式的解集为 , 1 U 2, ;⑵ f x f y 2 , 即 | x | | x 1| | y | | y 1| 2 , 又 | x | | x 1| | x| y | | y 1| | yy 1 | 1 , ∴ | x | | x 1| | y | | y 1| 2 . ∴ | x | | x 1|| y | | y 1|2 , 且 | x | | x 1| | y | | y 1| 1,∴ 0 x 1 ,0 y , ∴0 x y2.1, t 1 t 21 .x 1|1,。

广西桂林市第十八中学2021届高三数学上学期第二次月考试题理含解析

广西桂林市第十八中学2021届高三数学上学期第二次月考试题理含解析

广西桂林市第十八中学2021届高三数学上学期第二次月考试题 理(含解析)一、选择题1. 已知集合{}2|3100A x x x =--<,{}|22x B x =<,则AB =( )A. {}|21x x -<<B. {}|51x x -<<C. ∅D. {}0【答案】A 【解析】 【分析】利用一元二次不等式与指数不等式的解法化简集合,A B ,再由集合交集的定义求解即可. 【详解】因为{}{}2|3100|25A x x x x x =--<=-<<,{}{}|22|1x B x x x =<=<,所以AB ={}|21x x -<<,故选:A.【点睛】本题主要考查一元二次不等式与指数不等式的解法以及集合交集的定义,属于基础题. 2. 设23i32iz +=-,则z 的虚部为 ( ) A. 1- B. 1C. 2-D. 2【答案】B 【解析】 【分析】直接利用复数代数形式的乘除运算化简得答案. 【详解】解:23(23)(32)1332(32)(32)13i i i iz i i i i +++====--+, z ∴的虚部为1.故选:B .【点睛】本题考查复数代数形式的乘除运算以及复数的基本概念.3. 已知命题0:p n N ∃∈,0202n n >,则p ⌝为( )A. n N ∀∈,22n n >B. 0n N ∃∈,0202nn ≤ C. n N ∀∈,22n n ≤ D. 0n N ∃∈,020=2nn【答案】C 【解析】 【分析】利用特称命题的否定是全称命题,写出结果即可.【详解】命题“0n N ∃∈,0202nn >”的否定为: n N ∀∈,22n n ≤. 故选:C .【点睛】本题主要考查的是命题及其关系,特称命题的否定是全称命题,全称命题的否定是特称命题,是基础题.4. 记n S 为等差数列{}n a 的前n 项和,若23a =,59a =,则6S 为( ) A. 36 B. 32C. 28D. 24【答案】A 【解析】 【分析】利用等差数列的求和公式及其性质即可得出. 【详解】解:16256256()6()3()22a a a a S a a ++===+=36. 故选:A .【点睛】本题考查了等差数列的求和公式及其性质,还考查了推理能力与计算能力. 5. 已知在边长为3的等边ABC ∆中,12BD DC =,则AD AC ⋅=( ) A. 6 B. 9 C. 12D. -6【答案】A 【解析】 【分析】转化1()()3AD AC AB AC BD AB A B C C ⋅=+⋅=+⋅,利用数量积的定义即得解.【详解】1()()3AD AC AB AC BD AB A B C C ⋅=+⋅=+⋅13AB AC B AC C =⋅+⋅1||||cos ||||cos 3AB AC A AC C BC =⋅+⋅11133336232=⋅⋅+⋅⋅⋅=故选:A【点睛】本题考查了平面向量基本定理的应用以及数量积,考查了学生数形结合,转化划归,数学运算的能力,属于中档题.6. 已知抛物线()220y px p =>经过点(2,22M ,焦点为F ,则直线MF 的斜率为( )A. 2222 D. 22-【答案】A 【解析】 【分析】先求出p ,再求焦点F 坐标,最后求MF斜率【详解】解:抛物线()220y px p =>经过点(2,22M(22222p =⨯,2p =,()1,0F ,22MF k =故选:A【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.7. 设函数()12cos 23f x x π⎛⎫=-⎪⎝⎭,若对于任意的x R ∈都有()()()12f x f x f x ≤≤成立,则12x x -的最小值为( ) A.2πB. πC. 2πD. 4π【答案】C 【解析】 【分析】由题意结合三角函数的图象与性质可得12min22Tx x π-==,即可得解. 【详解】由题意知函数()f x 的最小正周期2412T ππ==,()1f x 、()2f x 分别为函数()f x 的最小值和最大值,所以12min22Tx x π-==. 故选:C.【点睛】本题考查了三角函数图象与性质的应用,属于基础题.8. ()2412(1)x x x -++的展开式中含3x 的项的系数为( )A. -8B. -6C. 8D. 6【答案】D 【解析】 【分析】原式()()()44421121x x x x x =+-⋅++⋅+,然后再分别求每一项含3x 的系数,最后合并同类项.【详解】原式()()()44421121x x x x x =+-⋅++⋅+,展开合并同类项后,含3x 的项是332221134441()26C x x C x x C x x ⨯+-+⋅=,故选D. 【点睛】本题考查了二项式系数的求法和指定项系数的求法,因为是两个因式相乘,所以应按分配率展开,再分别讨论每项中含3x 项的系数. 9. 已知0.40.8a =,0.80.4b =,8log 4c =,则( )A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】D 【解析】 【分析】利用指数、对数的运算即可求解.【详解】250.440.85a ⎛⎫=== ⎪⎝⎭450.820.45b ⎛⎫=== ⎪⎝⎭8142log 4183g c g =====又由16321662524325<<, 所以b c a <<. 故选:D【点睛】本题考查了指数的运算、对于的运算、换底公式以及幂函数的单调性比较大小,考查了基本运算求解能力,属于基础题. 10. 已知函数()f x 是定义在R 上的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()32x f x =-,则()()20192020f f +=( )A. 1-B. 0C. 1D. 2【答案】A 【解析】 【分析】根据函数的奇偶性与对称性可得()f x 最小正周期4T=,再利用函数的性质将自变量转换到(]0,1x ∈求解即可.【详解】∵()()f x f x -=-,()()11f x f x -+=+,∴()()2()f x f x f x +=-=-, ∴()()()42f x f x f x +=-+=,∴最小正周期4T=,又()00f =,∴()()()()201950541111f f f f =⨯-=-=-=-,()()()2020505400f f f =⨯==,∴()()201920201f f +=-,故选:A.【点睛】本题主要考查了根据函数性质求解函数值的问题,需要根据奇偶性推出函数的对称性,再将自变量利用性质转换到已知函数解析式的区间上求解.属于中档题.11. 在平行四边形ABCD 中,ABD △是腰长为2的等腰直角三角形,90ABD ∠=︒,现将ABD △沿BD 折起使二面角A BD C --的大小为23π,若A ,B ,C ,D 四点在同一个球面上,则该球的表面积为( ) A. 15π B. 20πC. 25πD. 30π【答案】B 【解析】 【分析】由题意画出图形,找出多面体外接球的球心,求其半径,再由球的表面积公式求解. 【详解】解:取AD ,BC 的中点分别为1O ,2O , 过1O 作面ABD垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结1O E ,2O E ,则12O EO ∠即为二面角A BD C --的平面角,且121O E O E ==,连OE ,在Rt △1OOE 中,1OO =在Rt △1OOA 中,1O A =,得OA ∴球面积为2420ππ⨯=.故选:B【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,属于中档题.12. 已知直线l 与曲线()xf x e =和()lng x x =分别相切于点()11,A x y ,()22,B x y .有以下命题:(1)90AOB ∠>︒(O 为原点);(2)()11,1x ∈-;(3)当10x <时,)21221x x ->.则真命题的个数为( ) A. 0 B. 1C. 2D. 3【答案】C 【解析】 【分析】先利用导数求斜率得到直线l 的方程,可得出()1121211ln 1x x e xe x x ⎧=⎪⎨⎪-=-⎩,分类讨论1x 的符号,计算化简()111x x OA OB x ee -⋅=-并判断其符号即得命题①正确;由()1121211ln 1x x e x e x x ⎧=⎪⎨⎪-=-⎩结合指数与对数的互化,得到111101xx e x +=>-,即得1x 的范围,得命题②错误;构造函数1111()1x x F x e x +=--,研究其零点132,2x ⎛⎫∈-- ⎪⎝⎭,再构造函数()x h x e x -=-并研究其范围,即得到1211222x x x e x --=->,得到命题③正确. 【详解】()x f x e =,()x f x e '∴=,所以直线l 的斜率11x k e =,直线l 的方程为()111x x y e e x x -=-,即()1111x x y e x x e =+-,同理根据()ln g x x =可知,直线l 的方程为()221ln 1y x x x =+-,故()1121211ln 1x x e x e x x ⎧=⎪⎨⎪-=-⎩,得1221ln ln x x x ==-. 命题①中,若10x =,由121xe x =可得21x =,此时等式()1121ln 1xe x x -=-不成立,矛盾; 10x ≠时,()()11111212111x x x x OA OB x x y y x e e x x e e --⋅=+=+⋅-=-,因此,若10x <,则110x x ->>,有110x x e e -->,此时0OA OB ⋅<; 若1>0x ,则110x x -<<,有110x x e e --<,此时0OA OB ⋅<. 所以根据数量积定义知,cos 0AOB ∠<,即90AOB ∠>,故①正确;命题②中,由()1121211ln 1x x e x e x x ⎧=⎪⎨⎪-=-⎩得1211111ln 1110111x x x x e x x x ---+===>---,得11x <-或11x >,故②错误;命题③中,因为21ln 2111x x x x ex ex --=-=-,由②知,11111xx e x +=-,11x <-或11x >, 故当10x <时,即11x <-,设1111()1x x F x e x +=--,则()1212()01x F x e x '=+>-,故 ()F x 在(),1-∞-是增函数,而21(2)03F e --=-<,3231025F e -⎛⎫-=-> ⎪⎝⎭,故1111()01x x F x e x +=-=-的根132,2x ⎛⎫∈-- ⎪⎝⎭,因为21ln 2111x xx x e x e x --=-=-,故构造函数()x h x e x -=-,32,2x ⎛⎫∈-- ⎪⎝⎭,则()10xh x e -'=--<,故()h x 在32,2⎛⎫-- ⎪⎝⎭上单调递减,所以32333()52222xh x e x g e -⎛⎫=->-=+>+> ⎪⎝⎭,故)2121x x ->,故③正确. 故选:C.【点睛】本题考查了利用导数几何意义求曲线的切线,考查了利用函数的单调性研究函数的零点问题,属于函数的综合应用题,属于难题.二、填空题13. 已知tan 2α=,则tan 4πα⎛⎫-= ⎪⎝⎭______________. 【答案】13- 【解析】 【分析】利用三角恒等变换公式,即可得出答案. 【详解】1tan 121tan 41tan 123πααα--⎛⎫-===- ⎪++⎝⎭,故答案为:13-【点睛】本题考查三角恒等变换公式,属于基础题.14. 已知实数x ,y 满足约束条件3011x y x y +-≤⎧⎪≥⎨⎪≥⎩,则yz x =的最小值为_____________.【答案】12【解析】 【分析】根据约束条件画出可行域,然后根据z 的含义,结合图形可得结果. 【详解】如图由yz x=代表的是过原点的直线的斜率, 12301y x x y y ==⎧⎧⇒⎨⎨+-==⎩⎩,则()2,1A所以当过点()2,1A 时,yz x =有最小值为12=z 故答案为:12【点睛】本题考查线非性规划的问题,主要正确理解z 的含义,属基础题. 15. 已知数列{}n a 的前n 项和为n S ,满足112a =-,且()1222n n a a n N n n *++=∈+,则10S =_________________.【答案】1011【解析】 【分析】根据题中条件,由裂项的方法得到1112n n a a n n ++=-+,根据裂项相消与并项求和的方法,即可得出结果. 【详解】因为()122211222n n a a n n n n n n ++===-+++,则()()()()()1012345678910S a a a a a a a a a a =+++++++++11111111113355779911⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11011111=-=. 故答案为:1011.【点睛】本题主要考查数列的求和,熟记裂项相消的方法和并项求和的方法即可,属于常考题型.16. 已知2F 是双曲线22:193x y C -=的右焦点,动点A 在双曲线左支上,B 为圆()22:21E x y ++=上一点,则2AB AF +的最小值为_______________.【答案】9 【解析】 【分析】记双曲线22:193x y C -=的左焦点为1F ,则()123,0F -,根据双曲线的定义可得126AF AF =+,先求出12610AE AF EF +≥+=,再由圆的性质,即可得出结果.【详解】记双曲线22:193x y C -=的左焦点为1F ,则()123,0F -,根据双曲线的定义可得1226AF AF a -==, 则126AF AF =+,因此21166AE AF AE AF EF +=++≥+, 当1F ,A ,E 三点共线时,取等号;又E 为圆()22:21E x y ++=的圆心,即()0,2E -,且该圆的半径为1r =,则()2212324EF =+=,即12610AE AF EF +≥+=,因为B 为圆()22:21E x y ++=上一点,根据圆的性质可得,221019AB AF AE r AF +≥-+≥-=, 即1F ,A ,B ,E 四点共线时,取得最小值.故答案为:9.【点睛】本题主要考查利用双曲线的定义域,求出线段和的最值,属于常考题型. 三、解答题:17. ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,D 为边BC 上一点,25c =,6B π=,2cos 3ADC ∠=.(1)求AD 的长;(2)若6AC =DC 的长.【答案】(1)3AD =;(2)3DC =或者1DC =. 【解析】 【分析】(1)利用平方关系求出5sin ADC ∠=,再结合正弦定理,即可求解. (2)利用余弦定理即可求解. 【详解】由25cos sin 33ADC ADC ∠=⇒∠=在ABD △中,由正弦定理得sin sin AB ADADB B=∠255sin 6ADπ=,得3AD =;(2)在ADC 中,由余弦定理得2222cos AC AD DC AD DC ADC =+-⋅∠ 即:22263233DC DC =+-⨯⨯,即:2430DC DC -+= 得3DC =或者1DC =.【点睛】本题考查利用正、余弦定理,解三角形,属于基础题.18. 如图,在四棱锥P ABCD -中,122PA PB AD CD BC =====,//AD BC ,AD CD ⊥,E 是线段PA 上的点,且||3||PA EA =,平面PAB ⊥平面ABCD .(1)证明:PB CE ⊥;(2)求直线CE 与平面PBC 所成的角的正弦值. 【答案】(1)证明见解析;(2)211457. 【解析】 【分析】(1)可证PB ⊥平面PAC ,从而得到PB CE ⊥.(2)如图所示建立空间直角坐标系,求出直线CE 的方向向量和平面PBC 的法向量后可求线面角的正弦值.【详解】证明:(1)已知可得在直角梯形ABCD 中,22AB AC ==4BC =, 所以222AB AC BC +=,所以AC AB ⊥又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,AC ⊂平面ABCD , 所以AC ⊥平面PAB ,而PB ⊂平面PAB ,所以AC PB ⊥,又2PA PB ==,22AB =222PA PB AB +=,所以PB PA ⊥, 又AC PA A ⋂=,故PB ⊥平面PAC ,又CE ⊂平面PAC ,所以PB CE ⊥. (2)如图所示建立空间直角坐标系,则()0,0,0A ,()22,0,0B ,()0,22,0C ,2,0,2P ,2233E ⎛ ⎝⎭设平面PBC 的一个法向量为(),,n x y z =,()22,22,0CB =-,(2,22,2CP =-由222200022220x y n CB x y z n CP x y z ⎧⎧-=⋅=⎪⎪⇒⇒==⎨⎨⋅=-=⎪⎪⎩⎩,故取()1,1,1n =,又22,22,33CE ⎛⎫=- ⎪ ⎪⎝⎭, 所以422cos ,57||||371461n CE n CE n CE ⋅-<>====-⋅⨯,即直线CE 与平面PBC 所成的角的正弦值为211457.【点睛】本题考查线线垂直的证明、线面角的计算,线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为2π得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.19. 张先生家住H 小区,他工作在C 科技园区,从家开车到公司上班路上有1L ,2L 两条路线(如图),1L 路线上有1A ,2A ,3A 三个路口,各路口遇到红灯的概率均为12;2L 路线上有1B ,2B ,3B 三个路口,各路口遇到红灯的概率依次为23,34,35.(1)若走1L 路线,求最多遇到1次红灯的概率;(2)若走2L 路线,求遇到红灯次数X 的分布列和数学期望. 【答案】(1)12;(2)分别列答案见解析,数学期望:12160.【解析】 【分析】(1)根据独立重复试验概率计算公式即可求解.(2)X 的可能取值为0,1,2,3,利用概率乘法公式求出各随机变量的概率,写出分布列,再根据数学期望的计算公式即可求解.【详解】(1)设走1L 路线最多遇到1次红灯为A 事件,则()3213311112222P A C C ⎛⎫⎛⎫=⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭所以走1L 路线,最多遇到1次红灯的概率为12(2)依题意,X 的可能取值为0,1,2,3()1121034530P X ==⨯⨯=,()21213211313134534534560P X ==⨯⨯=⨯⨯=⨯⨯=(每对一个1分)()23221313327923453453456020P X ==⨯⨯=⨯⨯=⨯⨯==,()2333334510P X ==⨯⨯=所以随机变量X 的分布列为:()01233060201060E X ∴=⨯+⨯+⨯+⨯=. 【点睛】本题考查了独立重复试验的概率计算公式、离散型随机变量的分布列以及数学期望,考查了基本运算求解能力,属于基础题.20. 已知椭圆()222210x y a b a b+=>>的左焦点F 在直线30x y -+=上,且2a b +=+(1)求椭圆的方程;(2)直线l 与椭圆交于A 、C 两点,线段AC 的中点为M ,射线MO 与椭圆交于点P ,点O 为PAC 的重心,探求PAC 面积S 是否为定值,若是,则求出这个值;若不是,则求S 的取值范围.【答案】(1)22142x y +=;(2)是定值,2. 【解析】 【分析】(1)根据题意,得到()F ,由题中条件列出方程组求解,得出2a =,b =得出椭圆方程;(2)若直线l 的斜率不存在,先求出此时PAC 的面积;若直线l 的斜率存在,设直线l 的方程为y kx m =+,设()11,A x y ,()22,C x y ,根据韦达定理,由题中条件,表示出点P 的坐标,代入椭圆方程,得出22122k m +=,再得到坐标原点O 到直线l的距离为d =,根据三角形面积公式,化简整理,即可得出结果.【详解】(1)∵直线30x y -+与x轴的交点为(),∴c =∴2222a b a b ⎧-=⎪⎨+=⎪⎩∴解得2a =,b =22142x y +=.(2)若直线l 的斜率不存在,则MO 在x 轴上,此时2OP a ==,因为点O 为PAC 的重心,所以212OM ==,将1x =代入椭圆方程,可得y ==即AM =,所以322S PM AM =⋅==; 若直线l斜率存在,设直线l 的方程为y kx m =+,代入椭圆方程,整理得()222124240k x kmx m +++-=设()11,A x y ,()22,C x y ,则122412kmx x k +=-+,()21222212m x x k-⋅=+,()121222212m y y k x x m k +=++=+. 由题意点O 为PAC 的重心,设()00,P x y ,则12003x x x ++=,12003y y y ++=, 所以()0122412km x x x k =-+=+,()0122212my y y k =-+=-+,代入椭圆22142x y+=,得()()2222222224212121212k m m kmk k++=⇒=++,设坐标原点O到直线l的距离为d,则d=则PAC的面积132S AC d =⋅12x=-⋅1232x x m=-⋅m=m=2==.综上可得,PAC面积S.【点睛】本题主要考查求椭圆的标准方程,考查椭圆中三角形的面积问题,熟记椭圆的标准方程,以及椭圆的简单性质即可,属于常考题型.21. 已知函数2()xf x e x a=-+,x∈R的图像在点0x=处的切线为y bx=.( 2.71828e≈).(1)求函数()f x的解析式;(2)若k Z∈,且21()(352)02f x x x k+--≥对任意x∈R恒成立,求k的最大值.【答案】(1)()21xf x e x=--;(2)1maxk=-【解析】【详解】试题分析:(1)利用导函数与原函数切线之间的关系得到关于实数a,b的方程组,求解方程组可得1,1a b=-=;(2)结合(1)的结论,原问题等价于215122xk e x x ≤+--对任意x ∈R 恒成立,构造函数令()215122x h x e x x =+--,结合导函数的解析式可知存在唯一的013,24x ⎛⎫∈ ⎪⎝⎭,()h x 在()0,x -∞单调递减,在()0,x +∞上单调递增,且()0271,328h x ⎛⎫∈-- ⎪⎝⎭,则1max k =-. 试题解析:(1)()22xf x e x a b =-++,()2x fx e x '=-.由题意知()()01201011f a b a f b b ⎧=++==-⎧⎪⇒⎨⎨==='⎪⎩⎩.所以()21xf x e x =--(2)由(1)知:()21xf x e x =--,∴()()2135202f x x x k +--≥对任意x ∈R 恒成立 2151022x e x x k ⇔+---≥对任意x ∈R 恒成立215122x k e x x ⇔≤+--对任意x ∈R 恒成立.令()215122x h x e x x =+--,则()52xh x e x '=+-.由于()'10xh x e +'=>,所以()h x '在R 上单调递增.又()3002h =-<',()3102h e =->',121202h e ⎛⎫'=-< ⎪⎝⎭,343737104444h e ⎛⎫=->+-⎪'= ⎝⎭,所以存在唯一的013,24x ⎛⎫∈⎪⎝⎭,使得()00h x '=,且当()0,x x ∈-∞时,()0h x '<,()0,x x ∈+∞时,()0h x '>. 即()h x 在()0,x -∞单调递减,在()0,x +∞上单调递增.所以()()0200015122xmin h x h x e x x ==+--. 又()00h x '=,即00502x e x +-=,∴0052xe x =-.∴ ()()2200000051511732222h x x x x x x =-+--=-+.∵ 013,24x ⎛⎫∈⎪⎝⎭,∴ ()0271,328h x ⎛⎫∈-- ⎪⎝⎭. 又因为215122xk e x x ≤+--对任意x ∈R 恒成立()0k h x ⇔≤, 又k Z ∈,∴ 1max k =-22. 以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为232cos 2ρθ=+,又在直角坐标系xOy 中,曲线2C 的参数方程为17x t y t=-+⎧⎨=-⎩(t 为参数).(1)求曲线1C 的直角坐标方程和曲线2C 的普通方程;(2)已知点P 在曲线1C 上,P 到2C的最短距离为P 的直角坐标.【答案】(1)1C :2213y x +=,2C :60x y +-=;(2)13,22⎛⎫ ⎪⎝⎭. 【解析】 【分析】(1)利用cos x ρθ=,sin y ρθ=,,222x y ρ=+,可得曲线1C 的直角坐标方程,将曲线2C 消去参数t ,可得普通方程,即可得出答案.(2)设点P的直角坐标为()cos αα,利用点到直线的距离公式求出()23k k Z παπ=+∈,即可得出答案.【详解】(1)由232cos 2ρθ=+得2232cos 1ρθ=+,即()222cos 3ρρθ+=, 把cos x ρθ=,sin y ρθ=,222x y ρ=+,得2213y x +=,故曲线1C 的直角坐标方程为2213y x +=;因为曲线2C 的参数方程为17x ty t =-+⎧⎨=-⎩(t 为参数).消去参数t 得曲线2C 的普通方程为60x y +-=.(2)由题意,曲线1C的参数方程为x cos y αα=⎧⎪⎨=⎪⎩(α为参数),可设点P 的直角坐标为()cos αα,因为曲线2C 是直线,∴PQ 即为点P 到直线60x y +-=的距离 易得点P 到直线60x y +-=的距离为36d απ⎛⎫==+-= ⎪⎝⎭∴sin 16πα⎛⎫+= ⎪⎝⎭,∴()23k k Z παπ=+∈,此时点P 的直角坐标为13,22⎛⎫⎪⎝⎭. 【点睛】本题考查极坐标与参数方程、点到直线的距离,属于中档题。

2018年高三最新 广西桂林十八中2018届高三第二次月考

2018年高三最新 广西桂林十八中2018届高三第二次月考

桂林十八中18级高三第二次月考试卷(10-9-27)数 学(理 科)注意:①本试卷共2页。

考试时间120分钟,满分150分。

②请分别用2B 铅笔填涂选择题的答案、黑色水性笔解答第Ⅱ卷。

必须在答题卡上答题,否则不得分。

③文明考风,诚信考试,自觉遵守考场纪律,杜绝各种作弊行为。

第I 卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}20,x x x m m R ++≤∈≠Φ,则m 的取值范围是 A .1(,]4-∞B .1(,)4-∞C .1[,)4+∞D .1(,)4+∞2. 平面向量a 与b 的夹角为3π,(2,0)a =,1b =,则2a b += A .12B .4CD.3.记sin(10)k -︒=,那么tan100︒=A.k - B .k C .D.4.若n 展开式中存在常数项,则n 的值可以是A . 8B .9C .10D .125.若实数,x y 满足2,3, 1.x y x y ≥⎧⎪≤⎨⎪-≤⎩则2z x y =-的最大值为A .2B .4-C .2-D .06. 在等比数列{}n a 中,13101a a +=,241010a a +=,令lg n n b a =,则{}n b 的前100项和等于 A .2475B .4950C .2525D .51807. 已知直线:10l ax y a ++-=不经过第一象限, 则直线l 的倾斜角的取值范围是 A .3(,)24ππB .3[,]24ππC .3(,]24ππD .3[,)24ππ8.三棱柱111ABC A BC -中,090BCA?,D 、F 分别是11A B 、11AC 的中点,若1BC CA CC ==,则第1页,共2页BD 与AF 所成角θ的余弦值是A.1030 B.21 C. 1530 D. 10159.将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为 A .118B .115C .112D .1910.已知函数()f x 的图象过点(0,2)-,它的导数3'()44f x x x =-,则当()f x 取得极大值2-时,x 的值应为A .-1B .0C . 1D . ±111.已知1F 、2F 为椭圆C :2212x y +=的左、右焦点,点P 在C 上,当00126090F PF ≤∠≤时,则12F PF ∆ 的面积的取值范围是A .,1]2B .[1C .[3D . 312.平面上给定5个点,这些点的连线互不平行、不垂直也不重合,从任何一点向其余4点两两之间的连线作垂线,如果不计已知的5个点,所有这些垂线间的交点数最多有 A .310个B .330个C .340个D .385个第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分,共20分.13.设i 是虚数单位,化简复数133ii+=- . 14.对任意0a >且1a ≠,函数()log (3)a f x x =+的反函数的图像都过点P ,则点P 的坐标是 . 15.不等式2212x x +-≥的解集是 .16.如果直线2y =与曲线y x a =+有两个交点,则实数a 的取值范围是 .三.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数2()2cos cos f x x x x =+. (Ⅰ)求函数()f x 在区间[,]63ππ-上的值域;(Ⅱ)在ABC V 中,若()2f A B +=,求tan C 的值.18.(12分)某计算机程序每运行一次都随机出现一个二进制的5位数N =1n 2n 3n 4n 5n , 其中N 的各位数字中15n n =1,是随机(等可能性)地出现0或1,而k n (2,3,4)k =出现0的概率为25,出现1的概率为35,记12n n ξ=++…5n +.(Ⅰ)求3ξ= 时的概率; (Ⅱ)求ξ的分布列和数学期望.19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,M 是线段PA 上一点,N 为BC 的中点,PD ⊥平面ABCD ,2PD AD ==,1CD =,且MC 与平面PCD成角大小为 (Ⅰ)证明://MN 平面PCD ; (Ⅱ)求二面角M BD C --的余弦值.20.(12分)已知函数()xf x xe -=. (Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =的图象与函数()y f x =的图象关于直线1x =对称,证明当1x >时,()()f x g x >.21.(12分)已知双曲线E :2213y x -=和定点(2,0)F ,过点F 的直线交E 于B C 、两点,直线AB AC 、C分别是双曲线E 在点B C 、处的切线.(提示:双曲线22221x y a b -=在点00(,)P x y 处的切线方程是:00221x x y ya b-=) (Ⅰ)求证:A 必在一条定直线上;(Ⅱ)试判断以线段BC 为直径的圆是否过点A ,并说明理由.22.(12分)在数列{}n a 中,1a a =,1n a +是函数322211()(2)232n n n f x x a n x n a x =-++的极小值点. (Ⅰ)当13a =时,求通项n a ; (Ⅱ)是否存在a ,使数列{}n a 是等比数列?若存在,求a 的取值范围;若不存在,请说明理由.第2页,共2页桂林十八中18级高三第二次月考参考答案数 学(理 科)一.选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADBCDBCACBDA【解析】12:设12345p p p p p 、、、、为所给的5点,两两连线共有2510C =条,其中任意4个点间的两两之间的连线 共有246C =条,一点可以引6条垂线,5点共引30条,它们最多有230C 个交点。

桂林市第十八中学高三数学第二次月考及详细答案

桂林市第十八中学高三数学第二次月考及详细答案

数学考试时间:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一.选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,1.设集合{1,2},{1,2,3},{2,3,4},()A B C A B C===则=A.{1,2,3}B.{1,2,4}C.{2,3,4}D.{2.复数()32z i i=-的共轭复数z=A.23i+B.23i-+C.23i-D.-3.右侧茎叶图记录了甲,乙两组各五名学生在一次英语听力测试中的成绩(已知甲组数据的平均数为17,乙组数据的中位数为17,则,x yA.3,6B.3,7C.2,6D.2,4.设nS为等比数列{}na的前n项和,2580a a+=,则52SS=A.11-B.8-C.5D.115.设23a=,3log4b=,23log5c=,则,,a b c的大小关系为A.b c a>>B.b a c>>C.a b c>>D.a6.已知“2x>”是“2x a>(a R∈)”的充分不必要条件,则aA.(,4)-∞B.(4,)+∞C.(0,4]D.(7.一个三棱锥的正视图和俯视图如右图所示,则该三棱锥的侧视图可能为8.设变量,x y满足约束条件236y xx yy x≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y=+A.3B.2C.1D.-已知直线6xπ=是函数()()sin2f x xϕ=+的图像的一个对称轴,其中()0,2ϕπ∈,且()2f fππ⎛⎫<⎪⎝⎭,则()f x的单调递增区间是A.2,63k kππππ⎡⎤++⎢⎥⎣⎦(k Z∈) B.,36k kππππ⎡⎤-+⎢⎥⎣⎦(k Z∈)C.,2k kπππ⎡⎤+⎢⎥⎣⎦(k Z∈) D.,2k kπππ⎡⎤-⎢⎥⎣⎦(k Z∈)点A,B,C,D,E是半径为5的球面上五点, A,B,C,D四点组成边长为,则四棱锥E-ABCD体积最大值为A.2563B.256 C.643D.64若()x xf x e e-=+,则21(1)ef xe+-<的解集为A.(0,1)B.(1,0)-C.(0,2)D.(1,2)-设抛物线24y x=的焦点为F,过点(1,0)M-的直线在第一象限交抛物线于A、B,使0AF BF⋅=,则直线AB的斜率k=A B C D.填空题:本题共4小题,每小题5分,共20分.2240,,||y x x y x A B AB=+-==已知直线与圆相交于两点则.若直线1()y kx k R=+∈与曲线32(,)y x bx c b c R=++∈相切于点(1,2)M,则22b c+=__________.2511,51nnn S n Ta+⎧⎫==⎨⎬-⎩⎭已知的前项和数列的前项和.如图所示,在△ABC中,AD=DB,F在线段CD,设AB a=,AC b=,AF xa yb=+,则14x y+的最小值为__________.三.解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分17. (本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,角A 、B 、C成等差数列,b = (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值.18. (本小题满分12分)编号分别为,,,A A A 的16名篮球运动员在某次训练比赛中的得分记录如下:(1)(2)(ⅰ)用运动员编号列出所有可能的抽取结果; (ⅱ)求这2人得分之和大于50的概率.19. (本小题满分12分)如图,在四面体D-ABC 中,已知AD=BC=AC=5,AB=DC =6,4tan 3DAB ∠=,M 为线段AB 上的动点 (不包含端点) .(1)证明:AB ⊥CD ;(2)若AM =2MB ,求三棱锥B-DMC 的体积.20. (本小题满分12分)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 交于A 、B 两点, 线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求l 的斜率;若不能,说明理由.21. (本小题满分12分)已知函数ln ()1xf x x =-. (1)确定函数()f x 在定义域上的单调性;(2)若()x f x ke ≤在(1,)+∞上恒成立,求实数k 的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程] (本小题满分10分)平面直角坐标系中,直线l 的参数方程为1,1x t y =+⎧⎪⎨=+⎪⎩(t 为参数),以原点为极点,x 轴正半轴为极轴建立极 坐标系,曲线C 的极坐标方程为22cos 1cos θρθ=-. (1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)已知与直线l 平行的直线l '过点M (2,0),且与曲线C 交于A,B 两点,试求|MA|·|MB|.23.[选修4-5:不等式选讲] (本小题满分10分)已知函数()|||1|f x x x =+-. (1)解不等式()3f x ≥;(2)若()()2f x f y +≤,求x y +的取值范围.BADCM桂林市第十八中学16级高三第二次月考数学文科答案一.选择题DCBAB DDABA CB 二.填空题513.14.515.16.624+三.解答题17.解:⑴由角A,B,C 成等差数列,得2B=A+C,又A+B+C=π,得3B π=.又由正弦定理,3sin 4sin C A =,得34c a =,即34a c =, 由余弦定理,得2222cosB b a c ac =+-,即22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =.…………6分⑵由正弦定理得sin sinC sin a c b A B ===∴a A =,c C =,)()sin sin sin sin a c A C A A B +=+=++⎤⎦sin sin 36A A A ππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由203A π<<,知当62A ππ+=,即3A π=时,()max a c +=.(此问也可用边及均值不等式来算) …………12分18.⑴(Ⅰ)解:4,6,6 …………2分 (Ⅱ)(i )解:得分在区间【20,30)内的运动员编号为从中随机抽取2人,所有可能的抽取结果有:,共15种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届广西桂林十八中2018级高三上学期第二次月考
数学(理)试卷
★祝考试顺利★
(含答案)
注意事项:
① 试卷共4页,答题卡2页。

考试时间120分钟,满分150分;
②正式开考前,请务必将自己的姓名、学号用黑色水性笔填写清楚填涂学号; ③请将所有答案填涂或填写在答题卡相应位置,直接在试卷上做答不得分。

一.选择题:本大题共12小题,每小题5分,共60分.
{}{}{}
{}{}2|3100,|22,.|21.|51..0x A x x x B x A B A x x B x x C D =--<=<=
-<<-<<∅1.已知集合则 2+32=32.1.1.2.2
i z z i
A B C D ---.设,则的虚部为 000200222200003:2,.2.2.2.=2n n n n n p n N n p A n N n B n N n C n N n D n N n ∃∈>⌝∀∈>∃∈≤∀∈≤∃∈.已知命题,则为
,,,,
{}256439,.36.32.28.24n n S a n a a S A B C D ===
.记为等差数列的前项和,若,则
153,2
.6.9.12.6
ABC BD DC AD AC A B C D =⋅=-.在边长为的等边三角形中,则 (
)(
2620,...y px p M F MF A B C D =>-.已知抛物线经过点焦点为,则直线的斜率为
()()()()1212172cos ,2
3...2.42f x x x R f x f x f x x x A B C D ππ
π
ππ⎛⎫=-∈≤≤- ⎪⎝⎭.设函数若对任意都有成立,则的最小值为()()4238121.8.6.8.6x x x x A B C D -++--.的展开式中含的项的系数为
0.40.8890.8,0.4,log 4,....a b c A a b c B a c b C c a b D b c a ===<<<<<<<<.已知则
()()(]()()()1010,132,20192020.0.1.1.2
x f x R f x x f x f f A B C D +∈=-+=
-.已知是定义在上的奇函数,是偶函数,且当时,则112902,,,3
.15.20.25.30ABCD ABD ABD ABD BD A BD C A B C D A B C D πππππ
∆∠=∆--.在平行四边形中,是腰长为的等腰直角三角形,,现将沿折起,
使二面角的大小为,若四点在同一个球面上,则该球的表面积为 ()()()()()()()()(
))
1122112112ln ,,,.19021,13021..0.1.2.3x l f x e g x x A x y B x y AOB O x x x x A B C D ==∠>∈-<->.已知直线与曲线和分别相切于点有以下命题:
为原点;;当时,则真命题的个数为 二.填空题:本大题共4小题,每小题5分,共20分.
13tan 2tan 4παα⎛⎫=-= ⎪⎝⎭
.已知,则3014,11x y y x y x z x y +-≤⎧⎪≥=⎨⎪≥⎩.已知实数满足约束条件,则的最小值为
{}()111021215,.22n n n n a n S a a a n N S n n
*+=-+=∈=+.已知数列的前项和为,满足且则()22222216:1:2193x y F C A B E x y AB AF -=+=+.已知是双曲线的右焦点,动点在双曲线左支上,为圆+上一点,则的最小值为。

相关文档
最新文档