八年级下册数学辅导练习题苏教版

合集下载

苏教版八年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版八年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

苏教版八年级下册数学重难点突破知识点梳理及重点题型巩固练习数据的收集与整理——知识讲解【学习目标】1.了解普查、抽样调查、总体、个体、样本、样本容量等相关概念,并能选择合适的调查方法,解决有关的现实问题;2.在具体的问题情境中,领会普查和抽样调查各自的优缺点;3.学会设计调查问卷并收集数据;4.能把收集到的样本数据进行合理的分组整理,并能绘制相关的统计图表,根据统计图表,估计总体的相关特性;5.知道三种常见的统计图以及它们的优缺点.【要点梳理】要点一、普查与抽样调查1.普查与抽样调查(1)普查为一特定目的而对所有考察对象所做的调查叫做普查.要点诠释:普查又叫“全面调查”.它要求对考查范围内的所有个体一个不漏地进行准确统计.(2)抽样调查为一特定目的而对部分考察对象所做的调查叫做抽样调查.要点诠释:①抽样调查是对总体中的部分个体进行调查,以样本来估计总体的情况.②抽样调查的注意点:1.随机取样;2.取样具有代表性;3.若样本由具有明显不同特征的部分组成,应按比例从各部分抽样.(3)普查与抽样调查的优缺点普查通过调查总体中的每个个体来收集数据,调查的结果准确,但往往花费多,工作量大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行普查.抽样调查通过调查样本中的每个个体来收集数据,调查范围小,花费较少,工作量较小,便于进行,但样本的抽取是否得当,直接关系到对总体的估计.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.要点诠释:在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.2.调查的相关概念总体:我们把所考察对象的全体叫做总体.个体:把组成总体的每一个考察对象叫做个体.样本:从总体中所抽取的一部分个体叫做这个总体的一个样本.样本容量:样本中个体的数目叫做样本容量(不带单位).要点诠释:①“调查对象的全体”一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体.②样本是总体的一部分,一个总体中可以有许多样本,样本能够在一定程度上反映总体.③样本容量是一个数字,没有单位.一般地,样本容量越大,通过样本对总体的估计越准确.在实际研究中,要根据具体情况确定样本容量的大小.例如:“从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析”,样本是“2000名考生的数学成绩”,而样本容量是“2000”,不能将其误解为“2000名考生”或“2000名”.要点二、数据的收集与整理1.调查问卷数据收集可以通过直接观察、测量、调查和实验等手段得到,也可以通过查阅文献资料、使用互联网等间接途径得到.当采用调查问卷收集数据时,往往需要事先设计记录数据的表格,并用适当的方法记录.“划记法”是记录数据的常用方法,它采用画“正”字的办法,“正”字的每一划(笔画)代表一个或一次.2.统计表和统计图统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据;统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.3.三种统计图(1)条形统计图:用宽度相同的“条形”的高度描述数据的变化情况;条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示统计项目的总体,每一统计项目分别用圆中不同的扇形来表示,扇形面积占圆面积的百分比与各统计项目占总体的百分比相同.从扇形图上可清楚地看出各部分在总体中所占的比例,但不能直接表示出各个项目的具体数据.在扇形统计图中,扇形圆心角的度数=该统计项目占总体的百分比×360°.(3)折线统计图:用折线描述数据的变化过程和趋势;折线图不但可以表示出数量的多少,而且能够清楚地反映出数据的变化走向,但不能清楚地反映数据的分布情况.要点诠释:①绘制扇形统计图的一般步骤:①画一个圆.②按各组成部分所占的比例算出各个扇形的圆心角的度数.③根据算得的各圆心角的度数,画出各个扇形,并注明相应的百分比.各组成部分的名称可以注在图上,也可以用图例表明.②在实际生活中,三种统计图往往结合在一起使用,以便更好地反应实际情况.【典型例题】类型一、普查与抽样调查1.下列调查,适合用普查方式的是( ).A.检查一批零件的合格率B.了解全校七年级学生平均每周上网的次数C.了解某旅游景点“十·一”黄金周期间进入该景点的人数D.了解我校某班学生的视力情况【思路点拨】普查一般适用于小规模调查.【答案】D.【解析】解:显然,选项A、B、C的调查范围非常广,而且要求调查的准确程度也不是非常高,所以不宜采用普查的方式.而选项D,了解我校某班学生的视力情况,调查对象的数目不多,适合用普查方式.故选D.【总结升华】普查得到的信息较为全面、可靠,一般在调查对象较少时采用,当个体数目多,或受客观条件限制,或调查具有破坏性时不允许普查.举一反三:【变式】下列统计中,能用普查方式的是()A、某厂生产的电灯使用寿命B、全国初中生的视力情况C、某校七年级学生的身高情况D、“娃哈哈”产品的合格率【答案】C.2.下列调查适合做抽样调查的是( ).A.了解电视台某栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查【答案】A.【解析】解:要了解电视台某栏目的收视率,显然应采用抽样调查的方式.而对于B、D选项,因为漏掉每一个个体携带H1N1病毒者或者“神七”载人飞船有一个小零件不合格,都会出现意想不到的后果,因此需要采用普查的方式.了解某班每个学生家庭电脑的数量,范围小,工作量小,一般也采用普查的方式.故选A.【总结升华】①在具体的问题情境中,要根据需要选择用普查还是抽样调查的方式进行调查;抽样调查得到的信息的准确度受调查对象(即样本)的数量和特点影响,故抽样时必须注意调查对象是否具有代表性和广泛性.举一反三:【变式】在以下的几个调查问题中:①市场上某种食品的某种添加剂的含量是否符合国家标准;②检测某地区空气质量;③调查全市中学生一天的学习时间;④检测一批灯泡的使用寿命.你认为适合抽样调查的有.(选填序号)【答案】①②③④.解:①市场上某种食品的某种添加剂的含量是否符合国家标准适合抽样调查,故本选项正确;②检测某地区空气质量的调查不必全面调查,大概知道就可以了,适合抽样调查,故本选项正确;③调查全市中学生一天的学习时间因为普查工作量大,适合抽样调查,故本选项正确;④检测一批灯泡的使用寿命的调查,如果普查,所有灯泡都报废,这样就失去了实际意义,故本选项正确,故答案为:①②③④.3.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( ).A.0种 B.1种 C.2种 D.3种【思路点拨】总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【答案】C.【解析】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.【总结升华】总体、样本的考察对象是相同的,所不同的是范围的大小,在本题中,总体、样本都是指考生的成绩,而不是考生.举一反三:【变式】为了了解某市2万名学生参加中考的情况,教育部门从中抽取了600名考生的成绩进行分析,这个问题中().A.2万考生是总体;B.每名考生是个体;C.个体是每名考生的成绩;D.600名考生是总体的一个样本.【答案】C.类型二、数据的收集与整理4.(2015•营口)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3A组人数和所占百分比,求出调查的市民的人数;(2)根据B组人数求出B组百分比,得到D组百分比,根据扇形圆心角的度数=百分比×360°求出扇形圆心角的度数,根据所求信息补全条形统计图和扇形统计图;(3)根据持有A、B两组主要成因的市民百分比之和求出答案.【答案与解析】解:(1)从条形图和扇形图可知,A组人数为90人,占45%,∴本次被调查的市民共有:90÷45%=200人;(2)60÷200=30%,30%×360°=108°,区域B所对应的扇形圆心角的度数为:108°,1﹣45%﹣30%﹣15%=10%,D组人数为:200×10%=20人,(3)100万×(45%+30%)=75万,∴若该市有100万人口,持有A、B两组主要成因的市民有75万人.【总结升华】本题考查的是条形统计图和扇形统计图的知识,正确获取图中信息并准确进行计算是解题的关键.5.(2016•河南模拟)学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【思路点拨】(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.【答案与解析】解:(1)90÷30%=300(名),故一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)1800×=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480.【总结升华】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.苏教版八年级下册数学重难点突破知识点梳理及重点题型巩固练习数据的收集与整理——巩固练习【巩固练习】一、选择题1. 某校篮球队员的身高(单位:cm)如下:167,168,167,164,168,168,163,168,167,160,获得这组数据所用的方法是()A.问卷调查 B.查阅资料 C.实地调查 D.实验2.(2016春•秦皇岛期末)为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A.300名学生是总体B.每名学生是个体C.50名学生是所抽取的一个样本D.这个样本容量是503. 如图是我国历届奥运会获奖牌总数的统计图.那么不正确的结论是()A.奖牌总数最多的是第28届B.第26届奖牌总数为50枚C.奖牌总数超过30枚的共有5届D.奖牌总数逐届增加4.