模型参考自适应控制系统
自动控制系统中的模型辨识与自适应控制策略

自动控制系统中的模型辨识与自适应控制策略引言自动控制系统是现代工程领域中很重要的一个研究方向,它涉及到各种各样的应用,如工业自动化、航天技术、机器人技术等。
在自动控制系统中,模型辨识和自适应控制策略是两个关键领域。
本文将讨论自动控制系统中的模型辨识和自适应控制策略的原理、方法和应用。
模型辨识模型辨识是自动控制系统中的一个重要研究领域,它旨在从系统的输入和输出数据中构建出一个有效的数学模型。
该数学模型能够描述和预测系统的动态行为,从而为系统设计和控制提供依据。
常用的模型辨识方法包括参数辨识、结构辨识和非参数辨识。
参数辨识方法是基于假设系统模型是已知结构的情况下进行的。
通过对系统的输入和输出数据进行拟合,参数辨识方法能够估计出系统模型中的参数。
这些参数可以被用于描述系统的动态性能,并且可以用于设计稳定的自适应控制器。
结构辨识方法是在没有先验知识的情况下,通过试探不同的系统结构来辨识系统模型。
这种方法常常使用组合算法和优化算法,通过对系统数据进行训练,筛选出最符合系统动态特性的模型结构。
结构辨识方法在辨识非线性系统和复杂系统方面具有很大的优势。
非参数辨识方法是一种基于经验分布函数和核函数的统计方法。
该方法不依赖于特定模型的假设,而是直接从数据中提取系统的动态信息。
非参数辨识方法可以用于辨识非线性系统和时变系统,适用范围广泛。
自适应控制策略自适应控制策略是一种可以根据系统的实时信息进行不断更新和优化的控制策略。
自适应控制器能够自动调整控制参数,以适应系统的变化和不确定性。
常用的自适应控制策略包括模型参考自适应控制和直接自适应控制。
模型参考自适应控制是一种基于模型参考思想的控制策略。
该策略通过引入一个参考模型来指导控制器的参数调整。
控制器的目标是使系统的输出与参考模型的输出保持一致。
模型参考自适应控制可以有效地抑制扰动和噪声的影响,提高系统的鲁棒性。
直接自适应控制是一种通过在线辨识系统模型的控制策略。
该策略通过对系统的输入和输出数据进行递归估计,不断更新模型参数。
系统辨识与自适应控制MATLAB仿真第5章模型参考自适应控制

[ky]
k
(t)
(t)
(5-13)
10
由式(5-13)和上式有
(t) k(t) (t)
(5-14)
式中,k(t) k(t) k。 于是可以看到,当 k(t) k 时, (t) 0
现给出规范化的性能指标函数:
J
(k)
1 2
2 (t)
m2
式中,m 1 2(t) 为规范化信号。
按优化理论,k变化使 J (k) 极小的方向应按负梯度确定:
梯度设计法来叙述。
例5.1.3 设有被控对象式(5-1),仍采用参考模型式(5-2)
和控制器结构式(5-6)。设aˆp (t) 是未知对象参数 ap的估计值,式
(5-6)中的 k(t) 由下式计算:
k(t) aˆp (t) am
(5-16)
为了产生参数估计aˆp (t) ,选择一个稳定的滤波器
系统辨识与自适应控制 MATLAB仿真
第5章模型参考自适应控制
1
模型参考自适应控制是一种不同于自校正控制的另一类自适应 控制形式。根据被控对象结构和控制要求,设计参考模型,使其输 出表达对输入指令的期望响应,然后通过模型输出与被控对象输出 之差来调整控制器参数,使差值趋向于零,也就是使对象输出向模 型输出靠近,最终达到完全一致。根据控制器参数更新方法的不 同,模型参考自适应控制可分为直接自适应控制和间接自适应控制 两种。推演参数自适应规律的方法有两种:梯度法和稳定理论法。 5.1简单自适应控制系统
本节目的:1)给出直接自适应控制和间接自适应控制的概 念;2)自适应控制系统的两种基本设计方法:李亚普诺夫法和2梯
度法。
5.1.1直接自适应控制
直接自适应控制是指控制器参数直接从一个自适应规律中获取
自适应控制中的模型参考自适应控制算法研究

自适应控制中的模型参考自适应控制算法研究在控制系统中,控制器的设计和应用都是十分重要的,并且也是十分复杂的。
自适应控制是一种在控制器中嵌入智能算法的方法,可以让控制器根据被控制系统的状态自适应地调整参数,以达到最佳控制效果。
