用公式法解下列列方程
10道公式法解一元二次方程练习题及答案

10道公式法解一元二次方程练习题及答案公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。
公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。
3.公式法

(A)直接开平方法 (B)因式分解法
(C)配方法
(D)公式法
5.下列解方程中,解法正确的是( C )
(A)x2=4x,两边都除以2x,可得x=2
(B)(x-2)(x+5)=2×6,所以x-2=2,x+5=6,x1=4,x2=1 (C)(x-2)2=4,解得x-2=2,x-2=-2,所以x1=4,x2=0 (D)x(x-a+1)=a,得x=a
22
2
2
2
(3)y(y-3)=y(1-3y)-1.
解:(3)原方程可化为 4y2-4y+1=0, a=4,b=-4,c=1, b2-4ac=(-4)2-4×4×1=0,
所以 y= 4 0 ,所以 y1=y2= 1 .
24
方程(x+5)2-3(x+5)=0,较为简便的方法是( B)
解:(1)a=1,b=-3,c=-1. b2-4ac=(-3)2-4×1×(-1)=9+4=13.
所以 x= 3 13 .即 x1= 3+ 13 ,x2= 3 13 .
2
2
2
(2)原方程可化为 2x2+8x-1=0,
a=2,b=8,c=-1,
b2-4ac=82-4×2×(-1)=72,
所以 x= 8 72 = 4 3 2 .即 x1= 4 3 2 ,x2= 4 3 2 .
2
(3)配方法.
常数项右移,得 x2+4x=1,
两边同时加上 4,得 x2+4x+4=1+4,
即(x+2)2=5,得 x+2=± 5 .
所以 x1=-2+ 5 ,x2=-2- 5 .
(完整版)用公式法解一元二次方程

Х=
=
Х1=
Х2=0
(4)4x²+1=-4x 解:移项,得4x²+4x+1=0 a=4,b=4,c=1,b²-4ac=4²-4×4×1=0
X=
=-
X1=X2 =-
故对于方程ax²+bx+c=0 (a≠0)有下列关系: • 猜一猜:对于一般式ax²+bx+c=0 (a≠0)的
(1)当b根²与-4abc²->40a时c的,符方号程有有什两么个关不系相?等的根
用配方法解下列方程:
(1)x2+6x=1 x1 3 10, x2 3 10
(2)x2=6-5x
x1 6, x2 1
(3) -x2+4x-3=0
x1 3, x2 1
注意:解第(2)题时要先移项,变形成x2+5x=6 的形式;
如果方程的二次项系数为负,则先把二次 项系数化为正.
ቤተ መጻሕፍቲ ባይዱ
Q 4a2 0 当 b2 4ac 0 时
2
b
b 4ac
x 2a
4a 2
特别提醒
即
b
b2 4ac
x
2a
2a
b
b2 4ac
x
2a
一元二次方程 的求根公式
(a≠0, b2-4ac≥0)
例1.用公式法解方程
(1)3x2+5x-1=0 (2)x2+2x+2=0
x b
b因x21为4aacxb²+b2xba+2c=40a(c a≠0)的求根公x2 式 是b
b2 4ac 2a
2a (根2)当x1b=²-x42ac==0时2ba ,方程有两个相等的
专题:一元二次方程的八种解法(后附答案)【精品】

专题:一元二次方程的八种解法方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤:(1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式;(2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式;(3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解.1.用直接开平方法解下列方程:(1)x2-25=0; (2)4x2=1;(3)81x2-25=0; (4)(2y-3)2-64=0;(5)3(x+1)2=13; (6)(3x+2)2=25;(7)(x+1)2-4=0; (8)(2-x)2-9=0.方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法”(1)移项:使方程的左边为二次项和一次项,右边为常数项.(2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1.(3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式.(4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解.(5)求解:解所得到的一元一次方程,求出原方程的解.2.用配方法解下列方程:(1)x2-2x-2=0; (2)x2-10x+29=0;(3)x2+2x=2; (4)x2-6x+1=2x-15;3.用配方法解下列方程:(1)3x 2+6x -5=0; (2)12x 2-6x -7=0.(3)x 2+16x -13=0; (4)2x 2-3x -6=0;方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解用因式分解法解一元二次方程的“四步法”(“右化零,左分解,两因式,各求解”)4.用因式分解法解下列方程:(1)x 2-8x =0; (2)5x 2+20x +20=0;。
专题2-4 用公式法求解一元二次方程-重难点题型(举一反三)(北师大版)(原卷版)