(2015•通辽)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查5.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 ( ) .A.9.5万件 B.9万件 C.9500件 D.5000件6.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是().A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网站随机调查了该地区10%的老年人的健康状况二、填空题7.下列调查中,分别采用了哪种调查方式:(1)为了了解你们班同学的年龄,对全班同学进行了调查:________;(2)为了考查一个学校的学生参加课外体育活动的情况,调查了其中20名学生每天参加课外体育活动时间________;(3)了解一批学习用具水笔芯的使用寿命:________;(4)了解我国八年级学生的身高情况:________.8. 如图是某市5月1日至5月7日每天的最高最低气温的折线统计图,在这7天中,日温差最大的一天是__________.9.检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,总体是________,样本是________.10.(2015•广州)根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是.(填主要来源的名称)11.某城市有120万人口,其中各民族所占比例如图所示,则该市少数民族的人口共有________万人.12. 某移动公司为了调查手机发送短信的情况,在本区域的1000位用户中抽取了10位用户来统计他们某月份发送短信息的条数,结果如下表所示:则本次调查中抽取的样本容量是________,由此估计这1000位用户这个月共发送短信________条.三、解答题13. (2016•贺州)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不(1)求本次抽样调查的学生总人数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1300名学生,试估计全校选择“音乐舞蹈”社团的学生人数.14.(2015•桂林)某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图;(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?15.初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了________名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近80 000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【答案与解析】一、选择题1. 【答案】C;【解析】因为要对篮球队员的身高的数据进行收集和整理,所以此活动需要实地调查.故选:C.2. 【答案】D;【解析】解:A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选:D.3. 【答案】D;【解析】解:由折线统计图可知:图中最高的点即是奖牌数最多,则28届奖牌数最多;第26届奖牌总数为50枚;奖牌总数超过30枚的有23届、25届、26届、27届、28届,则一共有5届;24届比23届的奖牌数是减少了,则“奖牌总数逐届增加”的说法是错误的,故选D.4. 【答案】D;【解析】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.5. 【答案】A;【解析】10万件产品中合格品数为:100510100-=9.5(万件).6. 【答案】D;【解析】抽样调查时,样本一定要有代表性和广泛性.二、填空题7.【答案】 (1)全面调查 (2)抽样调查 (3)抽样调查 (4)抽样调查;8.【答案】5月5日;【解析】在图中,从5月1日至5月7日找出实线与虚线差距最大的一天,为5月5日.9.【答案】2500件包装食品的质量;所抽取的50件包装食品的质量.10.【答案】机动车尾气;【解析】解:所占百分比最大的主要来源是:机动车尾气.故答案是:机动车尾气.11.【答案】18;【解析】120×(6%+4%+5%)=18(万人).12.【答案】10;83300;【解析】10人的平均发总量:(85+78+83+79+84+85+86+88+80+85)÷10=83.3(条) 1000位用户这个月共发送短信83.3⨯1000=83300(条)三、解答题13.【解析】解:(1)本次抽样调查的学生总人数是:20÷10%=200,a=×100%=30%,b=×100%=35%,(2)国际象棋的人数是:200×20%=40,条形统计图补充如下:(3)若该校共有1300名学生,则全校选择“音乐舞蹈”社团的学生人数是1300×35%=455(人),答:全校选择“音乐舞蹈”社团的学生人数是1300×35%=455人.14.【解析】解:(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件;(2)如图所示:(3)300×=5700(件).估计该市300个学雷锋小组在2015年3月份共做好事5700件.15.【解析】解:(1)200:(2)200-120-50=30(人).画图如图所示.(3)C所占圆心角度数=360°×(1-25%-60%)=54°.(4)80000×(25%+60%)=68000.∴估计该市初中生中大约有68000名学生学习态度达标.苏教版八年级下册数学重难点突破知识点梳理及重点题型巩固练习直方图——知识讲解【学习目标】1. 理解组距、频数、频率、频数分布表的概念;2. 会制作频数分布表,理解频数分布表的意义和作用;3. 掌握画频数分布直方图的一般步骤,会画频数分布直方图,理解频数分布直方图的意义和作用.【要点梳理】要点一、组距、频数、频率与频数分布表1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2. 频数:在统计数据时,某个对象出现的次数或落在某个组别中的数据的个数称为频数.3. 频率:频数与总次数的比值称为频率.4.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵的整数部分+1.活确定组距,使所分组数合适,一般组数为最大值-最小值组距要点诠释:(1)频数之和等于样本容量,各频率之和等于1;(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.要点二、频数分布直方图1.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图. 2.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.3. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种.(2)注意直方图与条形图、扇形图、折线图在表示数据方面的优缺点.【典型例题】类型一、组距、组数、频数、频率1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_________.(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.【答案】(1)10; (2)10.【解析】解:(1)利用频数的定义进行解答;(2)利用组数的计算方法求解.【总结升华】组数的确定方法:设数据总数目为n,一般地,当n≤50时,则分为5~8组;的整数部分+1.当50≤n<100.则分为8~12组较为合适,组数等于最大值-最小值组距举一反三:【变式】一组数据19,22,25,30,28,27,26,21,20,22,24,23,25,29,27,28,27,30,19,20,为了画频率分布直方图,先计算出最大值与最小值的差是,如果取组距为2,应分为组.【答案】11;6.解:∵最小的数是19,最大的数是30,∴最大值与最小值的差是30﹣19=11,∵11÷2=5.5,∴应分成6组.故答案为:11;6.2. 我校八年级学生在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,则这50个数据在37~40之间的个数是()A.1 B.2 C.10 D.5【思路点拨】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总和.【答案】C.【解析】解:∵在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,∴这50个数据在37~40之间的个数=50×0.2=10.故选C.【总结升华】本题考查频率、频数、总数的关系:频率=频数÷数据总和.举一反三:【变式】有一个样本容量为20的样本,其数据如下:29,42,58,37,53,52,49,24,37,45,42,55,40,38,50,26,54,26,44,32.根据以上数据填写下表:【答案】解:如下表:频数分布直方图3.某地区对八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):80 81 83 79 64 76 80 66 70 7271 68 69 78 67 80 68 72 70 65试列出频数分布表并绘出频数分布直方图.【思路点拨】按照画频数分布直方图的四个步骤进行解答.解答时,应注意每个步骤中需要注意的事项.【答案与解析】解:(1)计算最大值与最小值的差.83-64=19.(2)决定组距与组数.若取组距为4,则有194≈5,所以组数为5.(3)列频数分布表.(4)画频数分布直方图.【总结升华】按步骤进行操作.因选取的组距不同,所列的频数分布表及所画的频数分布直方图也不一样.在统计时,数据不能出现重复或遗漏的现象.【数据的描述369923 例1】举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图.已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.类型三、频数分布直方图的应用。

苏教版八年级下册数学[三角形中位线定理 重点题型巩固练习]

苏教版八年级下册数学[三角形中位线定理 重点题型巩固练习]

苏教版八年级下册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】一.选择题1. 某花木场有一块等腰梯形ABCD的空地,其各边的中点分别是E、F、G、H测量得对角线AC=10米,现想用篱笆围成四边形EFGH场地,则需篱笆总长度是()A. 40米B. 30米C.20米D.10米2. 如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()A.5 B.10 C.20 D.403. (2016•河南)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.34.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.115. 如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为()A .12cmB .1.52cmC .22cmD .32cm6.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤二.填空题7. 顺次连接等腰梯形各边中点得到的四边形是_________________.8. 如图, E 、F 分别是ABCD 的两边AB 、CD 的中点, AF 交DE 于P, BF 交CE 于Q,则PQ 与AB 的关系是 .9. 如图,E 、F 、G 、H 分别是四边形ABCD 各边的中点,对角线AC 、BD 的长分别为7和9,则四边形EFGH 的周长是______.10.如图,△ABC 中,AB =AC =6,BC =8,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是________.11.如图,∠ACB=9O °,D 为AB 中点,连接DC 并延长到点E ,使CE=CD ,过点B 作BF ∥DE 交AE 的延长线于点F .若BF=10,则AB 的长为 .12.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF∥BC 交AB 于E ,交AC 于F ,过点O 作OD⊥A C 于D .下列三个结论: ①∠BOC=90°+12∠A; ②设OD =m ,AE +AF =n ,则AEF S mn △;③EF 不能成为△ABC 的中位线.其中正确的结论是_______.三.解答题13. (2016•淄博)如图,已知△ABC ,AD 平分∠BAC 交BC 于点D ,BC 的中点为M ,ME ∥AD ,交BA 的延长线于点E ,交AC 于点F .(1)求证:AE=AF ;(2)求证:BE=(AB +AC ).14.已知:在△ABC 中,BC >AC ,动点D 绕△ABC 的顶点A 逆时针旋转,且AD =BC ,连接DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连接HE 、HF ,根据三角形中位线定理和平行线的性质,可得结论∠AMF=∠BNE(不需证明);(2)当点D 旋转到图2或图3中的位置时,∠AMF 与∠BNE 有何数量关系?请分别写出猜想,并任选一种情况证明.15. 在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.【答案与解析】一.选择题1.【答案】C;【解析】四边形EFGH是边长为5米的菱形.2.【答案】C;【解析】根据中位线定理可得BC=2DF,AC=2DE,AB=2EF,继而结合△DEF的周长为10,可得出△ABC的周长.3.【答案】D.【解析】∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.4.【答案】D;【解析】EF=HG=12BC,EH=FG=12AD,所以四边形EFGH是平行四边形,由勾股定理BC=5,所以周长等于3+3+5=11.5.【答案】B;【解析】连接MN,作AF⊥BC于F.∵AB=AC,∴BF=CF=12BC=12×8=4,在Rt△ABF中,AF3,∵M、N分别是AB,AC的中点,∴MN是中位线,即平分三角形的高且MN=8÷2=4,∴NM=12BC=DE,∴△MNO≌△EDO,O也是ME,ND的中点,∴阴影三角形的高是12AF÷2=1.5÷2=0.75,∴S阴影=4×0.75÷2=1.5.6.【答案】B;【解析】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.二.填空题7.【答案】菱形;8.【答案】PQ∥AB,PQ=12 AB;【解析】P,Q分别是AF,BF的中点.9.【答案】16;【解析】根据三角形中位线的性质得出HG 12AC,EF12AC,HE12DB,GF12BD,进而得出HE=GF=12BD,HG=FE=12AC,即可得出答案.10.【答案】10;【解析】∵在△ABC中,AB=AC=6,AE平分∠BAC,∴BE=CE=12BC=4,又∵D是AB中点,∴BD=12AB=3,∴DE是△ABC的中位线,∴DE=12AC=3,∴△BDE的周长为BD+DE+BE=3+3+4=10.11.【答案】8;【解析】∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.12.【答案】①,③;【解析】①根据三角形内角和定理求解;②根据△AEF的面积=△AOE的面积+△AOF的面积求解;③若此三角形为等边三角形,则EF即为中位线.三.解答题13.【解析】证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA +AG )=(AB +AC ).14.【解析】解:图1:∠AMF=∠ENB;图2:∠AMF=∠ENB;图3:∠AMF+∠EN B =180°. 证明:如图2,取AC 的中点H ,连接HE 、HF .∵F 是DC 的中点,H 是AC 的中点,∴HF∥AD,HF =12AD , ∴∠AMF=∠HFE, 同理,HE∥CB,HE =12CB , ∴∠ENB=∠HEF.∵AD=BC ,∴HF=HE ,∴∠HEF=∠HFE,∴∠ENB=∠AMF.如图3:取AC 的中点H ,连接HE 、HF .∵F 是DC 的中点,H 是AC 的中点,∴HF∥AD,HF =12AD , ∴∠AMF+∠HFE=180°, 同理,HE∥CB,HE =12CB , ∴∠ENB=∠HEF.∵AD=BC ,∴HF=HE ,∴∠HEF=∠HFE,∴∠AMF+∠ENB=180°.15.【解析】解:(1)FH 与FC 的数量关系是:FH =FC .证明如下:延长DF 交AB 于点G ,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且DC=12 AC,∴DG为△ABC的中位线,∴DG=12 BC.∵AC=BC,∴DC=DG,∴DC-DE=DG-DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.。

八年级数学苏科版下册课时练第12单元 《12.2 二次根式的乘除》(含答案解析)

八年级数学苏科版下册课时练第12单元 《12.2  二次根式的乘除》(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练12.2二次根式的乘除一、选择题1.下列化简中正确的是()A.a a224-=- B.101.0)10(1.0102=´-=-C.xy xyx 33= D.mn nm n m m55=2.计算31948-的结果是()A.3- B.3C.3311-D.33113.给出下列四道算式:其中正确的算式是()(1)44)4(2-=-ab ab ;(2)41135432222=-+;(3)x xx 4728=;(4)).()(2b a b a ba ab >-=--A.(1)和(3) B.(2)和(4)C.(1)和(4)D.(2)和(3)4.下列计算中正确的是()A.7217.04091-=¸+- B.yy x y xy 223255=¸3= D.49167)6(712-=¸-xy xy 5.设ab a 1,322=-=,则a、b 大小关系是()A.a=bB.a>bC.a<bD.a>-b6.将4324-根号外的因式移进根号内,结果等于()A.11-B.11C.44-D.447.若,则xy 的值是A.B.C.m+nD.m-n8.若,则()A.a、b 互为相反数B.a、b 互为倒数C.ab=5D.a=b二、填空题9.计算:____313=10.计算:31101232731´¸=________.11.若三角形的面积为2355cm ,一条边长为cm 152,则这边上的高是________cm.m ==_________13.计算:=-+20272027)322()322(________14.已知x 为奇数,且xx xx --=--9696,则221x x ++的算术平方根为______.三、解答题15.计算:2222434041+-16.计算:53123452¸17.计算:32212332a a a ´¸18.计算:222272)3121(y x x yx x y ×-.19.甲、乙两人对题目“化简并求值:21122-++a a a ,其中51=a ”有不同的解答,甲的解答是:549211)1(1211222=-=-+=-+=-++a a a a a a a a a a a,乙的解答是:5111)1(1211222==-+=-+=-++a a a a a a a a a a ,谁的解答是错误的?为什么?20.先化简,再求值:(a+b)2+(a-b)(2a+b)-3a 2,其中a=-2-3,b=3-2.参考答案1.D2.B3.B4.A5.B6.C7.D8.D9.310.57.11.321512.0.1m 13.-114.2215.原式=9516.原式=9117.原式=3a .18.原式=y x x xy 222332-.19.解:乙的错;因为a=15所以a a >1,所以a a a a a a -=-=-111.20.解:原式=a 2+2ab+b 2+2a 2+ab-2ab-b 2-3a 2=ab.原式=ab=(-2)2-(3)2=4-3=1.。

苏教版八年级下册数学补充习题答案 (2)

苏教版八年级下册数学补充习题答案 (2)

苏教版八年级下册数学补充习题答案一、整数的乘法与除法1.试计算:(-5) × 6,(-6) × (-8),(-10)÷(-2),120÷(-15)。

–第1题答案:(-5) × 6 = -30–第2题答案:(-6) × (-8) = 48–第3题答案:(-10) ÷ (-2) = 5–第4题答案:120 ÷ (-15) = -82.将下列各题改写为较简明的方式:–(-5) × 7 × (-1) × 3–3456 ÷ (-6) ÷ (-8)简明改写:–第1题答案:(-5) × 7 × (-1) × 3 = 105–第2题答案:3456 ÷ (-6) ÷ (-8) = 723.将习题 2 中的各题,改写为乘法形式,即用除数的相反数等于除法,变为乘法计算。

–第1题答案:(-5) × 7 × (-1) × 3 = 105–第2题答案:3456 ÷ (-6) ÷ (-8) = 724.试求下面各题的值:(-12) × (-30) × (-2),(-1) × (-2) × 10 × 2,(-18) ÷ (-6) ÷ 3。

–第1题答案:(-12) × (-30) × (-2) = -720–第2题答案:(-1) × (-2) × 10 × 2 = 40–第3题答案:(-18) ÷ (-6) ÷ 3 = 1二、分数的运算1.已知 $\\frac{1}{3}$ = 0.333…(3),试求$\\frac{1}{3}$ + $\\frac{2}{3}$ + 0.1的值。

最新苏科版初中数学八年级下册全册教案及各章练习题

最新苏科版初中数学八年级下册全册教案及各章练习题

阜宁县陈集中学八年级期末复习(1)第七章 一元一次不等式复习目标与要求:(1)了解不等式的意义,掌握不等式的基本性质。

(2)会解一元一次不等式(组),能正确用轴表示解集。

(3)能够根据具体问题中的数量关系,用一元一次不等式(组),解决简单的问题。

知识梳理:(1)不等式及基本性质;(2)一元一次不等式(组)及解法与应用;(3)一元一次不等式与一元一次方程与一次函数。

基础知识练习:1、用适当的符号表示下列关系:(1)X 的2/3与5的差小于1;(2)X 与6的和不大于9 (3)8与Y 的2倍的和是负数 2. 已知a <b,用“<”或“>”号填空:①a-3 b-3 ②6a 6b ③-a -b ④a-b 0 3. 当0<<a x 时,2x 与ax 的大小关系是4. 如果121<<x ,则()()112--x x _______0 5. 63->x 的解集是___________,x 41-≤-8的解集是___________。

6. 函数xxy 21-=中自变量x 的取值范围是( ) A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0 D 、x 21<且x ≠0 7. 三个连续自然数的和小于15,这样的自然数组共有( ) A 、6组 B 、5组 C 、4组 D 、3组8. 当x 取下列数值时,能使不等式01<+x ,02>+x 都成立的是( ) A 、-2.5 B 、-1.5 C 、0 D 、1.5 典型例题分析:例1. 解下列不等式(组),并将结果在数轴上表示出来:(1). 634123+≤-+x x (2). ⎪⎪⎩⎪⎪⎨⎧-<--+≤--).3(3)3(232,521123x x x x x例2. 已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。

例3.已知关于x 、y 的方程组⎩⎨⎧=-=+my x y x 212.(1)求这个方程组的解;(2)当m 取何值时,这个方程组的解中,x 大于1且y 不小于-1.例4. 若()2320x x y m -+--=中y 为非负数,求m 的范围.例5. 宁启铁路泰州火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A 、B 两种型号的车厢将这批货物运至北京.已知每节A 型货厢的运费是0.5万元,每节B 型货厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,共有几种方案?请你设计出来,并说明哪种方案的运费最少,最少运费是多少?例6. 已知函数y 1 = 2 x – 4与y 2 = - 2 x + 8的图象,观察图象并回答问题: (1) x 取何值时,2x-4>0? (2) x 取何值时,-2x+8>0?(3) x 取何值时,2x-4>0与-2x+8>0同时成立? (4) 你能求出函数y 1 = 2 x – 4与y 2 = - 2 x + 8 的图象与X 轴所围成的三角形的面积吗?课后练习巩固:1.下列不等式中,是一元一次不等式的是A .2x -1>0B .-1<2C .3x-2y <-1D .y 2+3>5 2.不等式54≤-x 的解集是 A .x ≤54-B .x ≥54-C .x ≤45-D .x ≥45- 3.当a 时,不等式(a —1)x >1的解集是x <11-a 。

八年级数学苏科版下册课时练第12单元 《12.3 二次根式的加减》(含答案解析)(2)

八年级数学苏科版下册课时练第12单元 《12.3 二次根式的加减》(含答案解析)(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练12.3二次根式的加减一、选择题1.下列各组二次根式中,属于同类二次根式的是()A.23与32BC.0.5与5D.83与2(x≥0)2.下列计算正确的是()A.12-3=3B.2+3=5C.35-5=3D.3+22=523.如果+1与12的和等于33,那么a的值是()A.0B.1C.2D.34.估计28+7的运算结果应在哪两个数之间()A.5和6B.6和7C.7和8D.8和95.若矩形相邻两边的长分别是20和125,则它的周长是()A.55B.105C.75D.145二、填空题6.已知二次根式35,请写出一个它的同类二次根式:.7.(1)12+3=;(2)计算22-的结果是;(3)计算:16+|1-2|=.8.若二次根式12与最简二次根式5+1是同类二次根式,则a=.9.如图,从一个大正方形中裁去面积为8cm2和18cm2的两个小正方形,则阴影部分的面积为cm2.10.若a ,b 是有理数,且18+9+18=a +b 2,则a =,b =.三、解答题11.计算:(1)13-12+27;(2)48-413-313-40.5;(3)832-412+128-323;(4)2-32+54-2a≥0,b>0).a4+164a再任取一个a的值使其结果为正整数. 12.先化简:1213.等腰三角形的一边长为23,周长为43+7,求这个等腰三角形的腰长. 14阅读下列解题过程:===5-4=5-2,===6-5.请回答下列问题:(1)观察上面的解答过程,的结果为;++(2)利用上面的解法,请化简(3)12-11和13-12的值哪个较大,请说明理由.答案1.D2.A3.C4.C5.D6.25(答案不唯一)7.(1)33(3)3+28.29.2410.3134.11.解:(1)原式23+3=-(2)原式=43--3-22 =43--3+2222.(3)原式=8×4×12×22-363=46-22+2-6=36-2.(4)当a≥0,b>0时,原式=2-3a+10-2a=12-5a.12.解:原式=12a·2+16a4a2=a+4aa 的取值不唯一,如当a=9时,原式=7×93×9=63.13.解:当23是腰长时,底边是43+7-2×23=7.∵23+23=43<7,∴此时不能组成三角形;当23是底边时,腰长为12(43+7-23)=3+72,能组成三角形.综上所述,这个等腰三角形的腰长是3+72.14解:(1)+1-(2)原式=2-1+3-2+4-3+…+99-98+100-99=-1+100=9.(3)12-11的值较大.理由如下:由题意易得12-11=-12=∵12+11<13+12,即12-11>13-12.。

2020学年苏科版八年级下数学辅导优讲卷带答案解析


第7页(共9页)
(3)原式=
﹣•
故答案为:


22.解:(1)a=2,b=2 或 a=3,b= ;

(2)当 a=2,b=2 时,

=2,ab=4,


比 ab 小 2.
=2+ ,
(3)∵a+b=ab,
∴当 x+1=±1 或 x+1=±2 时,分式的值为整数, 此时 x=0 或﹣2 或 1 或﹣3,
=﹣ ;
故答案为: ﹣ ;
(2)等式右边=



=左边,得证;
(3)原式= ﹣ + ﹣ +…
+





(4)原式= ( ﹣ + ﹣ +…
+

)= ( ﹣
)=
24.解:(1)A=
×
=.
(2)A= ,B= ,
A﹣B= ﹣


.∵a>2,
∴A﹣B>0, ∴A>B. 答:分式 B 的值较原来分式 A 的值是变小了.
第9页(共9页)
25.(1)已知(a+b)2=6,(a﹣b)2=2,求 a2+b2 与 ab 的值; (2)已知 x+ ,求 x2 的值
26.五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集 了部分资金,计划购买甲、乙两种救灾物品共 4000 件送往灾区,已知每件甲种物品的价格比每件乙种 物品的价格贵 10 元,用 450 元购买甲种物品的件数恰好与用 400 元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格分别是多少元? (2)经调查,灾区对乙种物品件数需求量是甲种物品件数的 3 倍,若该爱心组织按照此求的比例购买 这 4000 件物品,而筹集资金多少元?

苏教版八年级数学下册第12章二次根式12.3二次根式的加减提优练习2


√2)cm,高为 2√7cm,则这个梯形的面积为 6、计算:
cm
2。
( 1) ( √8-2 √12) × √6
(2)( √3-2)2 + √12+6√13
1 ( 3)( 14√54 -8√24-√216 )÷ 2√6×
√6
1
7、若 x=√3 - √2,y=√3+√2 ,,则 1- 1的值为(
2
2
xy
这种相辅相成的“对子”,如( √5+ √3)( √5- √3)=﹣ 4,( √3+√2)( √3-√2 )= 1, 它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另个的有理数因式,
于是,二次根式除法可以这样解
:如
1

1×√3

√3
2+

√3


2

√3
)(
2+
√3


7+4√3。像
99 √97 + 97√99
(3) 设实数 x、y 满足( x+√x2+2019 )( y+√y2+ 2019 )= 2019,求 x+y+ 2019 的值
3
苏教版八年级数学下册 第 12 章二次根式 12.3 二次根式的加减提优练习 2 1、( 2017? 十堰)下列运算正确的是( ) A. √2+ √3= √5 B. 2 √2× 3√2=6√2 C. √8÷√2= 2 D. 3 √2- √2= 3
2、(2017 ?
聊城 ) 计算 (5
√1
5
-2√45)
D. ( √7+√3) × √10 =√10× √10 = 10
4、计算:
(1)(2018 ? 南京 ) √3×√6- √8 =

苏教版八年级数学下册期末考前必做题(解答题)

八年级数学下期末考前必做题(解答题)1.解分式方程:=.2.解分式方程:﹣1=.3.化简:(﹣4)÷.4.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷5.先化简(1+)÷,再从不等式组的整数解中选一个合适的x的值代入求值.6.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.7.某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.类别频率A mB0.35C0.20D nE0.05(1)求本次调查的小型汽车数量及m,n的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.8.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.9.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?10.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?11.如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围.12.如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.13.汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.14.如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.15.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.16.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.17.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.19.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.20.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=4,∠AOD=60°,求AB的长.21.如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.22.如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF =90°,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.23.如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE 沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE 的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.24.如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.25.如图1,在正方形ABCD中,点E是CD上一点(不与C,D两点重合),连接BE,过点C作CH⊥BE于点F,交对角线BD于点G,交AD边于点H,连接GE,(1)求证:△DHC≌△CEB;(2)如图2,若点E是CD的中点,当BE=8时,求线段GH的长;(3)设正方形ABCD的面积为S1,四边形DEGH的面积为S2,当的值为时,的值为.26.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.27.已知△ABC为等边三角形.点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在线投BC上时,求证:AC=CF+CD;(2)如图2,当点D在线投BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由,28.综合与实践:折纸中的数学问题情境:在矩形ABCD中,AD=12,点M、N分别是AD、BC的中点,点E、F分别在AB、CD 上,且AE=CF,将△AEM沿EM折叠,点A的对应点为点P,将△NCF沿NF折叠,点C的对应点为点Q,且点P、Q均落在矩形ABCD的内部.数学思考:(1)判断PM与NQ是否平行,并说明理由;(2)当AB长度是多少时,存在点E,使四边形PNQM是有一个内角为60°的菱形?直接写出AB的长度及菱形PNQM的面积.29.如图,已知,点E在正方形ABCD的BC边上(不与点B,C重合),AC是对角线,延长BC到点F,使CF=BE,过点E作AC的垂线,垂足为G,连接BG,DF.(1)根据题意补全图形,并证明GC=GE;(2)①用等式表示线段BG与DF的数量关系,并证明;②用等式表示线段AG,BG,CG之间的数量关系,并证明.30.旋转是图形变化的方法之一,借助旋转知识可以解决线段长、角的大小、取值范围、判断三角形形状等问题,在实际生活中也有十分重要的地位和作用.问题背景:一块等边三角形建筑材料内一点到三角形三个顶点的距离满足一定条件时,我们可以用所学的知识帮助工人师傅在没有刻度尺的情况下求出等边三角形的边长.数学建模如图1,等边三角形ABC内有一点P,已知P A=2,PB=4,PC=2.问题解决(1)如图2,将△ABP绕点B顺时针旋转60°得到△CBP',连接PP',易证∠BP'P =°,△为等边三角形,∠=90°,∠BP A=°:(2)点H为直线BP'上的一个动点,则CH的最小值为;(3)求AB长;拓展延伸已知:点P在正方形ABCD内,点Q在平面,BP=BQ=1,BP⊥BQ.(4)在图3中,连接P A、PC、PQ、QC,AP=,若点A、P、Q在一条直线上,则cos∠PCQ=;(5)若AB=2,连接DP,则≤DP<;连接PQ,当D、P、Q三点同一条直线上时,△BDQ的面积为.31.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;Q从点C开始沿CB边向B以3cm/s 的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动.(1)当运动时间为t秒时,用含t的代数式表示以下线段的长:AP=BQ=;(2)当运动时间为多少秒时,四边形PQCD为平行四边形?(3)当运动时间为多少秒时,四边形ABQP为矩形?32.如图,在平行四边形ABCD中,点E为AC上一点,点E,点F关于CD对称.(1)若ED∥CF,①求证:四边形ECFD是菱形.②若点E为AC的中点,求证:AD=EF.(2)连结BD,BE,BF,若四边形ABCD是正方形,△BDF是直角三角形,求的值.33.在▱ABCD中,∠ADC的平分线交AB于点F,交CB的延长线于点E.(1)如图1,若AD=2,BE=1,则CD=(直接写出结果).(2)如图2,若∠ADC=90°,G为EF的中点,连接CA,CG,求的值.(3)如图3,若∠ADC=60°,EH∥AB,EH=EB,连接CH,求的值.5.先化简(1+)÷,再从不等式组的整数解中选一个合适的x的值代入求值.【分析】首先进行分式的加减运算,进而利用分式的混合运算法则进而化简,再解不等式组,得出x的值,把已知数据代入即可.【解答】解:原式=×=,解不等式组得﹣2<x<4,∴其整数解为﹣1,0,1,2,3,∵要使原分式有意义,∴x可取0,2.∴当x=0 时,原式=﹣3,(或当x=2 时,原式=﹣).6.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了200名学生,两幅统计图中的m=84,n=15.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.【分析】(1)用喜欢阅读“A”类图书的学生数除以它所占的百分比得到调查的总人数;用喜欢阅读“B”类图书的学生数所占的百分比乘以调查的总人数得到m的值,然后用30除以调查的总人数可以得到n的值;(2)用3600乘以样本中喜欢阅读“A”类图书的学生数所占的百分比即可;(3)画树状图展示所有6种等可能的结果数,找出被选送的两名参赛者为一男一女的结果数,然后根据概率公式求解.【解答】解:(1)68÷34%=200,所以本次调查共抽取了200名学生,m=200×42%=84,n%=×100%=15%,即n=15;(2)3600×34%=1224,所以估计该校喜欢阅读“A”类图书的学生约有1224人;(3)画树状图为:共有6种等可能的结果数,其中被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率==.7.某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.类别频率A mB0.35C0.20D nE0.05(1)求本次调查的小型汽车数量及m,n的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.【分析】(1)由C类别数量及其对应的频率可得总数量,再由频率=频数÷总数量可得m、n的值;(2)用总数量乘以B、D对应的频率求得其人数,从而补全图形;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的小型汽车数量为32÷0.2=160(辆),m=48÷160=0.3,n=1﹣(0.3+0.35+0.20+0.05)=0.1;(2)B类小汽车的数量为160×0.35=56,D类小汽车的数量为0.1×160=16,补全图形如下:(3)估计其中每车只乘坐1人的小型汽车数量为5000×0.3=1500(辆).8.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.9.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.【分析】(1)利用待定系数法即可求得;(2)根据图象可解.【解答】解:(1)∵反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点,∴3=,3=﹣1+b,∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=,y=﹣x+4;(2)由图象可得:当1<a<3时,PM>PN.12.如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.【分析】根据描点的趋势,猜测函数类型,发现当0<x<8时,y与x可能是一次函数关系:当x>8时,y与x就不是一次函数关系:通过观察数据发现y与x的关系最符合反比例函数.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14因此放水前y与x的关系式为:y=x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14 (0<x<8)和.(x>8)(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.14.如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.【分析】(1)作CE⊥AB交AB的延长线于点E,设BE=x,由勾股定理列出关于x的方程,解方程求出平行四边形的高,进而即可求出其面积;(2)利用全等三角形的判定与性质得出AF=BE=,BF=5﹣=,DF=CE=,从而求出BD的长,在△BCD中利用勾股定理的逆定理即可证明两直线垂直.【解答】解:(1)作CE⊥AB交AB的延长线于点E,如图:设BE=x,CE=h在Rt△CEB中:x2+h2=9①在Rt△CEA中:(5+x)2+h2=52②联立①②解得:x=,h=∴平行四边形ABCD的面积=AB•h=12;(2)作DF⊥AB,垂足为F∴∠DF A=∠CEB=90°∵平行四边形ABCD∴AD=BC,AD∥BC∴∠DAF=∠CBE又∵∠DF A=∠CEB=90°,AD=BC∴△ADF≌△BCE(AAS)∴AF=BE=,BF=5﹣=,DF=CE=在Rt△DFB中:BD2=DF2+BF2=()2+()2=16∴BD=4∵BC=3,DC=5∴CD2=DB2+BC2∴BD⊥BC.15.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.【分析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE ≌△ECG得出AE=EG,证出EG=BF,即可得出结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴AE⊥BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2 ﹣OD2=OE2,∴OE=,∴EF=2OE=.17.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).【分析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接EC,DF交于点O,作射线BO即可.【解答】(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.20.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=4,∠AOD=60°,求AB的长.【分析】(1)由▱ABCD得到OA=OC,OB=OD,由OA=OB,得到;OA=OB=OC=OD,对角线平分且相等的四边形是矩形,即可推出结论;(2)根据矩形的性质借用勾股定理即可求得AB的长度.【解答】(1)证明:在□ABCD中,OA=OC=AC,OB=OD=BD,又∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴∠BAD=90°,OA=OD.又∵∠AOD=60°,∴△AOD是等边三角形,∴OD=AD=4,∴BD=2OD=8,在Rt△ABD中,AB=.21.如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.22.如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF =90°,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.【分析】(1)过点F作FM⊥AB交BA的延长线于点M,可证四边形AGFM是矩形,可得AG=MF,AM=FG,由“AAS”可证△EFM≌△CEB,可得BE=MF,ME=BC=AB,可得BE=MA=MF=AG=FG;(2)延长GH交CD于点N,由平行线分线段成比例可得,且CH=FH,可得GH=HN,NC=FG,即可求DG=DN,由等腰三角形的性质可得DH⊥HG.【解答】解:(1)AG=FG,理由如下:如图,过点F作FM⊥AB交BA的延长线于点M∵四边形ABCD是正方形∴AB=BC,∠B=90°=∠BAD∵FM⊥AB,∠MAD=90°,FG⊥AD∴四边形AGFM是矩形∴AG=MF,AM=FG,∵∠CEF=90°,∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC ∴△EFM≌△CEB(AAS)∴BE=MF,ME=BC∴ME=AB=BC∴BE=MA=MF∴AG=FG,(2)DH⊥HG理由如下:如图,延长GH交CD于点N,∵FG⊥AD,CD⊥AD∴FG∥CD∴,且CH=FH,∴GH=HN,NC=FG∴AG=FG=NC又∵AD=CD,∴GD=DN,且GH=HN∴DH⊥GH∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.24.如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.【分析】(1)由四边形ABCD是正方形知∠D=∠ECQ=90°,由E是CD的中点知DE =CE,结合∠DEP=∠CEQ即可得证;(2)①由PB=PQ知∠PBQ=∠Q,结合AD∥BC得∠APB=∠PBQ=∠Q=∠EPD,由△PDE≌△QCE知PE=QE,再由EF∥BQ知PF=BF,根据Rt△P AB中AF=PF=BF 知∠APF=∠P AF,从而得∠P AF=∠EPD,据此即可证得PE∥AF,从而得证;②设PD=x,则AP=1﹣x,由(1)知△PDE≌△QCE,据此得CQ=PD=x,BQ=BC+CQ∴AP≠PE,∴四边形AFEP不是菱形.25.如图1,在正方形ABCD中,点E是CD上一点(不与C,D两点重合),连接BE,过点C作CH⊥BE于点F,交对角线BD于点G,交AD边于点H,连接GE,(1)求证:△DHC≌△CEB;(2)如图2,若点E是CD的中点,当BE=8时,求线段GH的长;(3)设正方形ABCD的面积为S1,四边形DEGH的面积为S2,当的值为时,的值为.【分析】(1)可得∠CHD=∠BEC,根据AAS可证明△DHC≌△CEB.(2)可得.则GC=2GH,可求出GH的长;(3)设S△DGH=9a,则S△BCG=49a,S△DCG=21a,求出S1和S2即可得出答案.【解答】证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH=9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG:S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.26.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.【分析】(1)根据菱形的性质得AB=BC,而∠B=60°,则可判定△ABC为等边三角形,得到∠BAC=60°,AC=AB,易得∠ACF=60°,∠BAE=∠CAF,然后利用“ASA”可证明△AEB≌△AFC,得出AE=AF,则结论可得出;(2)过点A作AH⊥BC于点H,求出AE,证明△BAE∽△CEG,得出,则可得出答案;(3)证明△COE∽△CEA,由比例线段可得出答案.【解答】(1)证明:∵四边形ABCD为菱形,∴AB=BC,∵∠B=60°,∴△ABC为等边三角形,∴∠BAC=60°,AC=AB,∴∠BAE+∠EAC=60°,∵AB∥CD,∴∠BAC=∠ACF=60°,∵∠EAF=60°,即∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△AEB和△AFC中,,∴△AEB≌△AFC(ASA),∴AE=AF,∴△AEF为等边三角形;(2)解:过点A作AH⊥BC于点H,∵△AEF为等边三角形,∴AE=EF=,∠AEF=60°,∵∠ABH=60°,∴,BH=HC=1,∴EH=|x﹣HC|=|x﹣1|,∴EF==,∵∠AEF=∠B=60°,∴∠CEG+∠AEB=∠AEB+∠BAE=120°,∴∠CEG=∠BAE,∵∠B=∠ACE=60°,∴△BAE∽△CEG,∴,∴,∴y=EG=(0<x<2),(3)解:∵AB=2,△ABC是等边三角形,∴AC=2,∴OA=OC=1,∵EG=EO,∴∠EOG=∠EGO,∵∠EGO=∠ECG+∠CEG=60°+∠CEG,∠CEA=∠CEG+∠AEF=60°+∠CEG,∴∠EGO=∠CEA,∴∠EOG=∠CEA,∵∠ECA=∠OCE,∴△COE∽△CEA,∴,∴CE2=CO•CA,∴x2=1×2,∴x=(x=﹣舍去),即x=.27.已知△ABC为等边三角形.点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在线投BC上时,求证:AC=CF+CD;(2)如图2,当点D在线投BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由,【分析】(1)根据已知得出AF=AD,AB=BC=AC,∠BAC=∠DAF=60°,得出∠BAD =CAF,证明△BAD≌△CAF(SAS),推出CF=BD即可得出结论;(2)求出∠BAD=∠CAF,根据SAS证△BAD≌△CAF,推出BD=CF即可得出AC=CF﹣CD.【解答】(1)证明:∵菱形AFED,∴AF=AD,∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴CF=BD,∴CF+CD=BD+CD=BC=AC,即AC=CF+CD.(2)解:AC=CF+CD不成立,AC、CF、CD之间存在的数量关系是AC=CF﹣CD,理由是:由(1)知:AB=AC=BC,AD=AF,∠BAC=∠DAF=60°,∴∠BAC+∠DAC=∠DAF+∠DAC,即∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∴CF﹣CD=BD﹣CD=BC=AC,即AC=CF﹣CD.28.综合与实践:折纸中的数学问题情境:在矩形ABCD中,AD=12,点M、N分别是AD、BC的中点,点E、F分别在AB、CD 上,且AE=CF,将△AEM沿EM折叠,点A的对应点为点P,将△NCF沿NF折叠,点C的对应点为点Q,且点P、Q均落在矩形ABCD的内部.数学思考:(1)判断PM与NQ是否平行,并说明理由;(2)当AB长度是多少时,存在点E,使四边形PNQM是有一个内角为60°的菱形?直接写出AB的长度及菱形PNQM的面积.【分析】(1)分图①、图②两种情况,证明△EAM≌△FCN,根据全等三角形的性质得到∠AME=∠CNF,根据平行线的性质得到∠AQN=∠CNQ,根据平行线的判定定理证明;(2)根据菱形的性质、等边三角形的性质分别求出菱形的对角线,得到AB的长,根据菱形的面积公式求出菱形PNQM的面积.【解答】解:(1)PM∥NQ,理由如下:如图①,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠A=∠C=90°,∵点M,N分别是AD,BC的中点,∴AM=NC,∵AE=CF,∴△EAM≌△FCN(SAS),∴∠AME=∠CNF,∵∠AME=∠EMP,∠CNF=∠FNQ,∴∠AMP=∠QNC,∵AD∥BC,∴∠AQN=∠CNQ,∴∠AMP=∠AQN,∴PM∥QN;如图②,延长NQ交AD的延长线于H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠A=∠C=90°,∵点M,N分别是AD,BC的中点,∴AM=NC,∴PM=NQ,∵AE=CF,∴△EAM≌△FCN(SAS),∴∠AME=∠CNF,∵∠AME=∠EMP,∠CNF=∠FNQ,∴∠AMP=∠QNC,∵AD∥BC,∴∠AHN=∠CNH,∴∠AMP=∠AHN,∴PM∥QN;(2)如图③,连接MN、PQ,∵四边形PNQM是有一个内角为60°的菱形,∴MN⊥PQ,△PMN为等边三角形,∴MN=MP=AM=6,∴PQ=6,∴菱形PNQM的面积=×6×6=18,∴当AB=6或6时,四边形PNQM是有一个内角为60°的菱形,菱形PNQM的面积为18.29.如图,已知,点E在正方形ABCD的BC边上(不与点B,C重合),AC是对角线,延长BC到点F,使CF=BE,过点E作AC的垂线,垂足为G,连接BG,DF.(1)根据题意补全图形,并证明GC=GE;(2)①用等式表示线段BG与DF的数量关系,并证明;②用等式表示线段AG,BG,CG之间的数量关系,并证明.【分析】(1)证明△EGC是等腰直角三角形即可得出结论;(2)①连接DG、FG,先证明△BEG≌△FCG(SAS),得出BG=GF,得出EF=BC=DC,证明△GEF≌△GCD(SAS),得出∠EGC=∠DGF=90°,FG=GD,则△DGF 是等腰直角三角形,从而得出DF=GF=BG;②连接AE,证四边形AEFD是平行四边形,得出AE=DF,由DF=BG,则AE=BG,结合CG=EG,∠AGE=90°得出AG2+EG2=AE2,从而得出答案.【解答】解:(1)补全图形如图1所示,∵四边形ABCD是正方形,AC是对角线,∴∠ACB=45°,∵EG⊥AC,∴△EGC是等腰直角三角形,。

苏教版八年级数学下册 第9章平行四边形9.5三角形的中位线提优练习1

苏教版八年级数学下册第9章平行四边形9.5三角形的中位线提优练习1、(2018春・宣城期末)如图,在ABCD中,AD=16,点E,F分别是BD,CD的中点,则EF等于()A.10B.8C.6D.42、(2019・梧州二模)如图,在Rt△ABC中,∠C=90°,AB=10,AC=6,D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.24B.16C.14D.123、(2019春・天津南开区期末)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形4、(2019·株洲)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC的中点,若EF=1,则AB=。

5、(黔南州中考题)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC∠FPE=100°,则∠PFE的度数是。

6、(2018·曲靖)如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是。

7、(邵阳中考题)如图,等边△ABC的边长是2,D,E分别为AB,AC的中点,延长BC至点F,使CF =12BC ,连接CD 和EF 。

(1)求证:DE =CF;(2)求EF 的长8、(2018·苏州改编)如图,在△ABC 中,延长BC 至D 使得CD =12BC ,过AC 中点E 作EF ∥CD(点F 位于点E 右侧),且EF =2CD ,连接DF.若AB =8,则DF 的长为( )A.3B.4C.5D.69、(遵义中考题)如图,△ABC 的面积是12,点D ,E ,F ,G 分别是BC ,AD ,BE ,CE 的中点,则△AFG 的面积是( )A.4.5B.5C.5.5D.610、(2019・铜仁)如图,在△ABC 中,D 是AC 的中点,且BD ⊥AC ,ED ∥BC ,ED 交AB 于点E , BC =7cm ,AC =6cm ,则△AED 的周长等于 cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.已知:如图,□ABCD 中,对角线 AC、BD 交于 O,AD∥BC,AC=4,AB=5,BC=3. 求:对角线 BD 的长 28.某服装店用 960 元购进一批服装,并以每件 46 元的价格全部售完,由于服装畅销,服装店又用 2220 元,再次以比第一次 进价多 5 元的价格购进服装,数量是第一次购进服装的 2 倍,仍以每件 46 元的价格出售,卖了部分后,为了加快资金周转,服装 店将剩余的 20 件以售价的九折全部出售.问: (1)该服装店第一次购买了此种服装多少件? (2)两次出售服装共盈利多少元? 29.已知反比例函数的图象经过点,一次函数的图象经过点与点,且与反比例函数的图象相交于另一点. (1)分别求出反比例函数与一次函数的解析式; (2)求点的坐标. (3)求三角形 OAB 的面积 (4)在 x 轴是否存在一点 P 使△OAP 为等腰三角形,若存在,直接写出点 P 的坐标;若不存在,请说明理由. 答案: 1.C2.B3.C4.A5.A6.C7.A8.D9.D10.B11.D12.A 13.≠1,=-214。8.515.3b/4a16.6417.(s1-s2+1)/u18.8.219.820.221.6.522.23.(1)(2).2x-8-1424.(1)x=4(2)无解 25,略 26。(1)(2)80m27. 28.(1)30 件(2)868 元 29。(1)(2)B(-1,2)(3)1.5 (4)共四点:(-4,0),(-1.25,0)(,0)(P 到原点 O 的距离为 ρ,OP 与 x 轴的正方向(沿逆时针方向)的夹角为 α,则用[ρ,α]表示点 P 的 极坐标。显然,点 P 的坐标和它的极坐标存在一一对应关系。如点 P 的坐标(1,1)的极坐标为 P[,45°],则极坐标 Q[2,150°]在平面直 角坐标系中的坐标为()
A、(-,1)B、(-1,)C、(,-1)D、(1,-) 二、细心填一填(本题共 10 小题,每小题 2 分,共 20 分) 13.当 x______时,分式有意义;当 x_______时,分式的值是 0. 14.计算:=_________________. 15.化简:=______________;=___________. 16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中的正方形 F 的边长为 8cm,则正方 形 A、B、C、D 的面积的和是_______cm2. 17.已知 u=(u≠0),用 u、s1、s2 表示 t,则 t=___________. 18.我校为了筹备校园体育节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如 图所示,台阶的坡角为,,台阶的高为 3 米,那么请你帮忙算一算需要米长的地毯恰好能铺好台阶. 19.如图,直线 y=kx(k>0)与双曲线交于 A(x1,y1),B(x2,y2)两点,则 3x1y2-5x2y1=____. 第 19 题第 20 题第 21 题第 22 题 20.如图,如果函数 y=-x 与 y=的图像交于 A、B 两点,过点 A 作 AC 垂直于 y 轴,垂足为点 C,则△BOC 的面积为___________. 21.如图所示,某人到岛上去探宝,从 A 处登陆后先往东走 4km,又往北走 1.5km,遇到障碍后又往西走 2km,再折回向北走到 4.5km 处往东一拐,仅走 0.5km 就找到宝藏。登陆点 A 与宝藏埋藏点 B 之间的距离是________km 22.如图,已知圆柱的高为 80,底面半径为 10,轴截面上有两点 P、Q,PA=40,B1Q=30,则圆柱侧面上 P、Q 两点的最短距离是 _____________(用根式表示且保留) 三、认真算一算、答一答(本题共 7 小题,其中 23、24 题各 8 分;25 题 5 分;26、27、28 题各 8 分;29 题 11 分共 56 分) 23.化简(1)• (2)化简求值:其中 x=-3. 24.解分式方程 (1)解方程(2)解方程:. 25.作图:正方形网格中,小格的顶点叫做格点,图中的小正方形的边长 是 1,请在图中画出面积是 5 的正方形,要求正方形的顶点均是格点。 26.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度是面条的粗细(横 截面积)的反比例函数,其图像如图所示. (1)写出与的函数关系式; (2)若当面条的粗细应不小于,面条的总长度最长是多少?
一、精心选一选(本题 15 小题,每小题 2 分,共 24 分) 说明:将下列各题正确的答案代号 A、B、C、D 填到题后的括号内。 1.医学研究发现禽流感病毒的直径约为 0.000043 毫米,则 0.000043 这个数用科学记数法表示为()A.0.43×104B.0.43×104C.4.3×10-5D.0.43×105 2.下列说法正确的是() A.分式的值可以等于零;B.不论 x 取何值,分式总有意义 C.(x-2)-1 不是分式;D.是分式 3.满足下列条件的三角形不是直角三角形的是() A.∠A:∠B:∠C=1:2:3B.AB=12,BC=13,AC=5 C.AB=5,BC=6,AC=7D.∠C=∠A+∠B 4.如图,□ABCD 中,∠DAB 的平分线交 CD 于 E,AB=6,BC=4,则 EC 的长为() A.2B.1.5C.1D.3 5.下列各式从左到右的变形正确的是() A、B、C、D、 6.已知函数的图象经过点(2,3),下列说法正确的是() A.y 随 x 的增大而增大 B.函数的图象只在第一象限 C.当 x<0 时,必有 y<0D.点(-2,-3)不在此函数的图象上 7.计算:的结果为() A.1B.C.D. 8.在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积 V 时,气体的密度也随之改变.与 V 在一定 范围内满足,它的图象如图所示,则该气体的质量 m 为() A.1.4kgB.5kgC.6.4kgD.7kg 9.如图,反比例函数和直线 y=-x+3 交于点 A,作 AB⊥x 轴, AC⊥y 轴,则矩形 ABOC 的面积和周长分别为() A.2 和 3B.4 和 3C.2 和 6D.4 和 6 10.如图,所示,一束光线从 y 轴上点 A 出发,经过 x 轴上点 C 反射后经过 B,则光线从 A 点到 B 点所经过的路程是() A.8B.10C.6D.4 11.“五一”期间,209 班同学包租一辆面包车前去东方*游览,面包车的租金为 300 元,出发时,又增加了 4 名同学,且租金不变, 这样每个同学比原来少分摊了 20 元车费,若设原来参加游览的同学有 x 人,为求 x,可列方程为() A.B.C.D.
相关文档
最新文档