初中数学反比例函数随堂练习58

合集下载

第二十六章+反比例函数+同步练习+2024-2025学年人教版数学九年级下册

第二十六章+反比例函数+同步练习+2024-2025学年人教版数学九年级下册

第二十六章反比例函数同步练习一、选择题1.下列函数中,当x>0时,y随x增大而增大的是()A.y=−1xB.y=−x+1C.y=x2−2x D.y=−12.若点A(1,y1),B(−2,y2),C(−3,y3)都在反比例函数y=6x的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y1<y3<y23.在同一平面直角坐标系中,函数y=x−k与y=kx(k为常数,且k≠0)的图象大致( ) A.B.C.D.4.如图,在平面直角坐标系中,P是反比例函数y=kx的图像上一点,过点P作PQ⊥x轴于点Q,若△OPQ的面积为2,则k的值是( )A.-2 B.2 C.-4 D.45.如图,点A在反比例函数y=3x (x>0)的图象上,点B在反比例函数y=kx(x>0)的图象上,AB⊥x轴于点M,且AM:MB=2:3,则k的值为()A.4.5 B.−4.5C.7 D.−76.如图,抛物线y=-13(x-t)(x-t+6)与直线y=x-1有两个交点,这两个交点的纵坐标为m、n.双曲线y=mnx的两个分支分别位于第二、四象限,则t的取值范围是()A.t<0 B.0<t<6 C.1<t<7 D.t<1或t>67.如图,点A在函数y=2x (x>0)的图象上,点B在函数y=3x(x>0)的图象上,且AB∥x轴,BC⊥x轴于点C,则四边形ABCO的面积为()A.1 B.2 C.3 D.58.伟大的古希腊哲学家、数学家、物理学家阿基米德有句名言:“给我一个支点,我可以撬动地球!”这句名言道出了“杠杆原理”的意义和价值,“杠杆原理”在实际生产和生活中,有着广泛的运用,比如:小明用撬棍撬动一块大石头,运用的就是“杠杆原理”,已知阻力F1(N)和阻力臂L1(m)的函数图象如图所示,若小明想使动力F2不超过120N,则动力臂L2(单位:m)需满足()A.L2<5B.L2>5C.L2≥5D.0<L2≤5二、填空题的图象经过点(−2,3),则函数的解析式为.9.反比例函数y=kx10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y (x<0)的图象经过菱形OABC中心E点,则k的值为.=kx的图象交于点A(−4,4),11.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=mxB(n,−2).则△AOB的面积是(k≠0)的图象相交于12.如图,已知抛物线y=ax2+bx−1(a、b均不为0)与双曲线y=kx+1的解是.A(−2,m),B(−1,n),C(1,2)三点.则不等式ax2+bx<kx13.当温度不变时,某气球内的气压P(kPa)与气体体积V(m3)成反比例函数关系(其图象如图所示),已知当气球内的气压P>120kPa时,气球将爆炸,为了安全起见,气球内气体体积V应满足的条件是m3.三、解答题14.如图,一次函数y=12x−m的图象与反比例函数y=kx(k≠0)的图象交于A(a,1),B(−2,b)两点,与x轴相交于点C(2,0).(1)求反比例函数的表达式;(2)观察图象,直接写出不等式12x−m<kx的解集.15.如图,一次函数y=ax+1(a≠0)的图象与x轴交于点A,与反比例函数y=kx的图象在第一象限交于点B(1,3),过点B作BC⊥x轴于点C.(1)求一次函数和反比例函数的解析式.(2)求△ABC的面积.16.如图,直线AB:y=kx+b分别交坐标轴交于A(−1,0)、B(0,1)两点,与反比例函数y=mx(x>0)的图象交于点C(2,n).(1)求反比例函数的解析式;<0的解集;(2)在如图所示的条件下,直接写出关于x的不等式kx+b−mx(x>0)交于点P,使得S△PAC=6S△ABO.求点P的横坐标.(3)将直线AB沿y轴平移与反比例函数y=mx17.某气球内充满了一定质量的气体,当温度不变时,气球内的气压P(单位:kPa)是气体体积V(单位:m3)的反比例函数,其图象如图所示.(1)求这个反比例函数的解析式.(2)求当气球的体积是0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于160kPa时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.18.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?。

《反比例函数》全章复习与巩固(巩固篇)九年级数学下册基础知识专项讲练(人教版)

《反比例函数》全章复习与巩固(巩固篇)九年级数学下册基础知识专项讲练(人教版)

专题26.27《反比例函数》全章复习与巩固(巩固篇)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.在反比例函数6y x=的图象上的点是()A .()2,3B .()4,2C .()6,1-D .()2,3-2.已知点A (﹣2,m ),B (2,m ),C (4,m +12)在同一个函数的图象上,这个函数可能是()A .y =xB .y =﹣2xC .y =x 2D .y =﹣x 23.若两个点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,且12x x <,则k 的值可以是()A .1B .2C .3D .44.已知抛物线221y x x m =--++与x 轴没有交点,则函数my x=和函数y mx m =-的大致图像是()A .B .C .D .5.已知点A (﹣2,y 1),B (﹣1,y 2),C (3,y 3)都在反比例函数y =3x的图象上,则y 1,y 2,y 3的大小关系正确的是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.如图,在平面直角坐标系中,菱形ABCD 的边BC 与x 轴平行,A 和B 两点的纵坐标分别为4和2,函数(0,0)k y k x x=>>的图象经过A 、B 两点.若菱形ABCD 的面积为则k 的值为()A .4B .8C .16D .7.如图,点A 是反比例函数y 1=1x(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为1,则k 的值是()A .3B .4C .5D .68.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <29.对于反比例函数2y x=-,下列说法不正确的是()A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <10.如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)ky x x=<的图象上,则k 的值为()A .12-B .42-C .42D .21-二、填空题(本大题共8小题,每小题4分,共32分)11.已知直线y =kx 与双曲线y =6k x+的一个交点的横坐标是2,则另一个交点坐标是_____.12.已知点A (1,2)在反比例函数ky x=的图象上,则当1x >时,y 的取值范围是______.13.已知点A (381a a --,)在第二象限,且a 为整数,反比例函数ky x=经过该点,则k 的值为_________.14.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____.15.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(4,)P m ,且在每一个象限内,y 随x 的增大而增大,则点P 在第______象限.16.如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.17.如图,平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为6,4,反比例函数y =kx(x >0)的图象经过A ,B 两点,若菱形ABCD的面积为k 的值为_____.18.如图,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x(cm),观察弹簧秤的示数y(N)的变化情况,实验数据记录如下:则y 与x 之间的函数关系为______.三、解答题(本大题共6小题,共58分)19.(8分)如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A ,反比例函数ky x=的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数k y x =的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.20.(8分)如图,正比例函数y kx =的图像与反比例函数()80y x x=>的图像交于点(),4A a .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D .(1)求a 的值及正比例函数y kx =的表达式;(2)若10BD =,求ACD △的面积.21.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x (h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.23.(10分)在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(12分)背景:点A在反比例函数kyx=(0k>)的图象上,AB x⊥轴于点B,AC y⊥轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形,如图1,点A在第一象限内,当4AC =时,小李测得3CD =.探究:通过改变点A 的位置,小李发现点D ,A 的横坐标之间存在函数关系,请帮助小李解决下列问题.(1)求k 的值;(2)设点A ,D 的横坐标分别为x ,z ,将z 关于x 的函数称为“Z 函数”.如图2,小李画出了0x >时“Z 函数”的图象.①求这个“Z 函数”的表达式.②过点(3,2)作一直线,与这个“Z 函数”图象仅有一个交点,求该交点的横坐标.参考答案1.A【分析】分别计算出各选项纵横坐标的乘积,判断是否等于6即可得解.解:A.23=6⨯,点(2,3)在反比例函数6y x=的图象上,故此选项符合题意;B.42=86⨯≠,点(4,2)不在反比例函数6y x=的图象上,故此选项不符合题意;C.61=66-⨯-≠,点(-6,1)不在反比例函数6y x=的图象上,故此选项不符合题意;D.23=66-⨯-≠,点(-2,3)不在反比例函数6y x=的图象上,故此选项不符合题意;故选:A【点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.C【分析】根据正比例函数和反比例函数还有二次函数的图象的对称性进行分析即可.解:∵A (﹣2,m ),B (2,m ),∴点A 与点B 关于y 轴对称;由于y =x ,y =2x的图象关于原点对称,因此选项A 、B 错误;∵m +12>m ,y =a x 2的图象关于y 轴对称由B (2,m ),C (4,m +12)可知,在对称轴的右侧,y 随x 的增大而增大,对于二次函数只有a >0时,在对称轴的右侧,y 随x 的增大而增大,∴C 选项正确,故选:C .【点拨】考核知识点:正比例函数和反比例函数还有二次函数的图象.理解正比例函数和反比例函数还有二次函数的图象的对称性是关键.3.A【分析】根据点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,推出121k x -=,223k x --=,得到12x k =-,223k x -=,根据12x x <,得到223k k --<,求得k <2,推出k 的值可能是1,解:∵点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,∴121k x -=,223k x --=,∴12x k =-,223k x -=,∵12x x<,∴223kk--<∴k<2,∴k的值可能是1,故选:A【点拨】本题主要考查了反比例函数,解题的关键是熟练掌握待定系数法求函数解析式,解不等式,反比例函数的图象和性质.4.C【分析】由已知可以得到m的取值范围,再根据反比例函数和一次函数的图象与性质即可得到解答.解:∵抛物线y=−x2−2x+m+1与x轴没有交点,∴方程−x2−2x+m+1=0没有实数根,∴Δ=4+4×1×(m+1)=4m+8<0,∴m<−2,∴−m>2,故函数y=mx的图象在第二、四象限,函数y=mx−m.故选:C.【点拨】本题考查函数的综合应用,熟练掌握二次函数与一元二次方程的关系、反比例函数与一次函数的图象与性质是解题关键.5.D【分析】把点A(-2,y1),B(-1,y2),C(3,y3)代入反比例函数的关系式求出y1,y2,y3,比较得出答案.解:把点A(﹣2,y1),B(﹣1,y2),C(3,y3)代入反比例函数3yx=的关系式得,y1=﹣1.5,y2=﹣3,y3=1,∴y2<y1<y3,故选:D.【点拨】本题考查反比例函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.6.D【分析】过点A 作AM x ⊥轴于点,M 交BC 于点,E 过点B 作BN x ⊥轴于点,N 求出2AE =,再由菱形的性质求出AD =,可得点A 的坐标,从而可得结论.解:过点A 作AM x ⊥轴于点M ,交BC 于点,E 过点B 作BN x ⊥轴于点N ,如图,∵BC //x 轴,∴,AE BC ⊥∴∠90,BEM EMN MNB ︒=∠=∠=∴四边形BEMN 是矩形,∴ME BN=∵,A B 点的纵坐标分别为4和2,∴4,2,AM BN ==∴2,ME =∴422,AE AM EM =-=-=∵四边形ABCD 是菱形,∴AD AE⊥∴2ABCD S AD AE AD =⋅==菱形,∴AD =,∵D 点在y 轴上,∴4)A∴4k ==故选:D【点拨】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.7.A【分析】延长BA ,与y 轴交于点C ,由AB 与x 轴平行,得到BC 垂直于y 轴,利用反比例函数k 的几何意义表示出三角形AOC 与三角形BOC 面积,由三角形BOC 面积减去三角形AOC 面积表示出三角形AOB 面积,将已知三角形AOB 面积代入求出k 的值即可.解:延长BA ,与y 轴交于点C ,∵AB //x 轴,∴BC ⊥y 轴,∵A 是反比例函数y 1=1x (x >0)图象上一点,B 为反比例函数y 2=k x(x >0)的图象上的点,∴S △AOC =12,S △BOC =2k ,∵S △AOB =1,即2211k -=,解得:k =3,故选:A .【点拨】本题考查了反比例函数k 的几何意义,熟练掌握反比例函数k 的几何意义是解本题的关键.8.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=c x 图象上方的部分对应的自变量的取值范围即为所求.解:∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.9.D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.解:A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确;D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点拨】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.10.D【分析】过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可;解:∵当x=0时,04=4y=+,∴A(0,4),∴OA=4;∵当y=0时,4043x=+,∴x=-3,∴B(-3,0),∴OB=3;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,CBE BAO BEC AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△BEC ,∴BE=AO=4,CE=OB=3,∴OE=3+4=7,∴C 点坐标为(-7,3),∵点A 在反比例函数(0)k y x x=<的图象上,∴k=-7×3=-21.故选D .【点拨】本题考查了一次函数与坐标轴的交点、待定系数法求函数解析式、正方形的性质,以及全等三角形的判定与性质,解答此题的关键是正确作出辅助线及数形结合思想的运用.11.(-2,-4)【分析】根据交点的横坐标是2,得到622k k +=,求得k 值,确定一个交点坐标为(2,4),根据图像的中心对称性质,确定另一个交点坐标即可.解:∵交点的横坐标是2,∴622k k +=,解得k =2,故函数的解析式为y =2x ,y =8x ,当x =2时,y =4,∴交点坐标为(2,4),根据图像的中心对称性质,∴另一个交点坐标为(-2,-4),故答案为:(-2,-4).【点拨】本题考查了反比例函数与正比例函数的交点问题,函数图像的中心对称问题,熟练掌握交点的意义,灵活运用图像的中心对称性质是解题的关键.12.0<y <2【分析】根据图象结合反比例函数k y x =的图象性质,分析其增减以及其过点的坐标解答即可.解:点A (1,2)在反比例函数k y x =的图象上,∴反比例函数k y x=的图象在第一象限,k =2∴y 随x 的增大而减小;∴当x >1时,y 的取值范围时0<y <2;故答案为:0<y <2.【点拨】本题考查的是反比例函数图象上点的坐标特点,掌握数形结合的思想以及反比例函数的图象成为解答本题的关键.13.-2【分析】根据第二象限的符号特征,且a 为整数,求出a =2,得A (-2,1),将A (-2,1)代入k y x=,得k 的值.解:∵点A (3a −8,a −1)在第二象限,且a 为整数,∴38010a a -<->ìïíïî,解得1<a <83,∴a =2,∵3×2-8=-2,2-1=1,∴A (-2,1),∵反比例函数k y x=经过点A ,∴将A (-2,1)代入k y x =,得21k -=,∴k =-2,故答案为:-2.【点拨】本题考查了第二象限的符号特征和反比例函数,解题的关键是掌握第二象限的符号特征.14.-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x =≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.解: 点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限,∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点,∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,326m ∴⨯=-,1m ∴=-,故答案为:1-.【点拨】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.15.四【分析】直接利用反比例函数的性质确定m 的取值范围,进而分析得出答案.解:∵反比例函数k y x=(k ≠0)图象在每个象限内y 随着x 的增大而增大,∴k <0,又反比例函数k y x =的图象经过点(4,)P m ,∴40m k =<∴0m <∴(4,)P m 在第四象限.故答案为:四.【点拨】此题主要考查了反比例函数的性质,正确记忆点的坐标的分布是解题关键.16.32-【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB 是等腰直角三角形,再根据BC =A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k .解:∵ABC 是等腰直角三角形,BC x ⊥轴.∴90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB =.∴AOB 是等腰直角三角形.∴BO AO =.故:A ,(C .(D .将D 点坐标代入反比例函数解析式.3222D D k x y =⋅=-⨯-.故答案为:32-.【点拨】本题考查平面几何与坐标系综合,反比例函数解析式;本体解题关键是得到AOB 是等腰直角三角形,用中点公式算出D 点坐标.17.12【分析】过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为6,4,可得出横坐标,即可表示AE ,BE 的长,根据菱形的面积为AE 的长,在Rt △AEB 中,计算BE 的长,列方程即可得出k 的值.解:过点A 作x 轴的垂线,交CB 的延长线于点E ,∵BC ∥x 轴,∴AE ⊥BC ,∵A ,B 两点在反比例函数y =k x (x >0)的图象,且纵坐标分别为6,4,∴A (6k ,6),B (4k ,4),∴AE =2,BE =4k ﹣6k =k 12,∵菱形ABCD 的面积为∴BC×AE =BC∴AB =BC在Rt △AEB 中,BE 1,∴112k=1,∴k=12,故答案为:12.【点拨】本题考查了反比例函数和几何综合,菱形的性质,勾股定理,掌握数形结合的思想是解题关键.18.300yx=【分析】通过表格我们可以得到表格中每组数据相乘为一个定值300,故我们可以猜想y与x之间是成反比例函数的关系,根据表格中的数据求出反比例函数的解析式,再将其余的点带入验证即可.解:由表格猜想y与x之间的函数关系为反比例函数解:设反比例函数解析式为k yx =把x=10,y=30代入得:k=300∴300 yx =将其余点带入均符合要求∴y与x之间的函数关系式为:300 yx =故答案为:300 yx =【点拨】本题主要考查的是反比例函数的性质以及解析式的求法,正确的掌握反比例函数的性质是解题的关键.19.(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.【分析】(1)联立两一次函数解出A点坐标,再代入反比例函数即可求解;(2)联立一次函数与反比例函数求出B点坐标,再根据反比例函数的性质求解三角形的面积.解:(1)由题意:联立直线方程1522y xy x⎧=+⎪⎨⎪=-⎩,可得24xy=-⎧⎨=⎩,故A点坐标为(-2,4)将A(-2,4)代入反比例函数表达式kyx=,有42k=-,∴8k=-故反比例函数的表达式为8 yx =-(2)联立直线152y x =+与反比例函数8y x=-,1528x y x y ⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x =-=-,当8x =-时,1y =,故B (-8,1)如图,过A ,B 两点分别作x 轴的垂线,交x 轴于M 、N 两点,由模型可知S 梯形AMNB =S △AOB ,∴S 梯形AMNB =S △AOB =12121()()2y y x x +-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯=【点拨】此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.20.(1)a=2;y=2x ;(2)635【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.解:(1)已知反比例函数解析式为y=8x,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x .故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b)、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,()18105225S ⎛⎫=⨯-⨯- ⎪⎝⎭△ACD =635.故△ACD 的面积为635.【点拨】(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.21.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【分析】(1(2)观察图象可得;(3)代入临界值y =10即可.(1)解:设线段AB 解析式为y =k 1x +b (k ≠0)∵线段AB 过点(0,10),(2,14),代入得110214b k b ⎧⎨+⎩==,解得1210k b ⎧⎨⎩==,∴AB 解析式为:y =2x +10(0≤x <5).∵B 在线段AB 上当x =5时,y =20,∴B 坐标为(5,20),∴线段BC 的解析式为:y =20(5≤x <10),设双曲线CD 解析式为:y =2k x (k 2≠0),∵C (10,20),∴k 2=200.∴双曲线CD 解析式为:y =200x(10≤x ≤24),∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)解:由(1)恒温系统设定恒温为20°C ;(3)解:把y =10代入y =200x 中,解得x =20,∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点拨】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.22.(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)分析:(1)求得A (1,3),把A (1,3)代入双曲线y=k x ,可得y 与x 之间的函数关系式;(2)依据A (1,3),可得当x >0时,不等式34x+b >k x的解集为x >1;(3)分两种情况进行讨论,AP 把△ABC 的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P 的坐标.解:(1)把A (1,m )代入y 1=﹣x+4,可得m=﹣1+4=3,∴A (1,3),把A (1,3)代入双曲线y=k x,可得k=1×3=3,∴y 与x 之间的函数关系式为:y=3x ;(2)∵A (1,3),∴当x >0时,不等式34x+b >k x的解集为:x >1;(3)y 1=﹣x+4,令y=0,则x=4,∴点B 的坐标为(4,0),把A (1,3)代入y 2=34x+b ,可得3=34+b ,∴b=94,∴y 2=34x+94,令y 2=0,则x=﹣3,即C (﹣3,0),∴BC=7,∵AP 把△ABC 的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P (﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23.(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤.分析:(1)根据点A (4,1)在k y x=(0x >)的图象上,即可求出k 的值;(2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可.(1)解:∵点A (4,1)在k y x=(0x >)的图象上.∴14k =,∴4k =.(2)①3个.(1,0),(2,0),(3,0).②a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.24.(1)4(2)①4z x x=-;②2,3,4,6【分析】(1)利用待定系数法求解即可;(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,继而解得点D 的横坐标为4z x x =-,根据题意解题即可;②分两种种情况讨论,当过点3,2()的直线与x 轴垂直时,或当过点3,2()的直线与x 轴不垂直时,结合一元二次方程求解即可.解:(1)由题意得,1AB AD ==,∴点A 的坐标是(4,1),所以414k =⨯=;故答案为:4(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,所以点D 的横坐标为4z x x =-,所以这个“Z 函数”表达式为4z x x=-;②第一种情况,当过点3,2()的直线与x 轴垂直时,3x =;第二种情况,当过点3,2()的直线与x 轴不垂直时,设该直线的函数表达式为'(0)z mx b m =+≠,23m b ∴=+,即32b m =-+,'32z mx m ∴=-+,由题意得,432x mx m x-=-+22432x mx mx x ∴-=-+,2(1)(23)40m x m x ∴-+-+=(a )当1m =时,40x -+=,解得4x =;(b )当1m ≠时,2224(23)4(1)4928200b ac m m m m -=---⨯=-+=,解得12102,9m m ==,当12m =时,()2244020x x x -+=-=,.解得122x x ==;当2109m =时,()2221440,12360,6093x x x x x -+=-+=-=,解126x x ==所以x 的值为2,3,4,6.【点拨】本题考查反比例函数的图象与性质、求一次函数的解析式、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.。

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。

人教版八年级数学下册反比例函数复习与典型例题

人教版八年级数学下册反比例函数复习与典型例题
3.如果矩形的面积为6cm2,那么它的长 cm与宽 cm之间的函数图象大致为()
4.某气球内充满了一定质量的气体,当温度不变时,
气球内气体的气压P ( kPa )是气体体积V ( m3)
的反比例函数,其图象如图所示.当气球内气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应()
A、不小于 m3B、小于 m3C、不小于 m3D、小于 m3
(5)如图,正比例函数y=kx(k>0)和反比例函数 的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.
第(5)题图第(6)题图
(6)如图在Rt△ABO中,顶点A是双曲线 与直线 在第四象限的交点,AB⊥x轴于B且S△ABO= .
①求这两个函数的解析式;
(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则( , )在双曲线的另一支上.图象关于直线 对称,即若(a,b)在双曲线的一支上,则( , )和( , )在双曲线的另一支上.
4.k的几何意义
如图1,设点P(a,b)是双曲线 上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是 (三角形PAO和三角形PBO的面积都是 ).
(1)图象的形状:双曲线.
越大,图象的弯曲度越小,曲线越平直.
越小,图象的弯曲度越大.
(2)图象的位置和性质:
与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.
当 时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;
当 时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.
①求B点坐标和k的值;
②当 时,求点P的坐标;
③写出S关于m的函数关系式.