在自适应控制中,模型参考自适应控制算法是一种常见的算法,其原理和应用将在本文中进行介绍。
一、模型参考自适应控制算法的基本原理模型参考自适应控制算法是一种基于模型的自适应控制方法,其基本思想是将被控制系统的模型和控制器的模型进行匹配,通过模型匹配的误差来适应地调整控制器的参数。
其主要流程包括:建立被控制系统的模型;建立控制器的模型;将被控制系统的模型和控制器的模型进行匹配,计算出模型匹配误差;根据模型匹配误差来自适应地调整控制器的参数。
模型参考自适应控制算法的具体实现方式可以分为直接调节法和间接调节法两种。
直接调节法是将模型参考自适应控制算法中的误差直接反馈到控制器的参数中,以达到自适应控制的目的。
间接调节法则是通过在模型参考自适应控制算法中引入额外的参数,间接地调节控制器的参数,以达到自适应控制的目的。
二、模型参考自适应控制算法的应用模型参考自适应控制算法在实际工程中有着广泛的应用。
例如,它可以用于磁浮列车的高精度控制系统中,通过模型参考自适应控制算法来适应不同运行条件下的参数,达到最优的控制效果。
另外,模型参考自适应控制算法还广泛应用于机器人控制、电力系统控制等领域,可以有效地提高控制系统的性能和稳定性。
三、模型参考自适应控制算法的优缺点模型参考自适应控制算法的主要优点是可以适应不同的被控制系统和环境条件,具有较高的适应性和鲁棒性。
另外,它具有控制精度高、响应速度快等优点。
不过,模型参考自适应控制算法也存在一些缺点,例如模型误差对控制系统的影响比较大,不易对模型参数进行优化等。
四、结论综上所述,模型参考自适应控制算法是一种重要的自适应控制方法,在实际工程中具有广泛的应用前景。
模型参考自适应控制与模型控制比较

模型参考自适应控制与模型控制比较模型参考自适应控制(Model Reference Adaptive Control, MRAC)和模型控制(Model-based Control)都是现代控制理论中常用的方法。
它们在实际工程应用中具有重要意义,本文将对这两种控制方法进行比较和分析。
一、模型参考自适应控制模型参考自适应控制是一种基于模型的自适应控制方法,主要用于模型未知或参数变化的系统。
该方法基于一个参考模型,通过在线更新控制器参数以追踪参考模型的输出,从而实现对系统的控制。
在模型参考自适应控制中,首先需要建立系统的数学模型,并根据实际系统的特性选择合适的参考模型。
然后通过设计自适应控制器,利用模型参数估计器对系统的不确定性进行补偿,实现对系统输出的精确追踪。
模型参考自适应控制的优点在于其适应性强,能够处理模型未知或参数变化的系统。
它具有很好的鲁棒性,能够适应系统的不确定性,同时可以实现对参考模型的精确追踪。
然而,模型参考自适应控制也存在一些缺点,如对系统模型的要求较高,需要较为准确的模型参数估计。
二、模型控制模型控制是一种基于数学模型的控制方法,通过对系统的建模和分析,设计出合适的控制器来实现对系统的控制。
模型控制方法主要有PID控制、状态反馈控制、最优控制等。
在模型控制中,首先需要建立系统的数学模型,并对模型进行分析和优化。
然后根据系统的特性,设计合适的控制器参数。
最后,将控制器与系统进行耦合,实现对系统的控制。
模型控制的优点在于其理论基础牢固,控制效果较好。
它能够根据系统的数学模型进行精确的设计和分析,具有较高的控制精度和鲁棒性。
然而,模型控制方法在实际应用中对系统模型的要求较高,而且对系统参数变化不敏感。
三、比较与分析模型参考自适应控制与模型控制都是基于模型的控制方法,它们在实际应用中具有各自的优缺点。
相比而言,模型参考自适应控制具有更强的适应性和鲁棒性,能够处理模型未知或参数变化的系统。
模型参考自适应控制

10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。
如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。
如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。