专题2.4 用公式法求解一元二次方程-重难点题型【北师大版】【题型1 用公式法解一元二次方程】【例1】(2021春•淮北月考)用公式法解方程:x 2﹣5x ﹣1=0. 【变式1-1】(2020秋•朝阳区期中)用公式法解方程:3x 2﹣x ﹣1=0. 【变式1-2】(2020春•江干区期末)解下列一元二次方程:34x 2−2x −12=0(公式法).【变式1-3】(2020秋•达川区期末)解方程:3x 2﹣4√3x +2=0(用公式法解).【题型2 求根公式的应用】【例2】(2020秋•和平区期中)若一元二次方程x 2+bx +4=0的两个实数根中较小的一个根是m (m ≠0),则b +√b 2−16=( ) A .mB .﹣mC .2mD .﹣2m【变式2-1】(2020•福州模拟)关于x 的一元二次方程ax 2+bx +c =0的两根分别为x 1=−b+√b 2+42,x 2=−b−√b 2+42,下列判断一定正确的是( ) A .a =﹣1 B .c =1 C .ac =﹣1 D .ca=−1【变式2-2】(2020秋•宜兴市校级月考)已知a 是一元二次方程x 2﹣4x +2=0的两个实数根中较小的根, (1)求a 2﹣4a +2013的值; (2)化简求值:√a 2−2a+1a−1−1−2a+a 2a−1.【变式2-3】先阅读下列材料,然后回答问题:在一元二次方程ax 2+bx +c =0(a ≠0)中,若各项的系数之和为零,即a +b +c =0,则有一根为1,另一根为ca .证明:设方程的两根为x 1,x 2,由a +b +c =0, 知b =﹣(a +c ),∵x =−b±√b 2−4ac 2a =(a+c)±√(a+c)2−4ac 2a =(a+c)±(a−c)2a∴x 1=1,x 2=ca .(1)若一元二次方程ax 2+bx +c =0(a ≠0)的各项系数满足a ﹣b +c =0,则两根的情况怎样,试说明你的结论;(2)已知方程(ac ﹣bc )x 2+(bc ﹣ab )x +(ab ﹣ac )=0(abc ≠0)有两个相等的实数根,运用上述结论证明:2b =1a+1c.【题型3 应用根的判别式判断方程根的情况】【例3】(2021•河南模拟)下列关于x 的方程有两个不相等的实数根的是( )A.x2﹣2x+2=0B.x(x﹣2)=﹣1C.(x﹣k)(x+k)=2x+1D.x2+1=0【变式3-1】(2021•滨城区一模)关于x的一元二次方程x2+(﹣k+2)x﹣4+k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【变式3-2】(2021•凉山州)函数y=kx+b的图象如图所示,则关于x的一元二次方程x2+bx+k﹣1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【变式3-3】(2021春•鹿城区校级期中)已知a,b,c分别是△ABC的边长,则一元二次方程(a+b)x2+2cx+a+b =0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【题型4 已知方程根的情况求字母系数的值或范围】【例4】(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k>14且k≠1B.k≥14且k≠1C.k>14D.k≥14【变式4-1】(2021•广安)关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,则a的取值范围是()A.a≤14且a≠﹣2B.a≤14C.a<14且a≠﹣2D.a<14【变式4-2】(2021春•台江区校级月考)若关于x 的方程x 2−√m x +n =0有两个相等的实根,则m n= .【变式4-3】(2021•海门市模拟)关于x 的方程x 2+bx +c =0有两个相等的实数根,x 取m 和m +2时,代数式x 2+bx +c 的值都等于n ,则n = .【题型5 根的判别式的综合应用】【例5】(2021•海淀区二模)关于x 的一元二次方程x 2﹣mx +2m ﹣4=0. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求m 的取值范围.【变式5-1】(2021春•萧山区期中)已知:关于x 的方程kx 2﹣(4k ﹣3)x +3k ﹣3=0 (1)求证:无论k 取何值,方程都有实根; (2)若x =﹣1是该方程的一个根,求k 的值;(3)若方程的两个实根均为正整数,求k 的值(k 为整数).【变式5-2】(2021•广东模拟)已知关于x 的一元二次方程x 2﹣(k +2)x +2k =0. (1)若x =1是这个方程的一个根,求k 的值和它的另一根; (2)求证:无论k 取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长. 【变式5-3】(2020秋•安居区期末)已知关于x 的方程x 2﹣(m +3)x +4m ﹣4=0的两个实数根. (1)求证:无论m 取何值,这个方程总有实数根.(2)若等腰三角形ABC 的一边长a =5,另两边b ,c 的长度恰好是这个方程的两个根,求△ABC 的周长.【题型6 根的判别式中新定义问题】【例6】(2021•郑州模拟)定义新运算“a *b ”:对于任意实数a ,b ,都有a *b =a 2+b 2﹣2ab ﹣2,其中等式右边是通常的加法、减法、乘法运算,例如:5*6=52+62﹣2×5×6﹣2=﹣1.若方程x *k =xk (k 为实数)是关于x的方程,则方程的根的情况为()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【变式6-1】(2020春•瑶海区期末)对于实数a、b,定义运算“★”:a★b={a2−b(a≤b)b2−a(a>b),关于x的方程(2x+1)★(2x﹣3)=t恰好有两个不相等的实数根,则t的取值范围是()A.t<154B.t>154C.t<−174D.t>−174【变式6-2】(2021春•瑶海区期中)对于实数m、n,定义一种运算:m△n=mn+n.(1)求﹣2△√32得值;(2)如果关于x的方程x△(a△x)=−14有两个相等的实数根,求实数a的值.【变式6-3】(2020春•丽水期中)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是全等的Rt△ABC和Rt△BED的边长,易知AE=√2c,这时我们把关于x的形如ax2+√2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)求证:关于x的“勾系一元二次方程”ax2+√2cx+b=0必有实数根;(2)若x=﹣1是“勾系一元二次方程”ax2+√2cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC的面积.。
21.2.2用公式法解一元二次方程

用配方法解一元二次方程的步骤 化:把原方程化成 x2 +px+q = 0 的形式。 移项:把常数项移到方程的右边,如x2+px =-q。 配方:方程两边都加上一次项系数一半的平方。 p 2 p 2 2 方程右边 x +px+ ( ) = - q+ ( ) 2 2 是非负数 开方:根据平方根的意义,方程两边开平方。 p 2 p 2 ( x+ ) =- q + ( ) 2 2 求解:解一元一次方程。 定解:写出原方程的解。
一般地,对于一元二次方程
0时, 它的根是 :
ax2+bx+c=0(a≠0)
b b 2 4ac 2 x . b 4ac 0 . 2a
当 b 2 4 ac 0 时,方程有 实数根吗
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
练习2
一、填空题
1、关于x的方程x2+2kx+k-1=0的根的情况是 _______________ 有两个不相等的实数根 2 有两个相等的实数根,则∆ABC为 关于的一元二次方程(a+c)x2+bx+
ac 直角 4
=0 三角形
二、求证:不论a为任何实数,2x2+3(a-1)+a2-4a-7=0 必有两个不相等的实数根.
a 1, b 8, c 17
这里的a、b、 c的值分别是 什么?
△ b2 4ac (8)2 4 117 4<0
∴方程无实数根。
结论:当 △ b 2 4ac<0 时,一元二次方程没有 实数根.
用公式法解一元二次方程的一般步骤
1. 将方程化成一般形式,并写出a,b,c 的值。 2. 求出 ∆ 的值。 b b 2 4ac 3. (a)当 ∆ >0 时,代入求根公式 : x 2a 写出一元二次方程的根: x1 = ______ ,x2 = ______ 。 b x x (b)当∆=0时,代入求根公式: 1 2 2a 写出一元二次方程的根: x1 = x2 = ______ 。 (b)当∆<0时,方程无实数根。
10道公式法解一元二次方程练习题

10道公式法解一元二次方程练习题公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。
公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。
初三数学用公式法解一元二次方程2[北师版]
![初三数学用公式法解一元二次方程2[北师版]](https://img.taocdn.com/s3/m/70314b9be53a580216fcfe42.png)
即:x1=9, x2= -2
x
b
b 4α c 2α
2
例 2 解方程:
x 3 2
2
3x
解:化简为一般式:x 2 2
3x 3 0
这里 a=1, b= 2 3 , c= 3. ∵b2 - 4ac=( 2 3 )2 - 4×1×3=0,
∵b2 - 4ac=(-7)2 - 4×3×8=49 - 96= - 47< 0,
∴x没有实数解。
x
b
b 4α c 2α
2
随堂练习 (1)2x2-9x+8=0;
1.用公式法解下列方程:
(2)9x2+6x+1=0;
(3)16x2+8x=3.
x
b
b 4α c 2α
2
随堂练习
x
b
b 4α c 2α
2
上面这个式子称为一元二次方程的求根公式。 用求根公式解一元二次方程的方法称为公式法
x
b
b 4α c 2α
2
例 1 解方程:x2-7x-18=0
解:这里 a=1, b= -7, c= -18.
∵b2 - 4ac=(-7)2 - 4×1×(-18)=121﹥0,
x 2 3 0 2 2 3 3,
21 即:x1= x2= 3
x
b
b 4α c 2α
2
例 3 解方程:(x-2)(1-3x)=6 解:去括号:x-2-3x2+6x=6 化简为一般式:-3x2+7x-8=0 3x2-7x+8=0 这里 a=3, b= -7, c= 8.