最新3[1]1微分中值定理及其应用汇总
3_1 微分中值定理与导数应用

罗尔(Rolle)定理 罗尔( ) 设函数 f ( x ) 满足条件: 满足条件: (1) f ( x )在闭区间[a , b] 上连续; 上连续; (2) 内可导; f ( x ) 在开区间 ( a , b ) 内可导; (3) 在区间端点的函数值相等,即 f (a ) = f (b ), 在区间端点的函数值相等, 那末在 ( a , b ) 内至少有一点ξ ( a < ξ < b ), 使得函数 在该点的导数等于零, f ( x ) 在该点的导数等于零,即
利用泰勒公式证明不等式
上二阶可导, 例1 设函数 y = f ( x ) 在区间 [0,1]0, max f ( x ) = 2, 证明在 证明在(0,1)至少存在一 至少存在一
0 ≤ x ≤1
点 ξ , 使得 f ′′(ξ ) ≤ −16. 证
0 ≤ x ≤1
矛盾, 但 f ′( x ) = 5( x 4 − 1) < 0, ( x ∈ (0,1)) 矛盾,∴ 为唯一实根 .
拉格朗日(Lagrange)中值定理 拉格朗日(Lagrange)中值定理 (Lagrange)
如果函数f 满足下列条件 如果函数 (x)满足下列条件 (1) 在闭区间 b]上连续; 在闭区间[a, 上连续 上连续; (2)在开区间(a, b)内可导; )在开区间( )内可导; 那末在(a , b ) 内至少有一点ξ ( a < ξ < b ), 使等式 f ( b ) − f (a ) = f ′(ξ )(b − a ) 成立. 成立.
即
f ′(ξ ) = 2ξ [ f (1) − f ( 0)].
泰勒(Taylor)中值定理 泰勒(Taylor)中值定理 (Taylor)
微分中值定理及其应用

第2章 微分和微分法·导数的简单应用90 §2-4 微分中值定理及其应用读者知道,常数(作为区间上的常值函数)的导数恒等于零,那么相反的结论也是正确的吗?又当函数)(x f 在区间),(b a 内单调增大时,由于0(0)()()0(0)x f x x f x x ≥∆>⎧+∆-⎨≤∆<⎩, 从而0)()(≥∆-∆+x x f x x f , 所以它的导数(若存在的话)()()()lim0∆→+∆-'=≥∆x f x x f x f x x那么反过来,若)(0)(b x a x f <<≥'时,函数)(x f 在区间),(b a 内一定是单调增大的吗?要回答这样的问题,就要用到微分学中最重要的一个定理,即微分中值定理(或称拉格朗日中值定理).1.微分中值定理 为了证明微分中值定理,通常都是先证明罗尔定理作为引理. 罗尔定理 若函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内有导数,且0)()(==b f a f ,则至少有一点),(b a c ∈,使()0f c '=(图2-14)(*).证 因为函数)(x f 在闭区间],[b a 上连续,所以它在区间],[b a 上有最大值M 和最小值m .若=m M ,则()0()≡≤≤f x a x b ,结论显然成立;若<m M ,则)(x f 在区间),(b a 内某点c 取到最大值或最小值(即不可能同时在两个端点上取到最大值和最小值).根据定理2-1,有()0f c '=.【注】下面的结论有时也称为罗尔定理: 设函数()f x 在闭区间[,]a b 上连续且()()f a f b =.若()f x 在开区间(,)a b 内有导数,则至少有一点(,)c a b ∈,使()0f c '=.(图2-15)只要作辅助函数()()()F x f x f a =-,则()()0F a F b ==.根据已证的罗尔定理,就会有点),(b a c ∈,使()()0F c f c ''==.微分中值定理 若函数)(x f 在闭区间],[b a 上连续且在开区间),(b a 内有导数,则至少有一点),(b a c ∈使)()()()(b c a ab a f b fc f <<--=' (2-6)(*)罗尔一生从未接受微积分.他是一个代数学家.他可能是在研究代数方程的根时得出类似的结论.后来人们习惯上称它为罗尔定理(他的结论不可能是这种形式).)图2-14)§2-4 微分中值定理及其应用 91特别,当)()(b f a f =时,它就是罗尔定理(见罗尔定理后的注).因此,微分中值定理是罗尔定理的推广.[分析] 如图2-16,曲线)(x f y =上必有一点(,())C c f c ,它在该点处切线的斜率等于弦AB 的斜率(切线与弦平行),即式(2-6).证 考虑函数(曲线与弦的差))]()()()([)()(a x ab a f b f a f x f x ---+-=δ(图2-17)显然,函数)(x δ在闭区间],[b a 上连续,在开区间),(b a 内有导数,且0)()(==b a δδ(在区间两端等于零).根据罗尔定理,必有点),(b a c ∈,使0)(='c δ,即)()()()(b c a ab a f b fc f <<--='【注】微分中值定理的上述证明方法的优点是直观, 而下面的证明方法容易推广(用于证明§2-9中的泰勒公式).设待定常数C 满足条件()()()f b f a C b a =+- (※)再作辅助函数()()[()()]()F t f t f a C t a a t b =-+-≤≤, 则函数()F t 在区间[,]a b 上满足罗尔定理的条件,因此有中值(,)c a b ∈, 使()0F c '=, 即()()0()F c f c C C f c '''=-=⇔=.把它代入上面的等式(※), 则得()()()()()f b f a f c b a a c b '=+-<< 或 ()()()()f b f a f c a c b b a-'=<<-等式(2-6)又称为拉格朗日中值公式或微分中值公式.它有很多变形,例如,若令)10(<<--=θθab a c则拉格朗日中值公式为()()[()]()(01)f b f a f a b a b a θθ'-=+--<< (2-7)它对b a >也成立.又如,若函数)(x f 在开区间),(b a 内有导数,则对任意),(b a x ∈和()(,)x x a b +∆∈,都有)10()()()(<<∆∆+'=-∆+θθx x x f x f x x f (2-8) 通常称它为有限增量公式(其中x ∆为有限增量....),以便区别于无穷小量形式(或极限形式)的公式图2-17图2-16第2章 微分和微分法·导数的简单应用92 ()()()()f x x f x f x x o x '+∆-=∆+∆其中x x d =∆为无穷小量.请读者注意两者的区别........... 微分中值定理和罗尔定理,只断定那个中值)(b c a c <<的存在性,而没有指出它在区间),(b a 内的具体位置.尽管如此,仍不失它在微积分中的重要性,因为在几乎所有的应用中,并不需要知道它在区间),(b a 内的具体位置.微分中值定理使我们能够根据函数的导数..................)(x f '所提供的信息,反过来去推断函数本身所具有的某些特性或变化状态............................... 推论 若函数)(x f 在区间),(b a 内处处有导数,且0)(≡'x f )(b x a <<,则()≡f x 常数()<<a x b证 设),(0b a x ∈为任意固定一点.根据拉格朗日中值公式,对于任意),(b a x ∈,都有)10(0))](([)()(0000<<=--+'=-θθx x x x x f x f x f即))(()(0b x a x f x f <<≡.对于定义在区间,a b 上的函数)(x f ,若另有定义在区间,a b 上的可微函数()F x 使d ()()d F x f x x = 或 ()()F x f x '=则称函数()F x 为)(x f 的一个原函数.函数)(x f 在区间,a b 上的原函数不是唯一的,若函数()G x 也是它在区间,a b 上的原函数,因为[]()()()()()()0F x G x F x G x f x f x '''-=-=-=根据上述推论,所以()()F x G x c -≡(常数)或()()F x G x c ≡+.因此,若函数()f x 在区间,a b 上有原函数,则它在该区间上就会有无穷多个原函数,而且每两个原函数之间只能相差一个常数.2.函数单调性的判别法 下面的结论实际上也是微分中值定理的推论.它指出了用导数判别函数单调性的方法.定理2-2 设函数)(x f 在闭区间],[b a 上连续且在开区间),(b a 内处处有导数. ⑴ 若()0()f x a x b '><<,则)(x f 在区间],[b a 上是增函数; ⑵ 若()0()f x a x b '<<<,则)(x f 在区间],[b a 上是减函数. (在有限个点上有0)(='x f 时,结论仍成立)证 设1x 和2x 为区间],[b a 上任意两点且21x x <,根据拉格朗日公式,则有2112121()()[()]()f x f x f x x x x x θ'-=+--若()0()f x a x b '><<,则21()()0f x f x ->,即)()(21x f x f <,因此()f x 是增函数;若()0()f x a x b '<<<,则21()()0f x f x -<,即12()()f x f x >,因此()f x 是减函数. 例18 设13)(23-+=x x x f ,则)2(363)(2+=+='x x x x x f 于是,方程0)(='x f 有根12x =-和20x =. 用这两个根把函数)(x f 的定义域),(+∞-∞分§2-4 微分中值定理及其应用 93成三个小区间 (图2-18):]0)([),0(],0)([)0,2(],0)([)2,(>'+∞<'->'--∞x f x f x f可见,函数)(x f 在区间)2,(--∞和),0(+∞内增大,而在区间)0,2(-内减小.3.证不等式的方法情形Ⅰ 设函数)(x f 和)(x g 在区间),[b a 上连续且在),(b a 内有导数.若满足条件:()i )()(a g a f = 和 ()ii ()()()f x g x a x b ''><<则))(()(b x a x g x f <<>.(见图2-19)情形Ⅱ 设函数)(x f 和)(x g 在区间],(b a 上连续且在),(b a 内有导数.若满足条件:()i )()(b g b f = 和 ()ii ()()()f x g x a x b ''><<则))(()(b x a x g x f <<<.(见图2-20)证 譬如证情形Ⅰ(图2-19).令)()()()(b x a x g x f x h <≤-=.根据条件()i ,则0)(=a h ;根据条件()ii ,()0()h x a x b '><<.因此,)(x h 是增函数.于是,)()()(0b x a x h a h <<<=所以有))(()(b x a x g x f <<>.例19 证明:⑴ 当0>x 时,x x <+)1ln(; ⑵ 当1->x 且0≠x 时,xx x +>+1)1ln(.因此,当0>x 时,有x x xx <+<+)1ln(1.证 ⑴令)1ln()(,)(x x g x x f +==,则0)0()0(==g f 且)0(11)(1)(>+='>='x xx g x f [属于情形Ⅰ]因此,有)0()1ln(>+>x x x .图2-19图2-20图2-18•2-·0x第2章 微分和微分法·导数的简单应用94 ⑵ 令)1ln()(,1)(x x g xx x f +=+=. 在区间]0,1(-上,0)0()0(==g f 且 )(11)1(1)(2x g xx x f '=+>+=' [属于情形Ⅱ]因此,有)1ln(1x xx +<+)01(<<-x .其次,在区间),0[+∞上,0)0()0(==g f 且 )(11)1(1)(2x g xx x f '=+<+=' [属于情形Ⅰ]因此,有)1ln(1x xx +<+)0(+∞<<x .习 题1.不求导数,而根据罗尔定理证明:函数22)(23+--=x xx x f在区间)1,1(-内必有点c ,使0)(='c f .2.证明:不论m 为何值,多项式m x x x P +-=3)(3在区间]1,1[-上不会有两个实根.3.设多项式nn x a x a x a a x P ++++= 2210)(的系数满足等式01321210=+++++n a aa a n 证明:多项式)(x P 在区间)1,0(内必有实根. 提示:考虑函数1210121)(+++++=n n x n a x a x a x f .4.设函数)(x f 在有限开区间),(b a 内有导数,且A x f x f bx ax ==-+→→)(lim )(lim (有限值)证明:在),(b a 内至少有一点c ,使0)(='c f .提示:将函数()f x 连续延拓到闭区间[,]a b 上.5.设函数()f x 在闭区间[,]a b 上连续,在开区间),(b a 内可微分,且()()0f a f b ==.证明:对任意实数λ,必存在点(,)a b ξ∈,使()()f f ξλξ'=提示:令()e()xF x f x λ-=.6.对于下列函数,在所示区间上应用拉格朗日中值公式,求出中值c :⑴)51()(2≤≤=x x x f ; ⑵)42(1)(≤≤=x xx f ;⑶)94()(≤≤=x x x f ; ⑷)e 1(ln )(≤≤=x x x f .答案:⑴3=c ;⑵22=c ;⑶4/25=c ;⑷1e -=c .7.证明:对于0≥x ,则有)(x θθ=使§2-4 微分中值定理及其应用 95θ+=-+x x x 211而且)(x θθ=满足01111;lim ;lim 4242x x θθθ+→+∞→≤≤==8.设函数)(x f 在闭区间],[b a 上连续且在开区间),(b a 内有导数.证明:必有点),(b a c ∈,使)()()()(c f c c f ab a af b bf '+=-- [ 提示:考虑函数)()(x xf x g =]9.设函数()f x 在点a 连续且有极限lim ()x af x →'.证明:必有导数()f a '且()lim ()x af a f x →''= [点a 的导数等于近旁导数的极限]同样,若函数()f x 在点a 左连续[右连续]且有左极限lim ()x af x -→'[右极限lim ()x af x +→'],则必有左导数()f a -'[右导数()f a +']且()lim ()x a f a f x --→''= ()lim ()x a f a f x ++→⎡⎤''=⎢⎥⎣⎦提示:()()()f a x f a f a x x θ'+∆-=+∆∆(01)θ<<.【注1】根据这个结论, 函数1,()0,x a f x x a=⎧=⎨≠⎩在含点a 的区间内没有原函数(用反证法证)。
微分中的中值定理及其应用

微分中的中值定理及其应用微分中的中值定理是微积分中的基本定理之一,它在数学和物理学中具有重要的应用。
本文将介绍微分中的中值定理及其应用,并展示其在实际问题中的解决方法。
一、中值定理的概念与原理中值定理是微分学中的重要理论,它涉及到函数在某个区间上的平均变化率与瞬时变化率之间的联系。
其中最常见的三种形式为:罗尔定理、拉格朗日中值定理和柯西中值定理。
1. 罗尔定理罗尔定理是中值定理的基础,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则在开区间(a, b)上至少存在一点c,使得f'(c) = 0。
罗尔定理可通过对函数在该区间的最大值和最小值进行讨论得出,它主要用于证明函数在某一区间上恒为常数的情况。
2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种推广,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
拉格朗日中值定理的证明可以通过构造辅助函数g(x) = f(x) - [(f(b) - f(a))/(b - a)]x来完成,它可以将任意两点间的斜率与函数在某一点的导数联系起来。
3. 柯西中值定理柯西中值定理是拉格朗日中值定理的进一步推广,它的表述为:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则至少存在一点c,使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。
柯西中值定理可以用来研究函数间的关系,它提供了一种描述两个函数在某一区间上的变化率相等的条件。
二、中值定理的应用中值定理不仅仅是一种理论工具,还具有广泛的应用。
下面将介绍中值定理在实际问题中的应用案例。
1. 最速下降线问题最速下降线问题是求解两个给定点之间的最短路径问题。
中值定理的内容及应用

中值定理的内容及应用中值定理是微分学中的重要定理之一,它是基于连续函数的连续性与导数的连续性之间的关系而得出的。
中值定理包括鲁尔中值定理、拉格朗日中值定理和柯西中值定理。
这三个定理都是基于函数连续性与导数连续性的条件,从而得到函数在某一区间上的性质。
1. 鲁尔中值定理:设函数f(x)在[a,b]上连续,且在(a,b)内可导,则在(a,b)内至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
鲁尔中值定理的几何意义是:存在一点c,使得函数在左右两个点的切线斜率等于函数在这两个点间的平均变化率。
2. 拉格朗日中值定理:设函数f(x)在[a,b]上连续,且在(a,b)内可导,则在(a,b)内至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。
拉格朗日中值定理的几何意义是:存在一点c,使得函数在左右两个点的切线斜率等于函数在这两个点间的平均变化率。
3.柯西中值定理:设函数f(x)和g(x)在[a,b]上连续,且在(a,b)内可导,并且g'(x)≠0,则在(a,b)内至少存在一点c,使得[f(b) - f(a)]/[g(b) - g(a)] = f'(c)/g'(c)。
柯西中值定理的几何意义是:存在一点c,使得函数f(x)和g(x)在左右两个点的切线斜率之比等于函数在这两个点间的平均变化率之比。
中值定理的应用非常广泛,其中最为常见的应用是求函数在某个区间内的极值和方程的根。
首先,中值定理可以用来证明函数在某个区间内的极值存在性。
根据鲁尔中值定理,如果函数在某个区间上连续,并在这个区间内可导,且函数的导数在这个区间内的某个点等于零,那么这个点就是函数在这个区间上的一个极值点。
其次,中值定理也可以用来求函数在某个区间内的极值。
首先可以根据拉格朗日中值定理找到函数在该区间内的一个极值点,然后再通过导数的正负性和二阶导数的存在性来确定这个点是极大值还是极小值。
微分中值定理及其应用

(1) f ( x ), g ( x ) 在 (a −δ , a +δ ) 可导且g '( x ) ≠ 0 , 其中 δ > 0; (2)lim
x→a
f ( x) = lim g ( x ) = 0;
x→a
f '( x) lim = A; (3) x → a g '( x )
则
f ( x) =A lim x →a g ( x)
1
1
lim cos +
1
ξ
=0
§2 洛必达法则
前面遇到几种类型的极限:
定理5.6 若 f (1) ( x ) , g ( x) 在(a, a +δ )可导且 g ′( x ) ≠ 0 ,其中 δ > 0 f '( x) =A lim (2) + f ( x) = lim g ( x) = 0 (3) lim+ + x → a g '( x ) x→a x→a 则 f ( x) lim+ =A x→a g ( x) 0 ( 型)在自变量的某个变化过程中 0 (1)f ( x ), g ( x )都为无穷小,即 xlim+ f ( x ) = 0, xlim+ g ( x ) = 0 →a →a
f '( x) ε | − A |< . g '( X ) 2
有
在(a, a + δ1 )内取定 x0,则对a < x < a + δ1 中任意x ≠ x0
| f ( x) − f ( x0 ) ε f '(ξ ) − A |=| − A |< , 2 g ( x) − g ( x0 ) g '(ξ )
微分中值定理与导数的应用总结

微分中值定理与导数的应用总结一、微分中值定理1.拉格朗日中值定理拉格朗日中值定理是微分中值定理的最基本形式,它表述为:如果函数f(x)在区间[a,b]上连续,在开区间(a,b)内可导,则在(a,b)内至少存在一个数c,使得f(b)-f(a)=f'(c)(b-a),其中c属于(a,b)。
拉格朗日中值定理的几何意义是:如果一条曲线在两个点a和b上的斜率相等,则在这两个点之间必然存在一点c,使得曲线在c点和a、b两点之间的切线斜率相等。
2.柯西中值定理柯西中值定理是微分中值定理的推广形式,它给出了两个函数的导数的关系。
设f(x)和g(x)在[a,b]上连续,在开区间(a,b)内可导且g'(x)≠0,则存在一个数c,使得[f(b)-f(a)]/[g(b)-g(a)]=[f'(c)]/[g'(c)]。
柯西中值定理的几何意义是:如果曲线f(x)和g(x)在两个点a和b上的切线斜率之比等于f'(c)和g'(c)的比,则在这两个点之间必然存在一点c,使得曲线f(x)和g(x)在c点的切线斜率之比等于f'(c)和g'(c)的比。
3.罗尔中值定理罗尔中值定理是微分中值定理的特殊形式,它给出了导数为零的充分条件。
设函数f(x)在[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一个数c,使得f'(c)=0。
罗尔中值定理的几何意义是:如果一条曲线在两个端点上的函数值相等,则在这两个端点之间必然存在一个点c,使得曲线在c点的切线斜率为零。
微分中值定理的应用非常广泛,例如在证明极限存在或连续性、研究函数增减性和函数极值、解方程和不等式等问题中都有重要的作用。
在实际生活中,微分中值定理可以应用于求解速度、加速度、距离等问题,帮助我们更好地理解和解决实际问题。
二、导数的应用导数作为微积分的重要概念,具有很多实际应用。
微分中值定理及其应用

微分中值定理及其应用一、本文概述《微分中值定理及其应用》是一篇深入探讨微分学中值定理及其在实际应用中的作用的学术性文章。
微分中值定理是数学分析领域中的一个核心概念,它建立了函数在特定区间内的变化与其导数之间的紧密联系。
本文旨在通过对微分中值定理的深入剖析,揭示其在理论研究和实际应用中的广泛价值。
文章首先介绍了微分中值定理的基本概念,包括罗尔定理、拉格朗日中值定理和柯西中值定理等。
这些定理不仅在数学分析中占有重要地位,而且在实际应用中发挥着重要作用。
接着,文章通过一系列实例展示了微分中值定理在几何、物理、工程等领域的应用,如曲线形状的判定、物体运动的分析、工程设计的优化等。
本文还关注微分中值定理在经济学、生物学等社会科学领域的应用。
通过引入这些领域的实际案例,文章进一步强调了微分中值定理在解决实际问题中的重要作用。
文章对微分中值定理的应用前景进行了展望,探讨了其在未来科学研究和技术发展中的潜在影响。
《微分中值定理及其应用》是一篇系统介绍微分中值定理及其在各个领域应用的综合性文章。
通过本文的阅读,读者可以全面了解微分中值定理的基本知识和应用技巧,为深入研究和实际应用打下坚实基础。
二、微分中值定理概述微分中值定理是微积分理论中的核心内容之一,它揭示了函数在某区间内与导数之间的紧密联系。
这些定理不仅为函数的研究提供了重要的工具,还在解决实际问题中发挥了重要作用。
微分中值定理主要包括罗尔定理、拉格朗日定理和柯西定理。
罗尔定理是微分中值定理的基础,它指出如果一个函数在某闭区间上连续,在开区间内可导,并且区间两端点的函数值相等,那么在这个开区间内至少存在一点,使得该点的导数值为零。
拉格朗日定理是罗尔定理的推广,它进一步指出,如果存在满足上述条件的点,那么该点的导数值等于函数在区间两端点值的差与区间长度的商。
柯西定理则是拉格朗日定理的推广,它涉及到两个函数在相同区间上的性质。
这些定理在实际应用中具有广泛的价值。
微分中值定理的应用小结

微分中值定理的应用小结微分中值定理是微积分中的一个重要定理,它在实际应用中有着广泛的应用。
下面我们将总结一下微分中值定理的应用。
微分中值定理分为拉格朗日中值定理和柯西中值定理两种形式。
它们都是从微分的角度出发,研究了函数在一定条件下的均匀变化规律,因此在实际应用中具有重要的意义。
下面我们将从几个方面来讨论微分中值定理的应用。
一、曲线的切线微分中值定理最基本的应用之一就是用来求曲线上某点的切线。
当我们需要求曲线在某一点的切线时,可以先求出该点的导数,然后根据微分中值定理,可以得到该点的切线的斜率,从而得到切线的方程。
这在工程计算和物理问题中有广泛的应用,如求曲线上某一点的切线斜率,可以用来分析曲线在该点的变化趋势,从而得出相关的结论。
二、误差估计微分中值定理还可以用来进行误差估计。
在实际测量和计算中,往往难以得到准确的数值,只能得到数值的近似值。
此时,我们可以利用微分中值定理来进行误差估计。
通过对函数进行微分,可以得到函数在某一点附近的变化规律,从而可以利用微分中值定理来估计函数值的误差范围,这在工程测量和科学实验中有着重要的应用。
三、最优化问题微分中值定理还可以用来解决最优化问题。
最优化问题是指在一定条件下寻找函数的极值点的问题,常常出现在工程设计和经济管理中。
通过对函数进行微分,可以得到函数在某一点的变化规律,从而可以利用微分中值定理来寻找函数的极值点,从而得到最优解。
这在工程设计和市场调研中有着广泛的应用。
四、速度和加速度在物理学中,微分中值定理也有着重要的应用。
通过对物体的位置函数进行微分,可以得到物体的速度函数;再对速度函数进行微分,可以得到物体的加速度函数。
从而可以利用微分中值定理来分析物体的运动规律,这在工程设计和交通管理中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3[1]1微分中值定理
及其应用
3.2 微分中值定理及其应用
教学目的:
1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基
础;
2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限;
3.掌握泰勒公式,并能应用它解决一些有关的问题;
4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象;
5.会求函数的最大值、最小值,了解牛顿切线法。
教学重点、难点:
本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。
教学时数:2学时
一、微分中值定理:
1. Rolle中值定理: 设函数在区间上连续,在内可导,且有.则«Skip Record If...»,使得«Skip Record If...».
grange中值定理: 设函数在区间上连续,在内可导,
则«Skip Record If...»,使得«Skip Record If...».
推论1 函数在区间I上可导且为I上的常值函
数.
推论2 函数和在区间I上可导且
推论3 设函数在点的某右邻域上连续,在内可导.
若存在,则右导数也存在,且有
(证)
但是, 不存在时, 却未必有不存在. 例如对函数
虽然不存在,但却在点可导(可用定义求得).
Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在
内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函
数的连续点,要么是的第二类间断点.这就是说,当函数在区间I
上点点可导时,导函数在区间I上不可能有第二类间断点.
推论4 ( 导函数的介值性 ) 若函数在闭区间上可导, 且
( 证 )
Th ( Darboux ) 设函数在区间上可导且. 若
为介于与之间的任一实数, 则
设对辅助函数, 应用系4的结果. ( 证 )
3.Cauchy中值定理:
Th 3 设函数和在闭区间上连续, 在开区间内可导, 和在内不同时为零, 又则在内至少存在一点
使.
证分析引出辅助函数. 验证在
上满足Rolle定理的条件,
必有, 因为否则就有.这与条件“和在内不
同时为零”矛盾.
Cauchy中值定理的几何意义.
(二)中值定理的简单应用:
1. Rolle中值定理的应用
例1设函数在区间上连续,在内可导,且有.试证明: .
提示:设«Skip Record If...»
例2设函数«Skip Record If...»在区间上连续,在内可导,且«Skip Record If...».试证明:«Skip Record If...»,使得«Skip Record If...».
例3设函数«Skip Record If...»在区间上连续,在内可导,对«Skip Record If...»,试证«Skip Record If...»,使得«Skip Record If...»
提示:设«Skip Record If...»
例4 已知函数«Skip Record If...»具有二阶导数,且«Skip Record If...»试证在区间«Skip Record If...»内至少存在一点«Skip Record If...»
例5 证明方程在内有实根.
例6 证明方程在内有实根.
练习设函数在区间«Skip Record If...»上连续,在«Skip Record If...»内可导,且«Skip Record If...»,试证明(1)«Skip Record If...»;
(2) 对任意实数«Skip Record If...»,必存在«Skip Record If...».
提示:(2)«Skip Record If...», «Skip Record If...»
广义Rolle中值定理:设函数«Skip Record If...»在«Skip Record If...»可微,«Skip Record If...»存在且等于«Skip Record If...»,
则存在«Skip Record If...»,使得«Skip Record If...».
例7设函数在«Skip Record If...»上连续可微,«Skip Record If...»,证明存在一点«Skip Record If...»,使得«Skip Record If...».
练习设函数在«Skip Record If...»上可微,«Skip Record If...», 试证«Skip Record If...»,使得«Skip Record If...».
grange中值定理的应用
例8 设是可微函数, 导函数«Skip Record If...»严格单调增加,若«Skip Record If...»,试证对一切«Skip Record If...»,有«Skip Record If...».(不得直接利用凸函数的性质)
3.Cauchy中值定理的应用
例1 设函数在区间上连续, 在内可导,«Skip Record If...»则«Skip Record If...».
练习设函数在区间上连续, 在内可导,«Skip Record If...»则«Skip Record If...»使得«Skip Record If...»
(三).Jensen不等式及其应用:
Jensen 不等式: 设在区间上恒有( 或, 则对
上的任意个点, 有Jensen不等式:
( 或,
且等号当且仅当时成立.
证令, 把表为点处具二阶Lagrange型余项的Taylor公式,仿前述定理的证明,注意即得所证.
对具体的函数套用Jensen不等式的结果, 可以证明一些较复杂的不等式. 这种证明不等式的方法称为Jensen不等式法或凸函数法. 具体应用时, 往往还用到所选函数的严格单调性.
例2证明: 对有不等式.
例3证明均值不等式: 对, 有均值不等式
.
证先证不等式.
取.在内严格上凸, 由Jensen不等式, 有
. 由↗↗.
对用上述已证结果, 即得均值不等式的左半端.
例4证明: 对, 有不等式
. ( 平方根平均值 )
例5设,证明.
解取, 应用Jensen不等式.
Jensen不等式在初等数学中的应用举例: 参阅荆昌汉文: “凸(凹)函数定理在不等式证明中的应用”,《数学通讯》1980.4. P39.
例6在⊿中, 求证.
解考虑函数
在区间内凹, 由Jensen不等式, 有
.
.
例7 已知. 求证
.
解考虑函数, 在内严格上凸. 由Jensen不等式, 有
.
.
例8已知求证.( 留为作业 ) 解函数在内严格下凸. 由Jensen不等式, 有
.。