七年级上册数学思想方法归纳
七年级数学上册各章知识、数学思想框架图式

陕西省南郑县教研室(723100)秦旭东
陕西省南郑县青树镇中(723100)林博
数学部分,其中“基本技能、基本活动经验”要在学习过程、解决问题中才能显现,表现为学习者掌握知识和学习能力强弱的问题。“由于教材一般是按知识发展系统进行编排,而数学思想是蕴涵于数学知识体系之中,所以,数学思想的教学是零散而不系统的。这就要求在课后小结、单元小结或总复习时及时归纳,使数学思想纳入已有系统网络,逐步完善,实现迁移”。因此知识、数学思想可进行归纳,现北师大版的教师用书有以知识为主的框架图式,那么如何实施知识与方法的归纳呢?经研究、现尝试将七年级上册各章的知识与思想用框架图式如下:
第一章丰富的图形世界
第二章有理数
第三章整式及其加减
为运算服务
第四章基本平面图形
抽象
分离出
第五章一元一次方程
主要思想
方法
第六章数据的收集与整理
七年级上册数学知识点归纳(必备7篇)

七年级上册数学知识点归纳(必备7篇)七年级上册数学知识点归纳第1篇(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。
⑵一些固定模型中的等量关系:①数字问题:表示一个三位数,则有=101a+10b+c(数位上的数字×位数)②行程问题:基本公式:路程=时间×速度甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程甲走的时间=乙走的时间;甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离③工程问题(整体1):基本公式:工作量=工作时间×工作效率各部分工作量之和=总工作量;④储蓄问题:本息和=本金+利息;利息=本金×利率×时间⑤商品销售问题:商品利润=售价-进价(成本价)商品利润率=(售价-进价)/进价⑥等积变形问题:面积或体积不变⑦和、差、倍、分问题:多、少、几倍、几分之几⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x⑨资源调配问题:资源、人员的调配(有时要间接设未知数)(二)、思想方法(本单元常用到的数学思想方法小结)⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想.⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式.体现了化“未知”为“已知”的化归思想.⑷数形结合思想:如:数轴问题、在列方程解决行程问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类(整体)思想:如:绝对值、偶次方、点在线段上(延长线上、线段外)、角在角内(外)在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.七年级上册数学知识点归纳第2篇一几何图形几何学:数学中以空间形式为研究对象的分支叫做几何学。
七年级上册数学第二单元知识点全面解析2024人教版

七年级上册数学第二单元知识点全面解析2024人教版一、引言七年级上册数学第二单元主要涉及有理数及其运算、整式的加减、一元一次方程、图形的认识、数据的收集与整理等内容。
这些知识点不仅是初中数学学习的基础,也是学生们在日常生活中常常会用到的数学知识。
本文将对这些知识点进行详细的归纳和解析,帮助学生们更好地理解和掌握。
二、有理数及其运算1. 有理数的概念有理数包括正整数、负整数、零、正分数和负分数。
它们可以表示为分数的形式,其中分子和分母都是整数,且分母不为零。
2. 有理数的分类有理数可以分为整数和分数。
整数包括正整数、负整数和零;分数包括正分数和负分数。
3. 有理数的运算有理数的运算包括加法、减法、乘法和除法。
以下是各类运算的具体规则:加法:同号相加,取相同的符号,绝对值相加;异号相加,取绝对值较大的符号,绝对值相减。
减法:减去一个数等于加上这个数的相反数。
乘法:同号相乘得正,异号相乘得负,绝对值相乘。
除法:除以一个数等于乘以这个数的倒数。
4. 有理数的性质有理数具有以下性质:交换律:a + b = b + a;a × b = b × a结合律:a + (b + c) = (a + b) + c;a ×(b ×c) = (a ×b) × c分配律:a ×(b + c) = a × b + a × c三、整式的加减1. 整式的概念整式是由数字和字母通过加、减、乘、除(除法中除数不含字母)以及乘方运算组成的代数式。
整式包括单项式和多项式。
2. 单项式单项式是由数字和字母的乘积组成的代数式,如3a、-5xy²等。
单项式的系数是数字部分,次数是所有字母指数的和。
3. 多项式多项式是由几个单项式相加组成的代数式,如3a + 5b、-2x²+ 4x 7等。
多项式的项数是单项式的个数,最高次项的次数是多项式的次数。
七年级数学思想总结归纳

七年级数学思想总结归纳数学是一门基础性学科,它不仅是一种学科知识,更是一种思维方式和解决问题的工具。
七年级是初中数学的起点,通过七年级数学的学习,我对数学的思想有了更深刻的认识和理解。
在这段时间里,我主要学到了以下几点数学思想。
首先,数学思想要注重实际问题的解决。
数学不仅仅是一种抽象的概念,更是可以应用在实际生活中的工具。
七年级的数学教学注重培养学生的实际问题解决能力,通过解决一些与我们生活密切相关的问题,引导学生运用数学知识进行问题的分析和解决。
例如,在学习平行线的性质时,教师通过提出“在城市规划中,为什么道路很少共用一个平行线?”的问题,引导学生思考并发掘其中的数学规律和解决方法。
其次,数学思想要注重逻辑推理和思维的严谨性。
数学是一门注重逻辑推理的学科,在解决问题时需要进行严密的推理和思维。
在七年级的数学学习中,我们通过证明题,学会了运用已知条件和数学推理来证明结论的方法。
这样的学习不仅提高了我们的逻辑推理能力,也让我们明白了数学不仅仅是背诵和应用公式,更是一种思维模式和规律的把握。
再次,数学思想要注重问题的多解性和启发式思维。
解决数学问题的方法往往不是唯一的,可以从不同的角度和方法来解决。
七年级的数学学习通过培养我们的多思维和启发式思维能力,让我们知道在解决一个问题时可以运用不同的方法和策略。
例如,在解决两线段比较长短的问题时,除了直接比较两线段的长度,还可以通过比较两线段端点的关系或者通过画图来解决问题。
这样的学习让我们明白了数学问题的灵活性和多样性。
最后,数学思想要注重问题的发现和探究。
在七年级数学学习中,我们不仅注重解决问题,还注重培养学生的问题发现和探究能力。
通过引导学生自主探索以及举一反三的思维方式,激发了学生对问题的兴趣和求知欲,培养了学生的创新意识和解决问题的能力。
例如,在学习数学公式时,教师会引导学生通过具体问题的分析和归纳,发现和总结出相应的数学公式。
这样的学习让我们明白了数学的探究性和创新性。
七年级数学上册常用数学思想方法(xiuding)

七年级数学上册常用数学思想方法一、数形结合的思想。
利用数形结合,可以使研究的问题化难为易,化繁为简。
1、利用数轴解答:有一座3层楼房着火,消防员搭梯子爬往3楼去抢救物品,当他爬到正中1级时,2楼窗口喷出火来,他就往下退了3级,等到火过去了,他又爬上了7级,这时候屋顶有两块砖掉下来,他又后退了2级,幸好没有打着他,他又爬上8级,这时候他距离梯子最高层还有1级,问这个梯子共有多少级?2、.A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米.问:(1)两车同时开出,相向而行,出发后多少小时相遇? (2)两车相向而行,慢车先开出28分钟,快车开出后多少小时两车相遇?(3)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?3、3个球队进行单循环比赛(参加比赛的每个队都与其他参赛队各赛一场),那么总的比赛场数是多少?若有4个球队呢?若有5个球队呢?写出m个球队进行单循环比赛时总的比赛场数的公式。
二、整体代入的思想。
1、若a、b互为倒数,x、y互为相反数,m的绝对值等于3求:(1)5ab-m+x-4+y的值;(2)5x-ab++5y的值;(3)x+y∕x³-ab+m²-8的值。
2、已知x²+x+3的值为7,求2x²+2x-3的值。
三、分类讨论的思想。
在数学问题中,当一个字母(或一个式子)有几种可能的取值;当一个图形有几种不同的位置或不同的形状时,往往需要分类讨论。
分类讨论应做到:分类标准必须统一,分类时不重复不遗漏。
1、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,求AM的长。
四、割补的思想。
1﹙1﹚用含有a、b的式子表示阴影部分面积;﹙2﹚当a=3,b=2时,阴影部分的面积为多少?五、方程思想。
方程思想就是把未知数看成已知数,让代替未知数的字母和已知数一样参加运算,这是一种很重要的数学思想方法。
七年级数学上册知识点归纳

七年级数学上册知识点归纳关于七年级数学上册知识点归纳在年少学习的日子里,大家最不陌生的就是知识点吧!知识点是指某个模块知识的重点、核心内容、关键部分。
为了帮助大家更高效的学习,以下是店铺为大家收集的关于七年级数学上册知识点归纳,仅供参考,大家一起来看看吧。
七年级数学上册知识点归纳1第一章有理数一.正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:—8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3。
0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8?也是偶数,—1,—3,—5?也是奇数。
2.(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。
初中数学思想方法有哪些

初中数学思想方法有哪些数学作为一门重要学科,对于初中生来说是一个必修课程。
在学习数学的过程中,除了掌握基本的知识和技能外,更重要的是培养学生的数学思维和方法。
那么,初中数学思想方法有哪些呢?接下来,我们将从几个方面进行探讨。
首先,数学思想方法包括逻辑思维。
数学是一门严谨的学科,逻辑思维是数学学习的基础。
在解决数学问题时,学生需要运用逻辑思维,按部就班地分析问题,找出问题的关键点,合理推理,得出正确的结论。
通过数学问题的解决,学生可以培养自己的逻辑思维能力,提高问题分析和解决问题的能力。
其次,数学思想方法还包括抽象思维。
数学是一门抽象的学科,很多数学问题都需要通过抽象思维来解决。
学生需要具备将具体问题抽象为数学问题的能力,通过数学符号和公式来描述和解决实际问题。
抽象思维能力的培养不仅可以提高学生的数学学习能力,还可以培养学生的创新能力和问题解决能力。
另外,数学思想方法还包括直观思维。
有些数学问题需要通过图形和图像来解决,这就需要学生具备一定的直观思维能力。
通过观察和分析图形,学生可以更好地理解和解决数学问题,培养自己的直观思维能力,提高解决实际问题的能力。
最后,数学思想方法还包括创造性思维。
数学是一门富有创造性的学科,学生在学习数学的过程中需要培养自己的创造性思维能力。
在解决数学问题时,学生可以通过不同的方法和思路来解决问题,培养自己的创造性思维能力,提高自己的数学学习能力。
综上所述,初中数学思想方法包括逻辑思维、抽象思维、直观思维和创造性思维。
这些思维方法不仅可以帮助学生更好地学习和理解数学知识,还可以培养学生的创新能力和问题解决能力。
因此,学生在学习数学的过程中,应该注重培养自己的数学思想方法,不断提高自己的数学学习能力。
人教版七年级上册数学思维导图

人教版七年级上册数学思维导图_人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识概念有理数(1)凡能写成q (p, q为整数且p ?0) 形式的数,都是有理数.正整数、0、负整数统称整数;正p分数、负分数统称分数;整数和分数统称有理数.注意0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;?不是有理数;(2)有理数的分类:? ?正整数?正有理数?正分数? ? ①有理数?零? ?负整数?负有理数? ?负分数?正整数?整数?零? ? ? ②有理数? ?负整数? ?正分数?分数? ?负分数?2.数轴数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b 互为相反数. 绝对值(1)正数的绝对值是其本身,0 的绝对值是0,负数的绝对值是它的相反数;注意绝对值的意义是数轴上表示某数的点离开原点的距离;?a (a ? 0) (a ? 0) ? ?a (2) 绝对值可表示为a ? ?0 (a ? 0) 或a ? ? ;绝对值的问题经常分类讨论;? a ( a ?0) ? ? ? a ( a ? 0 ) ?有理数比大小(1)正数的绝对值越大,这个数越大;(2)正数永远比0 大,负数永远比0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 互为倒数乘积为1 的两个数互为倒数;注意0 没有倒数;若a≠0,那么a 的倒数是1 ;a若ab=1?a、b 互为倒数;若ab=-1? a、b 互为负倒数. 有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0 相加,仍得这个数. 8.有理数加法的运算律(1)加法的交换律a+b=b+a ;(2)加法的结合律(a+b)+c=a+(b+c). 9.有理数减法法则减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律(1)乘法的交换律ab=ba;(2)乘法的结合律(ab)c=a(bc);(3)乘法的分配律a(b+c)=ab+ac .即无意义 . 12.有理数除法法则除以一个数等于乘以这个数的倒数;注意零不能做除数,13.有理数乘方的法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意当n 为正奇数时: (-a)n=-an 或(a-b)n=-(b-a)n , 当n 为正偶数时: (-a)n=an 或(a-b)n=(b-a)n . 14.乘方的定义(1)求相同因式积的运算,叫做乘方;a 0(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法把一个大于10 的数记成a×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法. 1近似数的精确位一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 1有效数字从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 1混合运算法则先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册思想方法总结
方法一 归纳思想
归纳就是从特殊、个别的事例推出一般规律的过程,归纳的过程就是创新的过程,这对解决复杂问题能起到事半功倍的效果,这种思想方法常用于探索规律问题。
例1 观察下列式子,探索其规律并填空:
1)1(12⨯-=;;2)1(313⨯-=-;3)1(5314⨯-=+-;4)1(75315⨯-=-+-…… 请你计算_________。
例2 将一个正方体的表面涂上颜色.如图(1)所示,把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,通过观察我们可以发现8个小正方体全是3个面涂有颜色的.
如图(2)所示,如果把正方体的棱3等分,然后沿等分线把正方体切开,能够得到27个小正方体,通过观察我们可以发现这些小正方体中有8个是3个面涂有颜色的,有12个是2个面涂有颜色的,有6个是1个面涂有颜色的,还有1个各个面都没有涂色.
(1) (2) (3)
(1)如果把正方体的棱4等分,如图(3)所示所得小正方体表面涂色情况如何呢?把正方体的棱n 等分呢?(请填写下表):
方法二 整体思想
所谓“整体思想”就是指在解决数学问题时,将要解决的问题看作一个整体,通过对问题的整体形式、整体结构、已知条件和所求综合考虑后,得出结论。
例3 计算)200813121(+⋯⋯++)(20071211+⋯⋯++)2008
1211+⋯⋯++-(
)(2007
13121+⋯⋯++。
方法三 数形结合思想
所谓数形结合思想就是根据数学问题的条件和结论之间的内在联系,既分清其代数含义,又提示其几何意义,使数量关系和图形和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
例4 如图2所示,M,N,P,R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1。
数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点可能是( )
A. M 或R
B.N 或P
C.M 或N
D.P 或R
方法四 转化思想
转化思想的实质就是将所要解决的问题转化为一个较易解决或已经解决的问题。
具体地说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂”转化为“简单”问题。
它是初中数学中重要、常见的思想方法。
例 5 对于任意两个有理数对()b a ,和()d c ,,规定:当d b c a ==,时,有()b a ,=()d c ,;运算“⊗为”()()()bd ac d c b a ,,,=⊗;运算“⊕”为()()()d b c a d c b a ++=⊕,,,。
设q p ,都是有理数,若()()()4,2,2,1-=⊗q p ,则()()q p ,2,1⊕=________。
方法五 分类讨论思想
分类讨论,就是当问题所给的对象不能进行统一研究时,就需要把研究对象按某个标准进行分类,然后对每类别研究得出结论,最后综合各类得到整个问题的答案。
本学期体现分类讨论思想应用的地方主要有以下几处:
(1)已知一个数的绝对值,要求进行有关的计算,往往需要分类讨论;
(2)解含有绝对值的方程或解含有字母系数的方程时,需要分类讨论;
(3)列方程解决分段付费、方案决策等问题时,需要对各种情况进行讨论,得出最佳方案;
(4)线段或角的无图计算题,图形往往会有不同的形状,需要分类讨论。
例6 (2017.江川县期末)解绝对值方程234=-+-x x 。
例7 在同一平面内有三条射线OA,OB,OC ,若AOB BOC ∠=∠2,OD 平分AOC ∠,︒=∠21BOD ,求BOC ∠的度数。