所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。
因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。
目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。
10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。
实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。
在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。
在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。
模型参考自适应控制与鲁棒自适应控制比较

模型参考自适应控制与鲁棒自适应控制比较自适应控制是一种常见的控制策略,旨在使系统能够自动调整控制参数以适应不确定性和变化的环境。
在自适应控制中,模型参考自适应控制(Model Reference Adaptive Control,简称MRAC)和鲁棒自适应控制(Robust Adaptive Control,简称RAC)是两种常用的方法。
本文将对这两种自适应控制方法进行比较分析。
一、模型参考自适应控制模型参考自适应控制是一种基于模型参考的自适应控制方法。
它通过引入一个模型参考器,将期望输出与实际输出进行比较,然后根据比较结果对控制参数进行在线调整。
模型参考自适应控制的主要思想是通过使用与被控对象相似的模型来进行控制,从而提高系统的鲁棒性和跟踪性能。
模型参考自适应控制的主要优点是能够实现对系统模型误差的自适应校正,具有较好的系统鲁棒性和跟踪精度。
该方法在理论上是可行的,并已经在一些实际控制系统中得到了应用。
然而,模型参考自适应控制也存在一些局限性,比如对模型的要求较高、对系统参数的连续性和可观测性要求较严格等。
二、鲁棒自适应控制鲁棒自适应控制是一种能够处理系统不确定性和外部干扰的自适应控制方法。
它通过设计鲁棒控制器来使系统具有鲁棒性,同时引入自适应机制对控制参数进行在线调整。
鲁棒自适应控制的关键在于设计合适的鲁棒控制器,使系统能够在存在不确定性和干扰的情况下保持稳定性和性能。
鲁棒自适应控制的主要优点是能够在存在不确定性和干扰的情况下保持系统的稳定性和性能。
相比于模型参考自适应控制,鲁棒自适应控制对系统模型的要求相对较低,具有更好的适用性和实用性。
然而,鲁棒自适应控制也存在一些挑战,比如对控制器设计的要求较高、控制参数调整的收敛性等。
三、比较分析模型参考自适应控制和鲁棒自适应控制作为两种常见的自适应控制方法,各有优势和劣势。
模型参考自适应控制在鲁棒性和跟踪性能方面具有一定的优势,适用于对系统模型较为精确的情况。
第八章模型参考自适应控制(ModelReferenceAdaptiveControl)简称MRAC

第⼋章模型参考⾃适应控制(ModelReferenceAdaptiveControl)简称MRAC第九章模型参考⾃适应控制(Model Reference AdaptiveControl )简称MRAC介绍另⼀类⽐较成功的⾃适应控制系统,已有较完整的设计理论和丰富的应⽤成果(驾驶仪、航天、电传动、核反应堆等等) 。
§ 9—1 MRAC的基本概念系统包含⼀个参考模型,模型动态表征了对系统动态性能的理想要求,MRAC⼒求使被控系统的动态响应与模型的响应相⼀致。
与STR不同之处是MRAC没有明显的辨识部分,⽽是通过与参考模型的⽐较,察觉被控对象特性的变化,具有跟踪迅速的突出优点。
设参考模型的⽅程为*X m~ A m X m Br式(9-1-1)y m = CX m 式(9-1-2)被控系统的⽅程为■X s A s B s r式(9-1-3)y s - CX s 式(9-1-4) 两者动态响应的⽐较结果称为⼴义误差,定义输出⼴义误差为e = y m -y s 式(9-1-5);状态⼴义误差为:=X m — s 式(9-1-6)。