自学初中数学资料-反比例函数

自学初中数学资料-反比例函数

自学资料年份题量分值考点题型201514反比例函数与几何综合填空201613反比例函数图象选择2017110反比例函数的简单应用解答2018210反比例函数的基本运算及反比例函数图象解答2019110反比例函数的应用解答一、正比例函数、反比例函数、一次函数、二次函数的概念【知识探索】1.解析式形如(为常数,)的函数叫做反比例函数.其中也叫做比例系数.反比例函数的定义域是不等于零的一切实数.【错题精练】例1.已知函数y=(m+2)x m2−10是反比例函数,且图象在第二、四象限内,则m的值是()A. 3B. -3C. ±3D. -13例2.下列问题中,两个变量成反比例的是()A. 商一定时(不为零),被除数与除数B. 等边三角形的面积与它的边长C. 长方形的长a不变时,长方形的周长C与它的宽bD. 货物的总价A一定时,货物的单价a与货物的数量x第1页共14页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第3页 共14页自学七招之智慧树神拳:知识内容体系化,思维导图来助力 非学科培训二、用待定系数法求正比例、反比例、一次、二次函数的解析式【知识探索】1.以求正比例函数的解析式为例:先设解析式为(),其中系数待定;再利用已知条件确定的值,这样的方法称为“待定系数法”.【错题精练】例1.已知变量y 与x 成反比例,且当x=2时,y=-6.求: (1)y 与x 之间的函数表达式; (2)当y=2时,x 的值.例2.如图,点A ,B 在反比例函数y=mx 的图象上,点A 的坐标为(√3,3),点C 在x 轴上,且使△AOC 是等边三角形,BC ∥OA .(1)求反比例函数的解析式和OC 的长; (2)求点B 的坐标;(3)求直线BC 的函数解析式.例3.如图,函数y={2x,(0≤x ≤3)−x +9,(x >3)的图象与双曲线y=kx (k≠0,x >0)相交于点A (3,m )和点B .(1)求双曲线的解析式及点B的坐标;(2)若点P在y轴上,连接PA,PB,求当PA+PB的值最小时点P的坐标.【举一反三】1.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8 ).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)求经过点P的反比例函数的解析式.2.已知函数y=y1-y2,其中y1与x成正比例,y2与x成反比例,且当x=1时,y=1;x=3时,y=5.求:(1)求y关于x的函数解析式;(2)当x=2时,y的值.(k≠0)图象上一点,AB⊥x轴于B点,一次函3.如图,在平面直角坐标系中,点A是反比例函数y=kx数y=ax+b(a≠0)的图象交y轴于D(0,-2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.第4页共14页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训三、正比例、反比例、一次、二次函数图像上的点及图像与坐标轴的交点【知识探索】1.反比例函数(是常数,)的图像的两支都无限接近于轴和轴,但不会与轴和轴相交.【错题精练】例1.如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交的图象经过P,D两点,则AB的长是______.于点P,反比例函数y=2x在第一象限上运动,过点O作OB⊥OA,当tanA=√2时,点B 例2.如图,已知点A在反比例函数y=2x在第二象限的图象上,则k的值为______.恰好落在反比例函数y=kx例3.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF⊥BD于点F,AE⊥x轴于点E,连接OB,AD,若△OBD∽△DAE,则点A的坐标是______.第5页共14页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例4.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若(k≠0)的图象恰好经过A′,B,则k的值为______.AB=2,反比例函数y=kx图象上有三个点A(x1,y1)B(x2,y2)C(x3,y3),若x1<0<x2<x3,则例5.在反比例函数y=-2019x下列结论正确的是()A. y1<y3<y2B. y2<y3<y1C. y3<y1<y2D. y3<y2<y1例6.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=k的图象上,OA=1,OC=6,x试求出正方形ADEF的边长.第6页共14页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例7.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),反比例函数y=k(kx >0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求反比例函数的表达式及点E的坐标;(2)点F是OC边上一点,若△FBC∽△DEB,求点F的坐标.例8.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、……、A n-1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、……、A n-1A n都在y轴上(n≥2),点P1(x1,y1),点P2(x2,y2),……,点P n(x n,(x>0)的图象上,已知B1(-1,1).y n)在反比例函数y=kx(1)反比例函数解析式为______;(2)求点P3和点P2的坐标;(3)点P n的坐标为(______)(用含n的式子表示),△P n B n O的面积为______.【举一反三】1.如图,正方形ABCD和正方形DEFG的顶点在y轴上,顶点D、F在x轴上,点C在DE边上,反比例函数y=k(k≠0)的图象经过B,C和边EF的中点M,若S四边形ABCD=8,则正方形DEFG的面积是x()第7页共14页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训A. 239B. 1289C. 16D. 1542.已知反比例函数y=6x的图象上有两点A(x1,y1),B(x2,y2),且x1<x2,那么下列结论中,正确的是()A. y1<y2B. y1>y2C. y1=y2D. y1与y2之间的大小关系不能确定3.如图,矩形ABCD的顶点A在y轴上,反比例函数y=kx(x>0)的图象恰好过点B和点C,AD与x 轴交于点E,且AE:DE=1:3,若E点坐标为(2,0),且AD=2AB,则k的值是()A. 6B. 8C. 10D. 124.如图,已知点A,C在反比例函数y=ax (a>0)的图象上,点B,D在反比例函数y=bx(b<0)的图象上,AB∥CD∥y轴,AB,CD在y轴的同侧,AB=3,CD=2,AB与CD的距离为1,则a-b的值是______.第8页共14页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训5.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象.若将正方形沿x轴向左平移b个单位长度后,点C恰限作正方形ABCD,顶点D恰好落在双曲线y=kx好落在该双曲线上,则b的值为______.6.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=k在第一象限的x 图象经过点B.①若OC=3,BD=2,则k=______;②若OA2-AB2=18.则k=______.7.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在(k>0,x>0)的图象上,点D的坐标为(√5,2).反比例函数y=kx(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y=k(k>0,x>0)的图象上x时,求菱形ABCD平移的距离.第9页共14页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训8.如图,菱形OABC的边OC在x轴正半轴上,点B的坐标为(8,4).(1)请求出菱形的边长;经过菱形对角线的交点D,且与边BC交于点E,请求出点E的坐标.(2)若反比例函数y=kx四、反比例函数的应用【知识探索】1.【思想方法】:数形结合【错题精练】例1.一出租车油箱的容积为70升,某司机将该车油箱加满油后,将客人送达340km外的某地后立即返回.设出租车可行驶的总路程为y(单位:km),行驶过程中平均耗油量为x(单位:升/km).(1)写出y与x之间的函数解析式,并写出自变量x的取值范围;(2)若该车以每千米耗油0.1升行驶送达客人至目的地,返程时由于堵车,油耗平均增加了50%,该车返回出发地是否需要加油?若需要,试求出至少需加多少油,若不需要,请说明理由.例2.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?第10页共14页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例3.在面积都相等的所有矩形中,当其中一个矩形的一条边长为1时,它的另一边长为3(1)设另一条矩形的相邻两边分别为x、y①求y与x的函数关系式;②当y≥3时,求x的取值范围;(2)小明说其中有一个矩形的周长是6,小李说有一个矩形的周长为10,你认为小明和小李的说法对吗?为什么?例4.面积为定值的△ABC中,BC边的长为x,BC边上的高AD为y,当x=3时,y=4√3.(1)求△ABC的面积及y关于x的函数解析式;(2)当2<x<8时,△ABC能否为等边三角形,请说明理由.【举一反三】1.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB 为底作等腰△ABC,且∠ACB=120∘,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=k上运动,则k的值为.x2.为预防“非典”,某学校对教室采取药熏的方式进行消毒,已知药物燃烧时室内每立方米空气中含药量y(mg)与时间x(min)成正比例,药物燃烧后y与x成反比例,已知药物8min燃烧完,此时室内空气中每立方米的含药量为6mg.(1)研究表明:当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需几分钟后,学生才能回教室?(2)研究表明:当空气中每立方米的含药量不低于3mg,且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?3.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.4.某校园艺社计划利用已有的一堵长为10m的墙,用篱笆围一个面积为12m2的矩形园子.(1)如图,设矩形园子的相邻两边长分别为x(m)、y(m).①求y关于x的函数表达式;②当y≥4m时,求x的取值范围;(2)小凯说篱笆的长可以为9.5m,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?1.下列函数中,反比例函数是()A. y=-2xB. y=1x+1C. y=x-3 D. y=13x2.如果函数y=kx k-2是反比例函数,那么k=______,此函数的解析式是______.3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A. y=400x B. y=14xC. y=100x D. y=1400x4.如图,在平面直角坐标系中,反比例函数y=k经过▱ABCD的顶点B,D,点D的坐标为(2,1),x点A在y轴上,且AD∥x轴,S▱ABCD=6.(1)填空:点A的坐标为______,k=______;(2)求AB所在直线的解析式.(k为常数,且k≠0)的图象交于A(1,a),B两5.如图,一次函数y=-x+4的图象与反比例函数y=kx点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.6.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,……均是等腰直角三角形,其直角顶(k>0)的图象上点P1(4,4),P2,P3……P n均在反比例函数y=kx(1)求k的值;(2)分别求出P2、P3的坐标;(3)试用含n的式子表示P n的坐标(直接写出).7.已知反比例函数y=6的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关x系是______.的图象经过点A(2,1),点M(m,n)(0<m<2)是该函数图象上一8.如图,已知反比例函数y=kx动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当∠OAM=90°时,求点M的坐标.。

人教版初三数学9年级下册 第26章(反比例函数)压轴综合专练(含解析)

人教版初三数学9年级下册 第26章(反比例函数)压轴综合专练(含解析)

人教版九年级数学下册第二十六章《反比例函数》压轴综合专练1.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(1,4)、B(4,n).(1)求这两个函数的表达式;(2)请结合图象直接写出不等式kx+b<的解集;(3)若点P为x轴上一点,△ABP的面积为6,求点P的坐标.2.如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4.(1)求反比例函数解析式;(2)求点C的坐标.3.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?4.如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.5.如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D落在x轴的正半轴上.若AB的对应线段CB 恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由.6.如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;(2)求△OCD的面积.7.如图,反比例函数y=的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y=在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.8.如图,已知点A、P在反比例函数y=(k<0)的图象上,点B、Q在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4,若P、Q两点关于y轴对称,设点P的坐标为(m,n).(1)求点A的坐标和k的值;(2)求的值.9.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上一点(不与B、C两点重合),过点F的反比例函数y=(k>0)图象与AC边交于点E.(1)请用k表示点E,F的坐标;(2)若△OEF的面积为9,求反比例函数的解析式.10.如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).11.如图,一次函数y=﹣(b+2)x+b的图象经过点A(﹣1,0),且与y轴相交于点C,与双曲线y=相交于点P.(1)求b的值;(2)作PM⊥PC交y轴于点M,已知S△MPC=4,求双曲线的解析式.12.如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=(k2>0)的图象在第一象限交于C、D两点,点O为坐标原点,△AOB的面积为,点C横坐标为1.(1)求反比例函数的解析式;(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.13.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.14.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.15.已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.参考答案1.解:(1)把A(1,4)代入y=得:m=4,∴反比例函数的解析式为y=;把B(4,n)代入y=,得:n=1,∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)根据图象得:当0<x<1或x>4时,kx+b<;∴不等式kx+b<的解集为0<x<1或x>4;(3)如图,设直线AB与x轴交于点C,∵直线AB与x轴交于点C,∴点C坐标为(5,0),∵△ABP的面积为6,∴×PC×4﹣PC×1=6,∴PC=4,∴点P的坐标为(1,0)或(9,0).2.解:(1)∵∠ABO=90°,S△BOD=4,∴×k=4,解得k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组得或,∵C在第一象限,∴C点坐标为(2,4).3.解:由P(﹣1,n)在y=﹣上,得n=4,∴P(﹣1,4),∵F为PE中点,∴OF=n=2,∴F(0,2),又∵P,F在y=kx+b上,∴,解得.∴直线l的解析式为:y=﹣2x+2.(2)如图,过P作PD⊥AB,垂足为点D,∵PA=PB,∴点D为AB的中点,又由题意知A点的纵坐标为﹣2a+2,B点的纵坐标为﹣,D点的纵坐标为4,∴得方程﹣2a+2﹣=4×2,解得a1=﹣2,a2=﹣1(舍去).∴当a=﹣2时,PA=PB.4.解:(1)由题意得:,解得:,∴A(1,6),B(6,1),设反比例函数解析式为y=,将A(1,6)代入得:k=6,则反比例解析式为y=;(2)设E(x,0),则DE=x﹣1,CE=6﹣x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE,BE,则S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE=(BC+AD)•DC﹣DE•AD﹣CE•BC=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1=﹣x=10,解得:x=3,则E(3,0).5.解:(1)∵AB∥x轴,∴∠ABO=∠BOD,∵∠ABO=∠CBD,∴∠BOD=∠OBD,∵OB=BD,∴∠BOD=∠BDO,∴△BOD是等边三角形,∴∠BOD=60°,∴B(1,);∵双曲线y=经过点B,∴k=1×=.∴双曲线的解析式为y=.(2)∵∠ABO=60°,∠AOB=90°,∴∠A=30°,∴AB=2OB,∵AB=BC,∴BC=2OB,∴OC=OB,∴C(﹣1,﹣),∵﹣1×(﹣)=,∴点C在双曲线上.6.解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===.∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=﹣x+2.设反比例函数的解析式为y=(m≠0),将点C的坐标代入,得3=,∴m=﹣6.∴该反比例函数的解析式为y=﹣.(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=6,故△OCD的面积为2+6=8.7.解:(1)∵反比例函数y=的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD=×2×2=2;(3)存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b=(舍去),∴b的值为﹣.8.解:(1)∵点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,∴当y=﹣1时,x﹣3=﹣1,解得x=2,∴B(2,﹣1).设点A的坐标为(2,t),则t<﹣1,AB=﹣1﹣t.∵S△OAB=4,∴(﹣1﹣t)×2=4,解得t=﹣5,∴点A的坐标为(2,﹣5).∵点A在反比例函数y=(k<0)的图象上,∴﹣5=,解得k=﹣10;(2)∵P、Q两点关于y轴对称,点P的坐标为(m,n),∴Q(﹣m,n),∵点P在反比例函数y=﹣的图象上,点Q在直线y=x﹣3的图象上,∴n=﹣,n=﹣m﹣3,∴mn=﹣10,m+n=﹣3,∴====﹣.9.解:(1)E(,4),F(6,);(2)∵E,F两点坐标分别为E(,4),F(6,),∴S△ECF=EC•CF=(6﹣k)(4﹣k),∴S△EOF=S矩形AOBC﹣S△AOE﹣S△BOF﹣S△ECF=24﹣k﹣k﹣S△ECF=24﹣k﹣(6﹣k)(4﹣k),∵△OEF的面积为9,∴24﹣k﹣(6﹣k)(4﹣k)=9,整理得,=6,解得k=12.∴反比例函数的解析式为y=.10.解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,3),∴k=1×3=3,∴y=,∵B(3,y2)在反比例函数的图象上,∴y2==1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,0);(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴=,==,∵b=y1+1,AB=BP,∴=,==,∴B(, y1)∵A,B两点都是反比例函数图象上的点,∴x1•y1=•y1,解得x1=2,代入=,解得y1=2,∴A(2,2),B(4,1).(3)根据(1),(2)中的结果,猜想:x1,x2,x0之间的关系为x1+x2=x0.11.解:(1)∵一次函数y=﹣(b+2)x+b的图象经过点A(﹣1,0),∴b+2+b=0,解得:b=﹣1.(2)过点P作PB⊥MC于点B,如图所示.将b=﹣1代入一次函数解析式,得:y=﹣x﹣1.当x=0时,y=﹣1,∴点C的坐标为(0,﹣1),∴OC=1,∵点A的坐标为(﹣1,0),∴OA=1=OC,∴∠ACO=45°.∵PM⊥PC,∴△PMC为等腰直角三角形,∵PB⊥MC,∴PB=MC,∴S△PMC=CM•PB=PB2,∵S△PMC=4,∴PB2=4,即PB=2或PB=﹣2(舍去),∵点P在第二象限,∴点P的横坐标为﹣2,当x=﹣2时,y=﹣(﹣2)﹣1=1,∴点P的坐标为(﹣2,1).∵双曲线y=经过点P,∴k=﹣2×1=﹣2,∴双曲线的解析式为y=﹣.12.解:(1)∵当x=0时,y=7,当y=0时,x=﹣,∴A(﹣,0)、B(0、7).∴S△AOB=|OA|•|OB|=×(﹣)×7=,解得k1=﹣1.∴直线的解析式为y=﹣x+7.∵当x=1时,y=﹣1+7=6,∴C(1,6).∴k2=1×6=6.∴反比例函数的解析式为y=.(2)∵点C与点D关于y=x对称,∴D(6,1).当x=2时,反比例函数图象上的点为(2,3),直线上的点为(2,5),此时可得整点为(2,4);当x=3时,反比例函数图象上的点为(3,2),直线上的点为(3,4),此时可得整点为(3,3);当x=4时,反比例函数图象上的点为(4,),直线上的点为(4,3),此时可得整点为(4,2);当x=5时,反比例函数图象上的点为(5,),直线上的点为(5,2),此时,不存在整点.综上所述,符合条件的整点有(2,4)、(3,3)、(4,2).13.解:(1)∵A(2,0),∴OA=2.∵tan∠OAB==,∴OB=1,∴B(0,1),设直线l的表达式为y=kx+b,则,解得,∴直线l的表达式为y=﹣x+1;(2)∵点P到y轴的距离为1,且点P在y轴左侧,∴点P的横坐标为﹣1,又∵点P在直线l上,∴点P的纵坐标为:﹣×(﹣1)+1=,∴点P的坐标是(﹣1,),∵反比例函数y=的图象经过点P,∴=,∴m=﹣1×=﹣.14.解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).15.解:(1)如图所示,延长AE,BD交于点C,则∠ACB=90°,∵一次函数y=﹣2x+1的图象经过点A(﹣1,m),∴m=2+1=3,∴A(﹣1,3),∵反比例函数y=的图象经过A(﹣1,3),∴k=﹣1×3=﹣3;(2)∵BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),∴令y=﹣2,则﹣2=﹣2x+1,∴x=,即B(,﹣2),∴C(﹣1,﹣2),∴AC=3﹣(﹣2)=5,BC=﹣(﹣1)=,∴四边形AEDB的面积=△ABC的面积﹣△CDE的面积=AC×BC﹣CE×CD=×5×﹣×2×1=.。

中考数学总复习《反比例函数综合解答题》专项提升练习(附答案)

中考数学总复习《反比例函数综合解答题》专项提升练习(附答案)

中考数学总复习《反比例函数综合解答题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,在Rt △ABC 中AC =8,BC =4,AC ⊥x 轴,垂足为C ,AB 边与y 轴交于点D ,反比例函数y =kx (x >0),的图象经过点A .(1)若BD AB=14,求直线AB 和反比例函数的表达式;(2)若k =8,将AB 边沿AC 边所在直线翻折,交反比例函数的图象于点E ,交x 轴于点F ,求点E 的坐标. 2.如图,点A 在第一象限,AC ⊥x 轴,垂足为C ,OA =2√5,tanA =12反比例函数y =kx的图象经过OA 的中点B ,与AC 交于点D .(1)求点C 坐标; (2)求k 值;(3)求△OBD 的面积.3.如图,矩形OABC 的顶点A ,C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =kx (x>0)的图象经过BC 上的点D 与AB 交于点E ,连接DE ,若E 是AB 的中点. (1)求点D 的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标.(x>0)的图象与矩形OABC相交于D、E两点,点A、4.如图,在平面直角坐标系xOy中反比例函数y=kxC分别在x轴和y轴的正半轴上,点B的坐标为(8,6).连接DE.(1)连接OE,若△EOA的面积为8,则k=______;(2)连接AD,当k为何值时,△AED的面积最大,最大面积是多少?(3)连接AC,当k为何值时,以DE为直径的圆与AC相切(x>0)上一动点5.如图已知直线y=x−2与x轴交于A点与y轴交于B点P(m,n)为双曲线y=−2x过P点分别作x轴y轴的垂线垂足分别为C D射线PC交直线AB于点E射线PD交直线AB于点F.(1)当DF=PC时求m的值;(2)连接OE OF求证:∠EOF的度数为45°;(x>0)上有一点Q(不与点P重合)连接PQ有PQ∥AB将线段PQ沿直线AB翻折得(3)在双曲线y=−2x到线段P′Q′.若线段P′Q′与坐标轴没有交点求此时n的取值范围.(x>0)上一点分别连接MA MB.6.直线l:y=−2x+2m(m>0)与x y轴分别交于A.B两点点M是双曲线y=4x(1)如图当点A(2√30)时恰好AB=AM △MAB=90° 试求M的坐标;3(2)如图当m=3时直线l与双曲线交于C.D两点分别连接OC OD 试求△OCD面积;(3)如图在双曲线上是否存在点M 使得以AB为直角边的△MAB与△AOB相似?如果存在请直接写出点M 的坐标;如果不存在请说明理由.(k>0)的一点点D的纵坐标为6.7.在平面直角坐标系中点D是反比例函数y=kx(k>0)的图象交于A C (1)当一次函数y=ax+3(a>0)的图象与x轴交于点B(−6,0)与反比例函数y=kx两点点P(1,0)是x轴上一定点已知点A的纵坐标为4.求一次函数和反比例函数的解析式;(2)在(1)的条件下在线段AB上找点Q使得△PAQ的面积为7时求点Q的坐标;(3)如图2 在第一象限内在反比例函数上是否存在不同于点D的一点F满足∠ODF=90°且tan∠DOF=1若存在求出点D的坐标.若不存在请说明理由.4(k>0)的图象分别交矩形ABOC的两边8.如图1 平面直角坐标系xOy中A(4 3)反比例函数y=kxAC AB于E F两点(E F不与A重合)沿着EF将矩形ABOC折叠使A D两点重合.(1)AE=_______(用含有k的代数式表示);(2)如图2 当点D恰好落在矩形ABOC的对角线BC上时求CE的长度;(3)若折叠后△ABD是等腰三角形求此时点D的坐标.9.如图在平面直角坐标系xOy中△ABO的边AB垂直于x轴垂足为点B反比例函数的图象经过AO的中点C交AB于点D.若点D的坐标为(−4,n)且AD=3.(1)求反比例函数y=k的解析式;x(2)求经过C D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C D重合)过点E且平行于y轴的直线l与反比例函数的图象交于点F求△OEF面积的最大值.(k≠0)的图象相交于点A和点B(4,1)点M是y 10.如图直线y=mx+4(m≠0)的图象与双曲线y=kx轴上的一个动点.(1)求出点A的坐标.(2)连接AM,BM若△ABM的面积为3求此时点M的坐标.(3)点N为平面内的点是否存在以点A,B,M,N为顶点的四边形为菱形?若存在请直接写出相应的点N的坐标若不存在请说明理由.11.如图已知一次函数y=−x+4与反比例函数的图像相交于点C和点A(−2,a)(1)求反比例函数的表达式及点C的坐标.(2)根据图像回答在什么范围时一次函数的值大于反比例函数的值?(3)求△AOC的面积.的图像交于A B两点与x轴交于点C与y轴12.如图一次函数y=ax+b的图像与反比例函数y=kx交于点D.已知点A(2,1)点B(m,−4).(1)求反比例函数与一次函数的解析式;(2)点M是反比例函数图像上一点当△MAO与△AOD的面积相等时请直接写出点M的横坐标;(3)将射线AC绕点A旋转α度后与双曲线交于另一点Q若tanα=1请求出点Q的坐标.3(k>0)的图象经过点A(1,2)连接AO并延长交双曲线于点C以AC为对角线作13.如图反比例函数y=kx正方形ABCD AB与x轴交于点M AD与y轴交于点N连接OB以AB为直径画弧OA与线段OA围成的阴影面积为S1△OMB的面积为S2.(1)求k的值;(2)求OA的长度及线段OM的长度;(3)求S1+S2的值.14.如图在平面直角坐标系中四边形ABCD为正方形已知点A、D的坐标分别为(0,−6)、(3,−7)点B、C在第四象限内.(1)点B的坐标为;(2)将正方形ABCD以每秒2个单位的速度沿y轴向上平移所得四边形记为正方形A′B′C′D′.若t秒后点B D的对应点B′D′正好落在某反比例函数在第一象限内的图像上请求出此时t值以及这个反比例函数的表达式;(3)在(2)的情况下是否存在x轴上的点P和反比例函数图像上的点Q使得以P Q B′D′四个点为顶点的四边形是平行四边形?若存在请直接写出符合题意的点Q的坐标;若不存在请说明理由.15.如图1 已知正比例函数和反比例函数的图象都经过点A(−1,−2)且点B(−2,−1)为反比例图象上的一点连接AB点M为坐标平面上一动点MN⊥x轴于点N.(1)写出正比例函数和反比例函数的解析式;(2)当点M在直线AO上运动时是否存在点M使得△OMN与△OAB的面积相等?若存在求出点M的坐标;若不存在请说明理由;(3)如图2 当点M在反比例函数图象位于第一象限的一支上运动时求以OB、OM为邻边的平行四边形BOMC周长的最小值并求此时点M的坐标.(x>0,k>0)图象与正比例函数图象y=ax(a>0)交于第16.如图在平面直角坐标系中反比例函数y=kx一象限内的点A(n,n)点B(2n,n−2)也在这个反比例函数图象上过点B作y轴的平行线交x轴与点C交直线y=ax(a>0)与点D.(1)求这两个函数的解析式及点D的坐标;(2)求:△AOB的面积;(3)过反比例函数图象上一点P作PE⊥直线y=ax(a>0)于点E过点E作EF⊥x轴于点F过点P作PG⊥EF于点G记△EOF的面积为S1,△PEG的面积为S2求S1−S2的值.与直线y=x相交于点A(2,a)B(b,−2)两点.17.如图1 在平面直角坐标系xOy中双曲线y=kx(1)求双曲线的函数表达式;(2)在双曲线上是否存在一点P使得△PAB的面积为6?若存在求出点P的坐标若不存在请说明理由;(3)点E是y轴正半轴上的一点直线AE与双曲线交于另一点C直线BE与双曲线交于另一点D直线CD与y轴交于点F求证:OE=EF.18.如图1 在平面直角坐标系xOy 中直线y =kx +52与双曲线y =12x交于A B 两点 直线AB 分别交x 轴 y轴于C D 两点 且S △COD =254.(1)求一次函数的解析式;(2)如图2 E 的坐标为(6,0) 将线段DO 沿y 轴向上(或向下)平移得线段D ′O ′ 在移动过程中是否存在某个位置使AD ′+EO ′的值最小?若存在 求出AD ′+EO ′的最小值及此时点O ′的坐标;若不存在 请说明理由; (3)如图3 在(2)的条件下 将直线OA 沿x 轴平移 平移过程中在第一象限交y =12x的图象于点M (M 可与A 重合) 交x 轴于点N .在平移过程中是否存在某个位置使以M N E 和平面内某一点P 为顶点的四边形为菱形且以MN 为菱形的边?若存在 请直接写出P 的坐标;若不存在 请说明理由.19.平面直角坐标系xOy 中横坐标为a 的点A 在反比例函数y 1△kx (x >0)的图象上 点A′与点A 关于点O 对称 一次函数y 2=mx+n 的图象经过点A′. (1)设a=2 点B (4 2)在函数y 1 y 2的图象上. ①分别求函数y 1 y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图① 设函数y 1 y 2的图象相交于点B 点B 的横坐标为3a △AA'B 的面积为16 求k 的值; (3)设m=12 如图② 过点A 作AD△x 轴 与函数y 2的图象相交于点D 以AD 为一边向右侧作正方形ADEF 试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.20.已知直线y=−x+2k+6(k>0)与双曲线y=m(x>0)交于点M N且点N的横坐标为k. .x(1)如图1 当k=1时.①求m的值及线段MN的长;②在y轴上是否是否存在点Q使∠MQN=90° 若存在请求出点Q的坐标;若不存在请说明理由.(2)如图2 以MN为直径作△P当△P与y轴相切时求k值.参考答案:1.解:解:(1)Rt △ABC 中AC =8 BC =4 AC ⊥x 轴 垂足为C∴AC ∥OD BD AB =BO BC =14 ∴BO 4=14∴BO =1 ∴OC =3 ∴A (3,8)设直线AB 为y =ax +b∴{3a +b =8−a +b =0解得{a =2b =2∴直线AB 为y =2x +2∵反比例函数y =kx (x >0)的图像经过A∴k =3×8=24∴反比例函数的表达式为y =24x;(2)作EH ⊥x 轴于H 由题意可知CF =BC =4 ∴设A (a,8)∴OC =1 ∴OF =5设点E 的坐标为(x,8x )∴OH =x∴FH =5−x∵EH//AC∴EH AC =HF FC 即8x 8=5−x 4解得x 1=1∴点E 的坐标为(4,2).2.(1)解:△AC ⊥x 轴△AC =2OC△OA =2√5由勾股定理得:(2√5)2=OC 2+(2OC )2△OC =2,AC =4△A (2,4),C (2,0)(2)△B 是OA 的中点△B (1,2)△k =1×2=2;(3)当x =2时△D (2,1)△AD =4−1=3△S △OBD =S △OAD −S △ABD=12×3×2−12×3×1 =1.5.3.解:(1)先求出点E 的坐标,求出反比例函数解析式,再求出CD =1,即可得出点D 的坐标,(2) △FBC 和△DEB 相似可以分两种情况进行求解, ①当△FBC △△DEB 时,可得BD BE =BC CF ,求出CF,得出F 点的坐标,利用待定系数法可求出BF 的直线解析式,②当△FBC △△EDB 时,可得BD BE =CFBC ,求出C,F ,OF ,得出F 点坐标,利用待定系数法求出直线BF 的解析式.(1)△四边形OABC为矩形E为AB的中点点B的坐标为(2 3) △点E的坐标为.△点E在反比例函数上△k=3 △反比例函数的解析式为y=.△四边形OABC为矩形△点D与点B的纵坐标相同将y=3代入y=可得x=1 △点D的坐标为(1 3)(2)由(1)可得BC=2 CD=1 △BD=BC-CD=1.△E为AB的中点△BE=.若△FBC△△DEB 则=即=△CF=△OF=CO-CF=3-=△点F的坐标为;若△FBC△△EDB 则=即=△FC=3.△CO=3 △点F与点O重合△点F的坐标为(0 0).综上所述点F的坐标为或(0 0).4.解:(1)连接OE如下图.△E点在反比例函数的图像上且横坐标为8△E点纵坐标为k8即AE=8S△EOA=12×k8×8=8△k=16(2)连接AD如下图.△D在反比例函数图像上△D点的的横坐标为k6.BD=8−k 6S△AED=12×AE×BD=12×k8×(8−k6)=−196k2+12k即S△AED=−196k2+12k=−196(k−24)2+24296=−196(k−24)2+6△当k=24时△AED的面积最大最大面积是6.(3)如下图连接AC以DE为直径的圆与AC相切时设圆心为O切点为N自点D作AC的垂线垂足为M.为计算方便设反比例函数系数k=48b(0<b<1)则E点坐标为(8,6b)D点坐标为(8b,6).△BD=8−8b BE=6−6b.由勾股定理得:DE=√BD2+DE2=√[8(1−b)]2+[6(1−b)]2=10(1−b)∴OD=12DE=5(1−b)△BD BE =8−8b6−6b=43△BD BE =BCBA△DE∥AC.由O为圆心N为⊙O与AC切点可知ON⊥AC.又△DM⊥AC,ON⊥AC,OD=ON△四边形ODMN为正方形.△OD=DM由tan∠DCM=DMCD =ABAC△DM=ABAC ×CD=610×8b=245b.由OD=5(1−b)OD=DM得5(1−b)=245b.△b=2549.△k=48b=48×2549=120049.△当k=120049时以DE为直径的圆与AC相切5.(1)2(2)见详解(3)−2<n<−1【分析】(1)由题意易得四边形ODPC是矩形∠OBA=∠OAB=45°则有BD=DF=PC=−n然后可得OB=−2n=2进而问题可求解;(2)由题意可得E(m,m−2)m=−2n然后可得EP=PF=m−n−2,DF=DB=2+n进而可得OF2=FA⋅FE则有△AOF∽△OEF最后问题可求证;(3)假设线段PQ沿直线AB翻折得到线段P′Q′线段P′Q′恰好与坐标轴有交点然后根据轴对称的性质及等腰直角三角形的性质可进行求解.【详解】(1)解:令y=0时则有x−2=0即x=2△A(2,0)即OA=2令x=0时则有y=−2△B(0,−2)即OB=2△OA=OB=2△∠OBA=∠OAB=45°由题意知:PC⊥x轴PD⊥y轴△四边形ODPC是矩形△DBF是等腰直角三角形△点P(m,n)△OD=PC=−n,DB=DF=PC=−n△OB=−2n=2△n=−1△m=−2−1=2;(2)证明:由题意得:E(m,m−2)△EP=m−n−2由(1)可知四边形ODPC是矩形△DBF是等腰直角三角形△BD=DF=2+n,OD=PC=−n△F(n+2,n)△∠DFB=∠EFP=45°,∠EPD=90°△EF=√2EP=√2m−√2n−2√2△A(2,0)△OF2=n2+(2+n)2=2n2+4n+4△AF⋅FE=−√2n⋅(√2m−√2n−2√2)=−2mn+2n2+4=−2⋅(−2n)n+2n2+4n=2n2+4n+4△OF2=FA⋅FE即OFEF =FAOF△∠OFA=∠EFO△△AOF∽△OEF△∠EOF=∠OAF=45°;(3)解:假设线段PQ沿直线AB翻折得到线段P′Q′线段P′Q′恰好与坐标轴有交点如图所示:连接QQ′,PP′,PA,QB由轴对称的性质可知∠OAB=∠PAB=45°,∠OBA=∠QBA=45°△∠P′AP=∠QBQ′=90°△点P的横坐标为2 点Q的纵坐标为−2△把点P的横坐标代入反比例函数解析式得n=−1△若线段P′Q′与坐标轴没有交点则n的取值范围为−2<n<−1.【点睛】本题主要考查反比例函数与几何的综合相似三角形的性质与判定矩形的判定等腰直角三角形的性质与判定及轴对称的性质熟练掌握各个性质及判定是解题的关键.6.(1)(2√323√3);(2)3;(3)(4 1)(2 2)(√1025√10)(25√10√10).【分析】(1)把A的坐标代入直线的解析式即可求得m的值然后证明△OAB△△EMA 求得ME和AE的长则M 的坐标即可求解;(2)解一次函数与反比例函数的解析式组成的方程组 即可求得C 和D 的坐标 作DF△y 轴于点F CG△y 轴 根据S △OCD =S 梯形CDFG +S △OCG -S △ODF 求解;(3)分类讨论:以△BAM 和△ABM 为直角两种情况.①当△BAM=△BOA=90°时 作MH△x 轴于点H 先求得AM 的长 再根据相似三角形的性质求得AH 和MH 的长 进而求得M 的坐标 代入反比例函数关系式求出m 即可 ②当△ABM=90°时 过点M 作MH△y 轴于点H 同理可求出M 坐标. 【详解】(1)把A(2√33 0)代入y=−2x+2m 得:−4√33+2m=0 解得:m=2√33. 则直线的解析式是:y=−2x+4√33 令x=0,解得y=4√33则B 的坐标是(0,4√33). 如图所示 作ME△x 轴于点E.△△BAM=90°△△BAO+△MAE=90°又△直角△AEM 中,△AME+△MAE=90°△△BAO=△AME.在△OAB 和△EMA 中{∠AOB=∠AEM ∠BAO=∠AME AB=AM△△OAB△△EMA(AAS)△ME=OA=2√33,AE=OB=4√33. △OE=OA+AE=2√3则M 的坐标是(2√3 23√3);(2)当m=3时 一次函数的解析式是y=−2x+6.解不等式组{y =−2x +6y =4x得{x =1y =4 或{x =2y =2则D 的坐标是(1,4),C 的坐标是(2,2).如图 作DF△y 轴于点F CG△y 轴,则F 和G 的坐标分别是(0,4) (0,2).则S △OCG =S △ODF =12×4=2 S 梯形CDFG =12×(1+2)×(4−2)=3 则S △OCD =S 梯形CDFG +S △OCG −S △ODF =3;(3)如图 作MH△x 轴于点H.则△AOB △ABM △AMH 都是两直角边的比是1:2的直角三角形.①当△BAM=△BOA=90°时 OA=m OB=2m 得: AM=12AB=√52m MH=12OA=m 2;从而得到点M 的坐标为(2m, m 2). 代入双曲线解析式为:42m =m 2解得:m=2,则点M 的坐标为(4,1);同理当△BAM=△OBA 时,可求得点M 的坐标为(√10 2√105).②当△ABM=90°时过点M作MH△y轴于点H则△AOB △ABM △BMH都是直角边的比是1:2的直角三角形;当△AMB=△OAB时OB=m OA=2m得:AH=2OB=2m MH=2OA=4m从而点M的坐标为(4m,4m)代入双曲线的解析式得:4m×4m=4解得:m=12,点M的坐标为(2,2);同理,当△AMB=△OBA时,点M的坐标为(2√105,√10).综上所述满足条件的点M的坐标是:(4 1)(2 2)(√1025√10)(25√10√10).【点睛】本题考查反比例函数与几何的综合题熟练掌握反比例函数的性质全等三角形的判定以及相似三角形的性质是解决本题的关键注意分类讨论思想的运用.7.(1)一次函数的表达式为y=12x+3反比例函数的解析式为y=8x(2)Q(−2,2)(3)存在满足题意的点D的横坐标为(3+3√654,6)或(−3+3√654,6)【分析】(1)将点B坐标代入直线AC的解析式中求出a进而得出一次函数解析式进而求出点A坐标最后将点A坐标代入反比例函数解析式中即可求出反比例函数解析式;(2)设点Q(m,12m+3)利用△PAQ的面积为7 建立方程求解即可得出答案;(3)根据题意分两种情况①当点F在D下方时过点D作DE⊥y轴于点E这点F作FN⊥ED于点N②当点F在点D上方时过点D作DG⊥x轴于点G过点F作FM⊥DG于点M分别求解即可.【详解】(1)△点B(−6,0)在直线y=ax+3上.△−6a+3=0△a=12△一次函数的解析式为y=12x+3;△点A在直线y=12x+3上且点A的纵坐标为4△12x+3=4△x=2△A(2,4).△点A在双曲线y=kx上△k=2×4=8.△反比例函数的解析式为y=8x;(2)由(1)知直线AC的解析式为y=12x+3设点Q(m,12m+3)如图1△P(1,0),B(−6,0)△BP=7△△PAQ的面积为7△1 2BP⋅(y A−y P)=12×7×(412m−3)=7△m=−2△Q(−2,2);(3)需要分两种情况:①当点F在D下方时.如图过点D作DE⊥y轴于点E这点F作FN⊥ED于点N △∠OED=∠DNF=90°△∠ODF =90°△∠ODE +∠DOE =∠ODE +∠FDN =90°△∠DOE =∠FDN△△ODE ∽△DFN .△OD:DF =OE:DN =DE:FN△tan∠DOF =14△DF:OD =1:4△OD:DF =OB:DN =DB:FN =4△OE =6 △DN =32设点D 的横坐标为n 则BD =n△FN =14n △D(n,6),F (n +32,6−14n)△6n =(n +32)(6−14n)解得n =−3±3√654(负值舍去). 即此时点D 的坐标为:(−3−3√654,6).②当点F 在点D 上方时 如图 过点D 作DG ⊥x 轴于点G过点F 作FM ⊥DG 于点M△∠OGD =∠DMF =90°△∠ODF =90°△∠ODG +∠DOG =∠ODG +∠FDM =90°△∠DOG =∠FDM△△ODG ∽△DFM△OD:DF =OG:DM =DG:FM△tan∠DOF =14△DF:OD =1:4△OD:DF =OG:DM =DG:FM =4△DG =6.△FM =32设点D 的横坐标为t 则OG =t△DM =14t△D(t,6),F (t −32,6+14t).△6t =(t −32)(6+14t). 解得t =3±3√654(负值舍去). 即此时点D 的横坐标为:(3+3√654,6). 综上 满足题意的点D 的横坐标为:(3+3√654,6)或(−3+3√654,6). 【点睛】本题是反比例函数综合题 主要考查了待定系数法 三角形的面积公式 相似三角形的性质 正确理解题意是解题的关键.8.(1)4−k3(2)CE =2(3)D 点坐标为(238,32)或(115,35)【分析】(1)根据点A 的坐标可得点E 的纵坐标为3 则E (k 3,3) 可得CE =k 3 从而得AE 的长; (2)求出AE AF =AC AB =43 证明△AEF △△ACB 推出EF ∥BC 再利用平行线的性质和等腰三角形的判定和性质证明AE =EC =2即可;(3)连接AD 交EF 于M 过D 点作DN △AB 于N 由折叠的性质得AD △EF 分三种情况讨论:①当BD =AD 时 ②当AB =AD =3时 ③当AB =BD 时 分别计算DN 和BN 的长确定点D 的坐标即可解答.【详解】(1)解:△四边形ABOC 是矩形 且A (4 3)△AC =4 OC =3△点E 在反比例函数y =k x 上 点E 的纵坐标为3△E(k3,3)△CE=k3△AE=4−k3;故答案为:4−k3;(2)解:△A(4 3)△AC=4 AB=3△AC AB =43△点F在y=kx上△F(4,k4)△AE AF =4−k33−k4=43△AE AF =ACAB=43又△△A=△A△△AEF△△ACB△△AEF=△ACB△EF∥BC△△FED=△CDE△△AEF△△DEF△△AEF=△DEF AE=DE△△FED=△CDE=△AEF=△ACB△CE=DE=AE=12AC=2;(3)连接AD交EF于M过D点作DN△AB于N 由折叠的性质得AD△EF①当BD=AD时如图3△△AND=90°△AN=BN=12AB=32△DAN+△ADN=90°△△DAN+△AFM=90°△△ADN=△AFM△tan∠ADN=tan∠AFM=AEAF =43△AN DN =43△AN=32△DN=98△4−98=238△D(238,32 );②当AB=AD=3时如图4在Rt△ADN中△AN DN =43△AN AD =45△AN=45AD=45×3=125△BN=3−AN=3−125=35△DN=34AN=34×125=95△4−95=115△D(115,35 );③当AB=BD时△△AEF△△DEF△DF=AF△DF+BF=AF+BF即DF+BF=AB△DF+BF=BD此时D F B三点共线且F点与B点重合不符合题意舍去△AB≠BD综上所述所求D点坐标为(238,32)或(115,35).【点睛】本题属于反比例函数综合题考查了反比例函数的性质相似三角形的判定和性质翻折的性质矩形的性质解直角三角形等知识等腰三角形的性质解题的关键是正确寻找相似三角形解决问题学会用分类讨论的思想思考问题属于中考压轴题.9.(1)反比例函数解析式为y=−4x(2)直线CD的解析式为y=12x+3(3)最大值为14【分析】本题是反比例函数综合题 主要考查了待定系数法 线段的中点坐标公式:(1)先确定点A 的坐标 进而求得点C 的坐标 将点C D 坐标代入反比例函数中即可得出结论;(2)由n =1 求出点C D 坐标 利用待定系数法即可得出结论;(3)设出点E 坐标 进而表示出点F 坐标 即可建立面积与m 函数关系式 即可得出结论;建立S △OEF 与m 的函数关系式是解题的关键.【详解】(1)解:△AD =3△A (−4,n +3)△点C 是OA 的中点△C (−2,n+32)△点C D 在双曲线y =kx 上△{k =−2×n+32k =−4n△{k =−4n =1 △反比例函数解析式为y =−4x ; (2)解:由(1)知 反比例函数解析式为y =−4x△n =1△C (−2,2)设直线CD 的解析式为y =ax +b△{−2a +b =2−4a +b =1△{a =12b =3△直线CD 的解析式为y =12x +3; (3)解:如图 由(2)知 直线CD 的解析式为y =12x +3设点E (m,12m +3) 由(2)知 C (−2,2)△−4<m <−2△EF ∥y 轴交反比例函数的图像y =−4x 于F△F (m,−4m )△EF =12m +3+4m△S △OEF =12(12m +3+4m )×(−m )=−12(12m 2+3m +4)=−14(m +3)2+14△−4<m <−2△m =−3时 S △OEF 最大 最大值为14. 10.(1)(43,3);(2)(0,74)或(0,254); (3)存在 (83,1+2√213)或(83,1−2√213)或(163,509).【分析】(1)利用代数系数法求出一次函数和反比例函数解析式 联立函数式 解方程组即可求解;(2)分M 在AB 下方和M 在AB 上方两种情况解答即可求解;(3)设M (a,0) 以A 、B 、M 、N 四点为顶点的四边形是菱形时 分AB 为边和对角线三种情况讨论 根据勾股定理和菱形的性质可计算点M 的坐标.【详解】(1)解:△点B (4,1)△4m +4=1△m =−34△直线的关系式为:y =−34x +4 反比例函数的关系式为:y =4x联立得{y =−34x +4y =4x 解得x =43或4△点A 的坐标为(43,3);(2)解:① M 在AB 下方时 过B 作BC ⊥y 轴于C 过A 作AD ⊥BC 于D设M (0,m )△点A 的坐标为(43,3)∵S △ABM =S 梯形AMCD +S △ABD −S △BCM =3△12×43(m −1+3−1)+12×(4−43)×(3−1)−12×4(m −1)=3解得m =74 △点M 的坐标为(0,74); ② M 在AB 上方时设M (0,m ) 直线AB 交y 轴于N△点A 的坐标为(43,3)△S △ABM =S △MBN +S △AMN =3△12×4(m −4)−12×43(m −4)=3解得m =254△点M 的坐标为(0,254); 综上 点M 的坐标为(0,74)或(0,254);(3)解:设M (a,0)△点A 的坐标为(43,3)△AB 2=(4−43)2+(3−1)2=1009AM 2=(43)2+(m −3)2=169+(m −3)2 BM 2=42+(m −1)2=16+(m −1)2①以AB 为边 AM =AB 时169+(m −3)2=1009 解得m =3+2√213或m =3−2√213 △点M 的坐标为(0,3+2√213)或(0,3−2√213) △点A 的坐标为(43,3)△点N 的坐标为(83,1+2√213)或(83,1−2√213); ②以AB 为边 BM =AB 时16+(m−1)2=1009无解△此种情况不存在;③以AB为对角线时AM=BM如图169+(m−3)2=16+(m−1)2解得m=−149△点M的坐标为(0,−149)△点A的坐标为(43,3)△点N的坐标为(163,509);综上所述点N的坐标为(83,1+2√213)或(83,1−2√213)或(163,509).【点睛】本题考查了菱形的性质反比例函数与一次函数的交点问题三角形面积公式待定系数法求函数的解析式运用分类讨论的思想解答是解题的关键.11.(1)反比例函数的表达式为y=−12x点C的坐标为(6,−2)(2)x<−2或0<x<6(3)16【分析】本题考查一次函数与反比例函数的交点问题注意数形结合思想的应用是解题的关键.(1)把A(−2,a)代入一次函数可求得a的值再代入反比例函数解析式可求得k的值联立两函数解析式可求得C点的坐标;(2)当一次函数图象在反比例函数图象的上方时满足条件根据图象可得出x的范围;(3)求出一次函数与x轴的交点坐标根据S△AOC=S△AOB+S△BOC利用三角形的面积公式即可求出△AOC的面积.【详解】(1)解:将A(−2,a)代入一次函数y =−x +4得:a =−(−2)+4=6 ∴ A(−2,6)设反比例函数的表达式为y =kx (k ≠0)将A(−2,6)代入y =k x (k ≠0) 得k =−2×6=−12 ∴反比例函数的表达式为y =−12x 联立{y =−12x y =−x +4解得{x =−2y =6 或{x =6y =−2∴点C 的坐标为(6,−2);(2)解:根据图象可知当x <−2或0<x <6时 一次函数图象在反比例函数图象的上方 ∴当x <−2或0<x <6时 一次函数的值大于反比例函数的值;(3)解:令y =−x +4=0 得x =4∴点B 的坐标为(4,0)∴ OB =4∴ S △AOC =S △AOB +S △BOC=12OB ⋅|y A |+12OB ⋅|y C | =12×4×6+12×4×2 =16.12.(1)反比例解析式为y =2x 一次函数的解析式为y =2x −3 (2)x =3±√13或−3±√13(3)(−17,−14)或(−1,−2)【分析】(1)由待定系数法即可求解;(2)当点M 在AO 下方时 过点D 作DM∥OA 交反比例函数图象于M 得到直线DM 为y =12x −3 即可求解;当点M 在AO 上方时 同理可解;(3)当射线AC 逆时针旋转时 用解直角三角形的方法求出ND =√5m =10 即可求解;当射线AC 顺时针旋转时同理可解.【详解】(1)解:把A(2,1)代入y=kx得k=2则反比例解析式为y=2x;把点B(m,−4)代入y=2x得△−4=2m解得:m=−12△B(−12,−4)把A与B坐标代入一次函数解析式得{2a+b=1−12a+b=−4解得{a=2b=−3△一次函数的解析式为y=2x−3;(2)解:在y=2x−3中令y=0解得:x=−3则D的坐标是(−3,0).即OD=3.则S△AOD=12×3×2=3.设直线OA的解析式为y=kx△点A(2,1)△k=12△直线OA为y=12x过点D作DM∥OA交反比例函数图象于M△直线DM为y=12x−3解{y =12x −3y =2x得:x =3±√13 即点M 的横坐标为:x =3±√13;在AO 上方取点N 使ON =OD 过点N 作直线n∥OA 则直线n 和抛物线的交点也为点M (M ′) 同理可得 点M ′的横坐标为x =−3±√13;综上 点M 的横坐标为:x =3±√13或x =−3±√13; (3)解:当射线AC 逆时针旋转时 如下图: 由点A D 的坐标得设直线AQ 交y 轴于点N 过点N 作NH ⊥AB 于点H 则tan∠NAH =tanα由直线AD 的表达式知 tan∠OCD =2 则tan∠ODC =12在△ADN 中设HN =m 则DH =2m 则ND =√5m 则tanα=HN AH=2√5+2m=13解得:m =2√5 则ND =√5m =10 则点N(0,−13)由点A N 的坐标得 直线AN (AQ )的表达式为:y =7x −13 联立y =7x −13和反比例函数表达式得:7x −13=2x解得:x=−17或2(舍去)则点Q(−17,−14);当射线AC顺时针旋转时同理可得:AQ的表达式为:y=x−1联立y=x−1和反比例函数表达式得:x−1=2x解得:x=−1或2(舍去)则点Q(−1,−2)综上点Q的坐标为:(−17,−14)或(−1,−2).【点睛】本题考查的是反比例函数综合运用涉及到解直角三角形图象的旋转平行线的性质等分类求解是本题解题的关键.13.(1)k=2;(2)OA的长度为√104πOM=53;(3)S1+S2=58π−512.【分析】(1)利用待定系数法即可求解;(2)设AO所在圆的圆心为O1连接OO1利用正方形性质求出OA的半径r=√102即可求出OA的长度过点B作BE⊥x轴于E过点A作AF⊥y轴于F证明△BOE≌△AOF求出B(2,−1)设直线AB的解析式为y=ax+b求出直线AB的解析式即可求解;(3)利用S1+S2=14πr2+S△O1OB−S△AOM解答即可求解.【详解】(1)解:△A(1,2)在反比例函数y=kx的图象上△k=1×2=2;(2)△四边形ABCD为正方形且AC为对角线△OA=√12+22=√5AB=√10∠AOB=90°如图设AO所在圆的圆心为O1连接OO1△OA=OB△OO1⊥AB△∠AO1O=∠BO1O=90°△AB 为直径 △OA 的半径r =√102△OA 的长度为14×2π×r =√104π 过点B 作BE ⊥x 轴于E 过点A 作AF ⊥y 轴于F 则∠OEB =∠OFA =90° △∠AOF +∠AOM =90° △∠BOE =∠AOF 在△BOE 和△AOF 中{∠OEB =∠OFA =90°∠BOE =∠AOF BO =AO△△BOE ≌△AOF (AAS ) △BE =AF =1 △B (2,−1)设直线AB 的解析式为y =ax +b 把A (1,2) B (2,−1)代入得{2=a +b −1=2a +b解得{a =−3b =5直线AB 的解析式为y =−3x +5 当y =0时 △M (53,0)△OM =53;(3)解:△S 1+S 2=14πr 2+S △O 1OB −S △AOM△S1+S2=14π×(√102)2+12×√102×√102−12×53×2=58π−512.【点睛】本题考查了反比例函数的几何综合应用正方形的性质勾股定理全等三角形的判定和性质待定系数法求函数解析式一次函数与x轴的交点求不规则图形面积求出点B的坐标是解题的关键.14.(1)(1,−3)(2)此时t的值为92;反比例函数解析式为y=6x;(3)存在满足要求点Q的坐标为(34,8)或(32,4)或(−32,−4)【分析】(1)过点D作DE⊥x轴于点E过点B作BF⊥x轴于点F由正方形的性质结合同角的余角相等即可证出△ABE≌△DAF从而得出DE=AF AE=BF再结合点A D的坐标即可求出点B的坐标;(2)设反比例函数为y=kx根据平行的性质找出点B′D′的坐标再结合反比例函数图象上点的坐标特征即可得出关于k t的二元一次方程组解方程组解得出结论;(3)先求出点B′D′的坐标再分三种情况利用平行四边形的对角线互相平分建立方程求解即可得出结论.【详解】(1)如图过点B作BE⊥y轴垂足为点E过点D作DF⊥y轴垂足为点F则∠AEB=DFA= 90°∵点A的坐标为(0,6)D的坐标为(3,−7)∴DF=3∵四边形ABCD是正方形∴AB=AD∴∠DAF+∠BAE=∠DAF+∠ADF=90°∴∠BAE=∠ADF∴△ABE≌△DAF∴DF=AE=3∴OE=OA−AE=3所以点B的坐标为(1,−3);(2)由题意得正方形ABCD沿y轴向上平移了2t个单位长度.∵点B的坐标为(1,−3)D的坐标为(3,−7)∴B′和D′的坐标分别为B′(1,−3+2t)设点B′D′落在反比例函数y=kx(k≠0)的图像上则k=1×(−3+2t)=3×(−7+2t)解得t=92所以解得k=6即这个反比例函数的表达式为y=6x;(3)存在x轴上的点P和反比例函数图像上的点Q使得以P Q B′D′四点为定点的四边形是平行四边形.设P(n,0)由(2)知B′和D′点的坐标分别为B′(1,6)当B′D′为平行四边形的边时则PQ△B′D′∴点Q的坐标为(n+2,4)或(n−2,−4)把Q(n+2,4)代入y=6x 中得4(n+2)=6解得n=−12∴点Q的坐标为(32,4)把Q(n−2,−4)代入y=6x 中得4(n−2)=−6解得n=12∴点Q的坐标为(−32,−4);当B′D′为平行四边形的对角线时则B′D′的中点坐标为(2,4)∴PQ的中点坐标为(2,4)∴Q点的坐标为(−4−n,8)把Q点坐标带入y=6x 中得8(−n−4)=6解得n=−194∴点Q的坐标为(34,8)综上所述满足要求的点Q的坐标为(34,8)或(32,4)或(−32,−4)【点睛】本题考查了是反比例函数与正方形结合的综合题主要考查了反比例函数的图象与性质待定系数法全等三角形的性质与判定平行四边形的性质解题的关键是证明全等三角形和分情况讨论.15.(1)y=2x(2)存在(√62,√6)或(−√62,−√6).(3)(√2,√2)【分析】本题考查反比例函数与一次函数的综合应用正确的求出函数解析式利用数形结合的思想进行求解是解题的关键.(1)待定系数法求函数解析式即可;(2)分割法求出△OAB的面积设点M为(m,2m)利用面积公式列式计算即可;(3)根据OM最小时平行四边形的周长最小进行求解即可.【详解】(1)解:设正比例函数的解析式为y=kx反比例函数的解析式为y=mx△正比例函数和反比例函数的图象都经过点A(−1,−2)△−k=−2,m=−1×(−2)=2△k=2△正比例函数的解析式为y=2x反比例函数的解析式为y=2x.(2)△A(−1,−2)△S△OAB=2×2−12×1×2×21×1×1=32设点M为(m,2m)则:12|m|×|2m|=32△m=±√62所以点M的坐标为(√62,√6)或(−√62,−√6).(3)△B(−2,−1)△OB=√12+22=√5△当OM最短时平行四边形的周长最小设点M为(x,y)则:xy=2△OM=√x2+y2≥√2xy=2△平行四边形BOMC的周长最小是2(√5+2)=2√5+4此时点M的坐标为(√2,√2).16.(1)y=16x(2)12(3)8【分析】本题考查了反比例函数与一次函数的综合题目涉及求函数解析式两函数交点问题等腰直角三角形的判定和性质熟练掌握知识点是解题的关键.(x>0,k>0)求出n的值进而得出A点坐标(1)将点A(n,n)点B(2n,n−2)代入反比例函数y=kx利用待定系数法即可求函数解析式再根据过点B作y轴的平行线可得点B D的横坐标相同代入正比例函数解析式求解即可;(2)过点B作BN⊥x轴于点N过点A作AM⊥BN轴于点M根据S△AOB=S梯形AONM−S△ONB−S△ABM求解即可;(3)设E(t,t)则OF=EF=t进而证明△OEF是等腰直角三角形△PEG是等腰直角三角形设EG= PG=k则P(t+k,t−k)将其代入反比例函数解析式可得t2−k2=16进而求解即可.(x>0,k>0)图象上【详解】(1)△点A(n,n)点B(2n,n−2)反比例函数y=kx△k=n2=2n(n−2)解得n=4或0(舍去)△A(4,4),B(8,2),k=16△反比例函数解析式为y=16x将A(4,4)代入y=ax(a>0)得a=1△正比例函数解析式为y=x△过点B作y轴的平行线△点B D的横坐标相同当x=8时△D(8,8);(2)过点B作BN⊥x轴于点N过点A作AM⊥BN轴于点M。

专题. 反比例函数(对称性问题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)

专题. 反比例函数(对称性问题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)

专题11.23反比例函数(对称性问题)(基础篇)(专项练习)反比例函数图象是中心对称图形,同时也是轴对称图形,其对称中心是坐标原点,其对称轴是y=x 和y=-x ,近些年,此知识点成了中考中的热点,更是压轴题的常考点,这些题型不仅利用双曲线的对称性,还综合了关于某直线对称和特殊四边形的对称性问题,为此,本专题精选部分有代表性的题型供师生选择使用。

一、单选题1.已知点()13A -,关于y 轴的对称点A '在反比例函数ky x=的图象上,则实数k 的值为()A .3B .13C .﹣3D .﹣132.如图,A ,B 是函数y =mx(m >0)的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则()A .S m =B .2S m =C .2m S m <<D .2S m>3.若点()32A --,关于x 轴的对称点A '恰好在反比例函数()0ky k x=≠的图象上,则k 的值为()A .6B .1-C .5-D .6-4.如图,1l 是反比例函数ky x=在第一象限内的图象,且经过点A (1,2).1l 关于x 轴对称的图象为2l ,那么2l 的函数解析式为()A .()40y x x =<B .()20y x x =<C .4(0)y x x =->D .2(0)y x x=->5.设A ,B 是反比例函数32y x=-的图象上关于原点对称的两点,AD 平行于y 轴交x 轴于D ,BC 平行于x 轴交y 轴于C ,设四边形ABCD 的面积S ,则()A .32s =B .34s =C .94s =D .6s =6.已知点()1,P a 在反比例函数3y x=的图象上,则点P 关于原点对称的点的坐标是()A .()1,3B .()1,3-C .()3,1-D .()1,3--7.如图,在平面直角坐标系中,点O 为坐标原点,点A (﹣3,0)和点B (0,2)都在坐标轴上,若反比例函数y =kx的图象经过矩形AOBC 的对称中心,则k 的值为()A .3B .﹣3C .1.5D .﹣1.58.如图,边长为8的正方形ABCD 的对称中心是坐标原点O ,AB //x 轴,BC //y 轴,反比例函数8y x =与8y x=-的图象均与正方形ABCD 的边相交,则图中阴影部分的面积之和是()A .8B .16C .32D .649.如图,在平面直角坐标系中,O 为ABCD Y 的对称中心,5AD =,//AD x 轴交y 轴于点E ,点A 的坐标点为()2,2-,反比例函数ky x=的图像经过点D .将ABCD Y 沿y 轴向上平移,使点C 的对应点C '落在反比例函数的图像上,则平移过程中线段AC 扫过的面积为()A .6B .8C .24D .2010.已知一个函数中,两个变量x 与y 的部分对应值如下表:如果这个函数图象是轴对称图形,那么对称轴可能是()A .x 轴B .y 轴C .直线x =1D .直线y =x二、填空题11.在平面直角坐标系中,若点()1,2P a +与点()1,1Q b -关于原点对称,则经过(),a b 的反比例函数解析式是______.12.如图,点D 是矩形AOBC 的对称中心,()0,6A ,()8,0B ,若反比例函数ky x=的图象经过点D ,交AC 于点M ,则点M 的坐标为______.13.已知点()112,P y 、点()22,3P x 是同一个反比例函数()22220my m x-=-≠图象上的两点.若点1P 与2P 关于原点对称,则m 的值为______.14.如图,点A 、C 是反比例函数图象上的点,且关于原点对称.过点A 作AB x ⊥轴于点B ,若ABC 的面积为7,则反比例函数的表达式为__________.15.如图,点D 是矩形ABCO 的对称中心,点()6,0A ,()0,4C ,经过点D 的反比例函数的图象交AB 于点P ,则点P 的坐标为______.16.已知点A (−2,m )在一个反比例函数的图象上,点A ′与点A 关于y 轴对称.若点A ′在正比例函数12y x =的图象上,则这个反比例函数的表达式为_______.17.已知A 、B 两点分别在反比例函数2(0)m y m x=≠和611(6m y m x -=≠的图像上,若点A 与点B 关于x 轴对称,则m 的值为______.18.如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数()0ky x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y =x 的对称点C '的坐标为(1,n )(n ≠1),若△OAB 的面积为3,则k 的值为_______三、解答题19.如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图像与反比例函数4y x=-的图像相交于(),1A m ,()1,B n -两点.(1)求一次函数的解析式,并在网格中画出一次函数的图像;(2)结合图像,请直接写出不等式4kx b x-≤+的解集;(3)点C 与点B 关于原点对称,求ABC 的面积.20.如图,反比例函数()1110,0k y k x x=>>与正比例函数22y k x =交于点A ,点A 是点B 关于y 轴的对称点,点B 的坐标为()1,2-.(1)求1k 的值;(2)若将正比例函数22y k x =的图象向下平移2个单位长度得到函数33y k x b =+,求此函数的表达式.21.如图,在平面直角坐标系中,已知点(0,4)A ,(3,0)B -,(2,0)C ,点D 为点B 关于AC 所在直线的对称点,反比例函数(k 0,x 0)ky x=≠>的图像经过点D .(1)求证:四边形ABCD 为菱形;(2)求反比例函数的表达式.22.在平面直角坐标系中,设函数:11k y x=(1k 是常数,10k >,0x >)与函数,22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .若点B 的坐标为()1,2-.(1)求1k ,2k 的值;(2)当12y y ≤时,直接写出x 的取值范围.23.如图,反比例函数4y x=与一次函数()0y ax b a =+≠交于()()4,,,2A m B n -两点.(1)求一次函数的解析式,并在网格中画出一次函数的图象;(2)根据函数图象,直接写出关于x 的不等式4xax b ≤+的解集;(3)若点A 关于x 轴的对称点为点D ,求ABD △的面积.24.探究函数性质时,我们经历了列表、描点、连线画出函数图像,观察分析图像特征,概括函数性质的过程.结合已有的学习经验,请画出函数262y x =-+的图像并探究该函数的性质.x…4-3-2-1-01234…y …13-a 1-2-b 2-1-611-13-…(1)列表,写出表中a ,b 的值:=a __________,b =_________;描点、连线,在所给的平面直角坐标系中画出该函数的图像;(2)观察函数图像,判断下列关于函数性质的结论是否正确,请把正确结论的序号填在横线上.正确的结论是__________.①函数262y x =-+的图像关于y 轴对称;②当0x =时,函数262y x =-+有最小值,最小值是3-;③在自变量x 的取值范围内,函数y 的值随自变量x 的增大而增大;④函数262y x =-+与x 轴必有两个交点;(3)已知函数1533y x =--的图像如图所示,结合所画的函数图像,直接写出不等式2615233x x -<--+的解集.参考答案1.A【分析】根据对称的性质得到点()13A '--,,代入解析式即可求出k .解:∵点A '与点()13A -,关于y 轴的对称,∴点()13A '--,,∵点()13A '--,在反比例函数()0ky k x=≠的图象上,∴()()133k =-⨯-=,故选:A .【点拨】此题考查了关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标相等,利用待定系数法求反比例函数的解析式.2.B【分析】根据A 、B 两点在曲线上可设A 、B 两点的坐标,再根据三角形面积公式列出方程,即可得到答案.解:设点A (x ,y ),则点B (-x ,-y ),∴xy =m ,∴AC =2y ,BC =2x ,∴11222222ABC S AC BC y x xy m ==== ,故选:B .【点拨】本题考查反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数关系式得到所求三角形的两直角边的积.3.D【分析】根据对称性求出点A '的坐标,把点A '的坐标代入反比例函数()0ky k x=≠可求出k 的值.解:∵点A '与点()32A --,关于x 轴对称,∴点()32A '-,,又∵点()32A '-,在反比例函数()0ky k x=≠的图象上,∴()326k =-⨯=-,故选:D .【点拨】本题考查轴对称的坐标变化,反比例函数图象上点的坐标特征,求出点的坐标是解决问题的关键.4.D【分析】写出点A (1,2)关于x 轴对称的点的坐标(1,-2),求出经过这点的反比例函数的解析式.解:点A(1,2)关于x轴对称的点的坐标为(1,-2),设2l的解析式为'kyx =,则' 21k-=,'2 k=-,∴2yx=-(x>0).故选D.【点拨】本题考查了关于x轴对称点的坐标和反比例函数,熟练掌握关于x轴对称的点的坐标特征,用待定系数法求反比例函数解析式,是解决此类问题的关键.5.C【分析】根据反比例函数y=kx中k的几何意义,图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系S=12|k|即可解答.解:设点A的坐标为(x,y),点A在反比例函数解析式上,∴点B的坐标为(-x,-y),k=xy=(-x)(-y)=-3 2,∵AD平行于y轴,BC平行于x轴,∴OD=|x|,AD=|y|,OC=|y|,BC=|x|,∴S=△ADO+S△DOC+S△BCO=12|xy|+12|xy|+12|xy|=12×32+12×32+12×32=94.故选:C .【点拨】此题主要考查反比例函数的比例系数的意义;用到的知识点为:关于原点对称的点的横坐标互为相反数,纵坐标互为相反数;在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.6.D【分析】将点的坐标代入求解,根据坐标关于原点的对称规律直接求解即可.解:将()1,P a 代入3y x =,则331a ==,那么()1,3P ,则点()1,3P 关于原点对称的点的坐标()1,3--故选:D【点拨】此题考查反比例函数上的点的坐标,解题关键是明确关于原点对称的点的坐标规律.7.D【分析】先求出矩形的中心点,然后根据待定系数法即可求得.解:∵点A (-3,0)和点B (0,2)都在坐标轴上,∴矩形AOBC 的中心点为(32-,1),∵反比例函数y =k x的图象经过矩形AOBC 的对称中心,∴k =33122-⨯=-,故选:D .【点拨】本题考查了待定系数法求反比例函数的解析式,求得矩形的中心点是解题的关键.8.C【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,且AB ∥x 轴,BC ∥y 轴,而正方形面积为64,由此可以求出阴影部分的面积.解:根据题意:观察图形可得,图中以B 、D 为顶点的小阴影部分,绕点O 旋转90度,正好和以A 、C 为顶点的小空白部分重合,所以阴影的面积是图中正方形面积的一半,且AB ∥x 轴,BC ∥y 轴,反比例函数8y x =与8y x=-的图象均与正方形ABCD 的边相交,而边长为8的正方形面积为64,所以图中的阴影部分的面积是32.故选:C.【点拨】本题主要通过橄榄形面积的计算来考查反比例函数图象的应用,关键是要分析出其图象特点,再结合性质作答.9.D【分析】根据O为▱ABCD的对称中心,AD=5,AD∥x轴交y轴于点E,点A的坐标为(-2,2),可求点C、D的坐标,进而求出反比例函数的关系式,由平移可求出点'C的坐标,知道平移的距离,即平行四边形的底,再根据面积公式求出结果.解:∵AD=5,AD∥x轴交y轴于点E,点A的坐标为(-2,2),∴DE=5-2=3,OE=2,∴D(3,2),把(3,2)D代入反比例函数的关系式得,k=2×3=6,∵O为▱ABCD的对称中心,点A的坐标为(-2,2),∴点C的坐标为(2,-2),当x=2时,y=63 2=,∴点'C(2,3)∴C'C=CF+F'C=2+3=5,'CC上的高是是4,∴平行四边形AC'C N的面积为5420,⨯=∴平移过程中线段AC 扫过的面积为20.故选:D .【点拨】考查反比例函数的图象和性质,平行四边形的性质及面积,将点的坐标转化为线段的长是常用的方法,将AC 平移后扫过的面积就是平行四边形AC 'C N 的面积是关键.10.D【分析】根据题意可得y 与x 的函数关系式,进一步即可进行判断.解:由表格中的数据可得y 与x 的函数关系式为:1y x=,其图象是双曲线,是轴对称图形,对称轴是直线:y =x 和y =-x .故选:D.【点拨】本题考查了反比例函数的图象与性质以及函数解析式的确定,解题的关键是正确求得反比例函数的解析式、熟练掌握反比例函数的图象与性质.11.2y x =【分析】根据关于原点对称的坐标特点列式求出a 、b 的值,然后利用待定系数法求反比例函数解析式即可.解:∵点()1,2P a +与点()1,1Q b -关于原点对称,∴11a +=-,12b -=-,解得2a =-,1b =-,∴(),a b 即()2,1--,设()0k y k x=≠,∴()()212k =-⨯-=,∴反比例函数解析式是2y x=.故选:2y x =.【点拨】本题考查了关于原点对称的坐标特点和利用待定系数法求反比例函数解析式,熟练掌握关于原点对称的坐标特点和待定系数法是解题的关键.12.()2,6【分析】根据矩形的性质得到()4,3,6D OA =,OB AC ,将()4,3D 代入k y x =,求出反比例函数的解析式,再计算6y =时的x 值即可得到点M 的坐标.解:∵点D 是矩形AOBC 的对称中心,()0,6A ,()8,0B ,∴()4,3,6D OA =,OB AC ,将()4,3D 代入k y x =,得4312k =⨯=,∴12y x=,当6y =时,126x =,解得2x =,∴M 的坐标为()2,6,故答案为:()2,6.【点拨】此题考查了矩形的性质,待定系数法求反比例函数的解析式,正确理解矩形的性质得到点()4,3D 的坐标是解题的关键.13.±【分析】关于原点对称的两个点,其横坐标互为相反数,纵坐标也互为相反数,由此求解.解: 11(2,)P y 与22(,3)P x 关于原点对称,∴22x =-,13y =-,∴1(2,3)P -,2(2,3)P -,点1(2,3)P -在反比例函数22m y x-=的图象上,∴22(3)2m ⨯-=-,解得m =±故答案为:±.【点拨】本题考查了待定系数法求反比例函数解析式,坐标与中心对称的性质,熟练掌握相关性质是解题的关键.14.7y x=【分析】设反比例函数的表达式为k y x =,点A 的坐标为k a a ⎛⎫ ⎪⎝⎭,,即可表示出点B 和点C 的坐标,那么ABC 的面积就可以表示为122k a a⋅⋅,即可求解.解:设反比例函数的表达式为k y x =,点A 的坐标为k a a ⎛⎫ ⎪⎝⎭,,则点C 的坐标为k a a ⎛⎫-- ⎪⎝⎭,,点B 的坐标为()0a ,,∴ABC 的面积可以表示为122k a a⋅⋅,∵ABC 的面积为7,即1272k a a⋅⋅=,解得 7k =,∴反比例函数的表达式为7y x=,故答案为:7y x =.【点拨】本题考查反比例函数的图象与性质,掌握反比例函数的中心对称性,表示出点C 的坐标,是解决本题的关键.15.()6,1【分析】先求得D 点的坐标,然后根据待定系数法求得反比例函数的解析式,把6x =代入解析式即可求得点P 的坐标.解: 点D 是矩形ABCO 的对称中心,∴点D 是矩形OABC 的对角线AC 的中点,又()6,0A ,()0,4C ,∴点D 的坐标为()3,2.反比例函数k y x=的图象经过点D ,326k ∴=⨯=,6y x∴=,把6x =代入得,616y ==,∴点P 的坐标为()6,1.故答案为:()6,1.【点拨】本题考查了反比例函数图象上点的坐标特征,矩形的性质,待定系数法求反比例函数的解析式,求得点D 的坐标是解题的关键.16.y =2x-【分析】根据点A 与点A ′关于y 轴对称,得到A ′(2,m ),由点A ′在正比例函数12y x =的图象上,求得m 的值,再利用待定系数法求解即可.解:∵点A 与点A ′关于y 轴对称,且A (−2,m ),∴A ′(2,m ),∵点A ′在正比例函数12y x =的图象上,∴m =12×2,解得:m =1,∴A (−2,1),设这个反比例函数的表达式为y =k x,∵A (−2,1)在这个反比例函数的图象上,∴k =-2×1=-2,∴这个反比例函数的表达式为y =2x-,故答案为:y =2x-.【点拨】本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特征,解答本题的关键是明确题意,求出m 的值.17.18##0.125【分析】先设A 、B 的坐标,然后把A 、B 的坐标代入函数关系式,列出方程组,解方程组即可.解:根据题意设A (a ,b ),则B (a ,-b ),则有:261m b a m b a ⎧=⎪⎪⎨-⎪-=⎪⎩,所以261m m a+-=0,即8m -1=0,解得18m =.故答案为18.【点拨】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得261m m a+-=0,即8m -1=0是解题的关键.18.3【分析】连接OC ,由C 是线段AB 的中点,可得1322AOC OAB S S == ,然后根据比例系数k 的几何意义即可求得答案.解:如图,连接OC,∵C 是线段AB 的中点,∴1322AOC OAB S S == ,∵1322AOC k S ==△,0k >,∴3k =.故答案为:3.【点拨】本题主要反比例函数的比例系数k 的几何意义、与中线有关的三角形的面积关系,熟记反比例函数的比例系数k 的几何意义是解题的关键.19.(1)5y x =+,一次函数的图像见分析;(2)41x --≤≤或0x >;(3)15【分析】(1)将点(),1A m ,点()1,B n -代入4y x =-中得4141m n ⎧-=⎪⎪⎨⎪-=⎪-⎩解得,44m n =-⎧⎨=⎩,则点A 的坐标为:(4,1)-,点B 的坐标为(1,4)-,将点(4,1)A -和(1,4)B -代入()0y kx b k =+≠中得414k b k b -+=⎧⎨-+=⎩,解得,15k b =⎧⎨=⎩,即可得一次函数解析式为:5y x =+;(2)观察函数图像,即可得不等式4kx b x-≤+的解集是41x --≤≤或0x >;(3)根据点C 与点B 关于原点对称得点C 的坐标为(1,4)-,根据网格和勾股定理得AB ==,AC ==BC ==222AB AC BC +=,即ABC 是直角三角形,即可得.(1)解:将点(),1A m ,点()1,B n -代入4y x=-中,4141m n ⎧-=⎪⎪⎨⎪-=⎪-⎩解得,44m n =-⎧⎨=⎩,则点A 的坐标为:(4,1)-,点B 的坐标为(1,4)-,将点(4,1)A -和(1,4)B -代入()0y kx b k =+≠中,414k b k b -+=⎧⎨-+=⎩,解得,15k b =⎧⎨=⎩,即一次函数解析式为:5y x =+,函数图像如下:(2)解:观察函数图像,不等式4kx b x-≤+的解集是41x --≤≤或0x >;(3)解:∵点C 与点B 关于原点对称,∴点C 的坐标为(1,4)-,三角形ABC 如图所示,∵223318AB =+=,225550AC =+=222868BC =+=∴222AB AC BC +=,即ABC 是直角三角形,∴1111850325215222ABC S AB AC =⨯⨯==⨯=△.【点拨】本题考查了反比例函数,一次函数,函数与不等式,三角形的面积,勾股定理,关于原点对称,解题的关键是掌握反比例函数,一次函数,函数与不等式,勾股定理.20.(1)12k =;(2)322y x =-.【分析】(1)先求出()1,2A ,再将()1,2A 代入11k y x=,得1122k =⨯=;(2)求出正比例函数解析式为22y x =,再利用平移的规律解答即可.(1)解:∵点A 和点B 关于y 轴对称,()1,2B -,∴()1,2A ,把()1,2A 代入11k y x=,得1122k =⨯=.(2)解:把()1,2A 代入22y k x =,得22k =,∴直线的表达式为22y x =,∵33y k x b =+是由22y x =向下平移2个单位长度得到,∴322y x =-.【点拨】本题考查反比例函数和一次函数的综合,点关于y 轴对称的性质,一次函数的平移,解题的关键是掌握待定系数法求解析式,点关于y 轴对称的性质以及一次函数的平移.21.(1)证明见分析;(2)20y x=【分析】(1)根据(0,4)A ,(3,0)B -,(2,0)C 即可得5AB =,5BC =,根据D 点为B 点关于AC 所在直线的对称点得5AD AB ==,5CD CB ==,可得AB BC CD DA ===,即可得;(2)根据四边形ABCD 为菱形,得AD BC ∥,根据5AD =,(0,4)A 得(5,4)D ,把(5,4)D 代入k y x=得5420k =⨯=,即可得.解:(1)证明:∵(0,4)A ,(3,0)B -,(2,0)C ,∴5AB =,5BC =,∵D 点为B 点关于AC 所在直线的对称点,∴5AD AB ==,5CD CB ==,∴AB BC CD DA ===,∴四边形ABCD 为菱形;(2)解:∵四边形ABCD 为菱形,∴AD BC ∥,又∵5AD =,(0,4)A ,∴(5,4)D ,把(5,4)D 代入k y x=得5420k =⨯=,∴反比例函数的表达式为20y x =.【点拨】本题考查了勾股定理,菱形的判定与性质,反比例函数的性质,解题的关键是掌握这些知识点.22.(1)1k 的值为2,2k 的值为2;(2)1x ≥【分析】(1)求得A 的坐标,分别代入11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠),即可求得1k ,2k 的值;(2)根据图象即可求得.解:(1)∵点()1,2B -,∴点()1,2A ,把()1,2A 代入11k y x=得12k =,把()1,2A 代入22y k x =得22k =,∴1k 的值为2,2k 的值为2(2)由图象可知:1x ≥【点拨】本题考查一次函数与反比例函数的关系式,解题的关键是根据图象,求出点的坐标,进而求出关系式.23.(1)112y x =-;图象见分析;(2)20x -≤<或4x ≥;(3)6【分析】(1)利用待定系数法求出一次函数解析式,再利用两点法画出函数图象,即可求解;(2)由图象可知,关于x 的不等式4xax b ≤+的解集为20x -≤<或4x ≥,即可;(3)根据点A 关于x 轴的对称点为点D ,可得2AD =,再由三角形的面积公式,即可求解.(1)解:∵点()()4,,,2A m B n -在反比例函数4y x =的图象上,∴414m ==,42n-=∴2n =-,∴()()4,1,2,2A B --.把A 、B 的坐标代入()0y ax b a =+≠得∶4122a b a b +=⎧⎨-+=-⎩,解得121a b ⎧=⎪⎨⎪=-⎩,∴一次函数表达式为112y x =-,在网格中画出一次函数的图象如图:(2)解:由图象可知,关于x 的不等式4xax b ≤+的解集为20x -≤<或4x ≥;(3)解:∵()4,1A ,∴()4,1D -,∴2AD =,∴()124262ABD S ⨯=⨯+= .【点拨】本题是反比例函数与一次函数的交点问题,考查反比例函数图象上点的坐标特征以及待定系数法求函数解析式,三角形的面积,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.24.(1)611-;3-;图见分析;(2)①②;(3)<4x -或2<<1x -【分析】(1)已知解析式,代入x 的值,即可算出对应的y 值,即可得出答案;(2)结合图像即可分析函数的对称性、增减性、最值、交点问题;(3)结合图像分析不等式与函数的关系,即可得出结论.(1)函数262y x =-+,令3x =-,可得611y =-,故611a =-;令0x =,可得=3y -,故3b =-,故答案为:611-;3-.描点、连线,在画出该函数的图像如下:(2)由函数的图像可得:①函数262y x =-+的图像关于y 轴对称,①正确;②当0x =时,函数262y x =-+有最小值,最小值是3-,②正确;③自变量0x >时,函数y 的值随自变量x 的增大而增大;自变量0x <时,函数y 的值随自变量x 的增大而减小,③错误;④由于2602y x =-+<恒成立,故函数的图像与x 轴不可能有交点,④错误,故答案为:①②.(3)不等式2615233x y x --+<-表现在图像上,即函数262y x =-+的图像比函数1533y x =--的图像低,因此观察图像可得到2615233x y x --+<-的解集为:<4x -或2<<1x -.【点拨】本题考查了新函数的研究方法,在学习一次函数,反比例函数以及二次函数时的通用方法是本题解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学反比例函数随堂练习58
一、选择题(共5小题;共25分)
1. 下列函数中,是的反比例函数的是
A. B. C. D.
2. 下列函数:①;②;③;④,其中是的反比例函数
的有
A. 个
B. 个
C. 个
D. 个
3. 正比例函数与反比例函数在同一直角坐标系内的大致图象可以是
A. B.
C. D.
4. 将函数的图象沿轴向右平移个单位长度,得到的图象所相应的函数表达式是
A. B. C. D.
5. 如图,在以为原点的直角坐标系中,矩形的两边,分别在轴、轴的正
半轴上,反比例函数与相交于点,与相交于点,若,且的面积是,则的值是
A. B. C. D.
二、填空题(共4小题;共20分)
6. 如图,直线轴于点,且与反比例函数及的图象分
别交于点,,连接,,已知的面积为,则.
7. 如图,平行四边形中,对角线交于点,双曲线经过,两点.若
平行四边形的面积为,则.
8. 如图,矩形的顶点,在轴上,且关于轴对称,反比例函数
的图象经过点,反比例函数的图象分别与,交于点,,若,,则等于.
9. 反比例函数的图象在第二、四象限,则的值可以为.(写出一个符合条件的
的值即可)
三、解答题(共4小题;共52分)
10. 已知点,,.
(1)如果这三点都在反比例函数的图象上,比较,,的大小.
(2)如果这三点都在反比例函数的图象上,那么,,的大小关系又如何呢?
11. 如图,在平面直角坐标系中,已知点,,点在轴负半轴,
,求点的坐标.
12. 如图所示,直线与反比例函数的图象在第一象限的交
点为,与轴、轴分别交于点和点,且,过点作轴的垂线,垂足为点
,连接.
(1)求一次函数的解析式;
(2)若,求反比例函数的关系式.
13. 设函数.当取何值时,它是反比例函数?它的图象位于哪些象限内,
在每个象限内,当的值增大时,对应的值是随着增大,还是随着减小?
答案
第一部分
1. A
2. B
3. C
4. B
5. C
【解析】四边形是矩形,
,,
设点的坐标为,


点,在反比例函数的图象上,



第二部分
6.
7.
【解析】由题意设,.
点是的中点,

点在上,





8.
【解析】设的坐标为,则为,其中,即,
根据题意得到,,,,
矩形的面积,





把代入上式,得到,
,,.
【解析】反比例函数图象在二、四象限,

可以是
(答案不唯一,是负数即可).
第三部分
10. (1)当时,;
当时,;
当时,.
因为,
所以.
(2)当时,;
当时,;
当时,.
因为,
所以.
11. 作轴于点,轴于点,

设,
列方程,
得,

12. (1)将代入得,



即,
将代入,得.
一次函数的解析式为.
(2)点在直线上,
设点坐标为,



解之得,(舍去),


反例函数的解析式为.
13. 依题意,得解得.
当时,该函数是反比例函数,即,它的图象在第一、三象限内.
由知,在每个象限内,当的值增大时,对应的值随着减小.。

相关文档
最新文档