⾃适应控制的⽬标是使得某个与⼴义误差有关的⾃适应控制性能指标J达到最⼩。
J可有不同的定义,例如单输出系统的J —;e2( )d式(9-1-7)或多输出系统的t TJ ⼆e T( )e( )d式(9-1-8) MRAC的设计⽅法⽬的是得出⾃适应控制率,即沟通⼴义误差与被控系统可调参数间关系的算式。
有两类设计⽅法:⼀类是“局部参数最优化设计⽅法”,⽬标是使得性能指标J达到最优化;另⼀类是使得⾃适应控制系统能够确保稳定⼯作,称之为“稳定性理论的设计⽅法。
§ 9 —2局部参数最优化的设计⽅法⼀、利⽤梯度法的局部参数最优化的设计⽅法这⾥要⽤到⾮线性规划最优化算法中的⼀种最简单的⽅法梯度法(Gradient Method )。
1. 梯度法考虑⼀元函数f(x),当:汀(x)/= 0,且f2 (x) / ;x2> 0时f(x)存在极⼩值。
基于Lyapunov稳定性理论的模型参考自适应控制

基于Lyapunov稳定性理论的模型参考⾃适应控制0 引⾔中,Lyapunov 稳定性理论就是设计⾃适应率的有效⼯具。
这种基于稳定性理论的设计保证了系统的稳定[3],所以受到更⼴泛的应⽤。
⾃适应控制的定义到⽬前为⽌尚未统⼀,争议也⽐较多。
综合起来⾃ 2 基于Lyapunov稳定性理论设计控制规律适应控制系统主要有三个特征[1]:1)在线进⾏系统结构和参数的辨识或系统性能指标的度量,以便得到系统当前状态的改变情况;2)按照⼀定Lyapunov 提出了运动稳定性的⼀般理论,即Lyapunov 第⼀法和的规律确定当前的控制策略;3)在线修改控制器的参数或可调系统的输Lyapunov 第⼆法。
前者通过求解系统微分⽅程,然后根据解的性质判断系⼊信号。
现在应⽤⽐较⼴泛的⾃适应控制系统主要有两类:模型参考⾃适统的稳定性;后者不需要求解系统⽅程,⽽是通过具有⼴义能量属性的应控制和⾃校正调节器控制。
本⽂围绕模型参考⾃适应控制进⾏研究,并Lyapunov 函数的标量函数直接判定系统的稳定性。
应⽤Lyapunov 稳定性理利⽤MATLAB 仿真分析其性能。
论设计的控制系统既能求出参数调节的⾃适应规律,⼜确保了系统的稳定1 模型参考⾃适应控制性[4]。
假设被控对象的状态变量可以直接得到。
控制对象的状态⽅程为模型参考⾃适应控制是⼀类重要的⾃适应控制,它的主要特点是实现容易,⾃适应速度快,并在航空、汽车、机器⼈、医疗器械等领域得到了⼴泛应⽤。
模型参考⾃适应控制通过迫使被控对象跟踪特性理想的参考模型,来获得要求的闭环系统性能。
模型参考⾃适应控制系统主要由4部分组成[2],即参考模型、被控对象、⾃适应机构(调整控制器参数)和反馈控制器,如图1所⽰。
图1 模式参考⾃适应控制系统从图1可以看出,这类控制系统包含两个环路:内环和外环。
内环是由调节器、被控过程和反馈控制器组成的普通反馈回路,⽽外环包括参考模型和⾃适应机构等,控制器参数由⾃适应机构调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组成。
参考模型实际上是一个理想的控制系统,其输出代表了该系统 期望的动态响应,当参考模型与实际控制对象输出有差异时,经 比较器检测后,通过自适应机构做出决策,改变调节器参数,以 消除误差,使过程输出和参考模型输出相一致。
参考 模型 自适应机构 控制 对象
ym + e
y
r(t )
调节器
图 1 模型参考自适应控制系统
这个自适应规律,可以设计如下图的MIT自适应控制系统。
r
kc
km
N (s) D( s)
ym
+
e
kv
N (s) D(s)
y
u
-
ym e
MIT自适应控制系统 优点: 利用的是输出偏差而不是状态偏差,信号易获 取,自适应律易实现 ; 缺点: 不能保证稳定性,需进行稳定性分析和校验。
三.基于Lyapunov稳定性理论的设计方法
由此可见,上式就表示可调增益J的自适应调节规律,那么只要 求出 ,增益调制规律就可以确定,而
则:
在实际系统中 容易获得的信息。 由结构图看出,断开适应回路,求由参考输入r到输出广义误差 e的开环传递函数W(s)为: 不易直接求得 ,因此需要寻找与其等效而又
引入微分算子 经推到得: 其中,
上式即为可调增益的调节规律,亦即系统的自适应规律,根据
参考模型与可调系统两者之间的一致性由自适应机构保 证,所以自适应机构的设计十分关键。性能一致性由状态 误差向量 或输出误差向量 度量。
被辨识过程 u 可调模型 e
自适应辨识机构
模型参考辨识
过程是不变的,模型是可调的,用广义误差 e经过自适应机构来校 正模型,使得模型动态与实际过程动态尽可能一致,这个模型就是所 要的辨识结果,这称之为模型参考辨识。 利用这种方法把模型参考自适应的设计和系统辨识有效结合。
为了解决模型参考自适应系统的稳定性问题,提出了采用
Lyapunov稳定性理论设计模型参考自适应系统的方法。
这种方法的关键是先构造一个适当的 Lyapunov 函数,然后 确定自适应律,以便保证 Lyapunov 函数的导数是负定或半负 定的。 这种方法不仅保证了设计出的系统的全局稳定性,还有自 适应速度快的优点。
二.局部参数优化设计
设计思想:
系统包含若干可调参数,当被控对象的特性由于外界环境条件的改变 或其他干扰的影响而发生变化时,自适应机构对这些可调参数进行调整,
以补偿外界环境或其他干扰对系统性能的影响,从而逐步使得模型和控
制对象之间的广义误差所构成的性能指标达到或接近最小值。 它的设计原理就是构造一个由广义误差和可调参数组成的目标函数,
因此,这样设计的自适应规律,对任意分段连续的输入向量函
数u能够保证模型参考自适应系统是全局渐近稳定的。
模型参考自适应控制系统
一.概述
二.局部参数优化设计 三.基于Lyapunov稳定性理论的设计方法
一.概述
模型参考自适应系统是比较常用的自适应系统。从工程实施的 观点出发,希望设计出的系统能在性能和复杂程度之间取得较好 的权衡。为了简化适应系统,希望所确定的自适应规律,无需直 接求解线性或非线性方程。因此,把模型参考自适应系统的设计 问题看做是系统的参数或状态偏离其平衡位置而进行自动调整的 问题。 模型参考自适应系统由参考模型,可调系统和自适应机构3部分
利用参数最优化方法使这个目标函数值达到最小或位于最小值的某个领
域内,从而满足可调系统和参考模型之间的一致性要求。 常用的使目标函数达到最小的参数最优化方法是:最速下降法(梯度
法)。
r
N (s) km D( s)
ym+eຫໍສະໝຸດ 适应机构-kc
N (s) kv D(s)
y
具有可调增益的自适应系统
系统中具有一个可调增益 Kc,理想模型的增益Km是常数。 当被控系统中 Kv 受环境条件的改变或其他干扰的影响而发 生漂移时,将使得被控系统的动态特性与模型的动态特性之 间产生偏差。 为了克服 Kv 的漂移所造成的影响,就由自适应机构来调 节可调增益 Kc ,使得 Kc 与 Kv 的乘积始终与模型的增益 Km
相一致。
设控制对象的传递函数为:
参考模型的传递函数为:
输出广义误差为:
所选的性能指标为:
设计的目标是寻求
调节规律,以使J最小,最终达到:
用梯度法来寻找
的适应律。为此,对J求关于
的偏导数:
根据梯度法,使J下降的方向是它的负梯度方向,于是新的可 调增益参数值应取为:
又 式中, 为可调增益的初始值,则
r e K F 自适应机构
用状态变量构成自适应控制规律 可调系统状态方程的矩阵的元素 和 是系统受干扰影响
的时变参数,这些参数本身往往不便于直接调节,因此,引入 可调的前馈增益矩阵 K(t)和反馈补偿矩阵 F(t),这样就可达到控 制目的。
参考模型的状态方程为:
可调系统的状态方程为:
引入可调的前馈增益矩阵K(t)和反馈补偿矩阵F(t)得:
系统的广义状态误差向量为:
设计任务是:
用稳定性理论寻求调整 K(t) 和 F(t) 的自适应律,以达到状态收 敛性
在设计系统的同时要考虑到系统的全局稳定性,因此构造
Lyapunov函数:
对上式两端求导得:
对任意 e≠0 ,上式的第一项是负定的,如果使其右边其余部
分的总和为零,就可使能量函数的导数为负定,据此求得参数 自适应的调节规律为: