最新人教版初二数学下册全册复习资料

合集下载

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总第十六章二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥slant0)的式子叫做二次根式。

其中“√()”称为二次根号,a叫做被开方数。

- 注意:被开方数a必须是非负数,否则√(a)无意义。

例如√(-2)就不是二次根式。

2. 二次根式的性质。

- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。

- (√(a))^2=a(a≥slant0)。

例如(√(5))^2 = 5。

- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。

如√(3^2) = 3,√((-3)^2)=| - 3|=3。

3. 二次根式的乘除。

- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。

例如√(2)×√(3)=√(2×3)=√(6)。

- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。

如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。

4. 二次根式的加减。

- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。

例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。

- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。

例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。

第十七章勾股定理。

1. 勾股定理。

- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。

- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。

2. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

人教版数学八年级下册数学全册知识清单梳理+经典例题练习(含答案)

人教版数学八年级下册数学全册知识清单梳理+经典例题练习(含答案)

八年级数学下册 知识清单二次根式1.定义及存在意义的条件: 定义:形如)0(≥a a 的式子叫做二次根式;有意义的条件:a ≥0. 2.根式化简及根式运算: 最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式; (2)被开方数中的因数或因式不能再开方。

同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

根式化简公式:a a =2,2)(a =a ;根式运算: 乘法公式:)0,0(≥≥⋅=⋅b a b a b a ;b a b a ⋅=2除法公式:)0,0(>≥=⇔=b a b a ba b a b a 分母有理化:把分母中的根号化去,叫做分母有理化。

分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式; ③最后结果必须化成最简二次根式或有理式。

常见分母有理化公式:b a ba ba a a a --=+=1,1 二次根式加减运算的步骤: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式。

(2)找出其中的同类二次根式。

(3)合并同类二次根式。

3.双重非负性:002==⇒=+y x y x 且;00==⇒=+y x y x 且;000==⇒=+y x y x 且【典型例题1】 1、使代数式有意义的自变量x 的取值范围是( )A.x ≥3B.x >3且x ≠4C.x ≥3且x ≠4D.x >3 2、若式子-+1有意义,则x 的取值范围是( )A.x ≥21 B.x ≤21 C.x =21 D.以上答案都不对【典型例题2】3、已知x 、y 为实数,且y=﹣+4.+=( )A.13B.1C.5D.6 4、下列式子中,属于最简二次根式的是( )A. B. C. D.5、下列根式中,最简二次根式是( ) A.B.C.D.6、下列根式中与不是同类二次根式的是( )A. B. C. D.【典型例题3】7、化简的结果为()A. B. C.D.8、把根号外的因式移到根号内,得()A. B. C. D.9、计算的结果估计在()A.6至7之间B.7至8之间C.8至9之间D.9至10之间10、若,则( )A.1-2aB.1C.-1D.以上答案都不对【典型例题4】11、已知,,则代数式的值是()A.9B.±3C.3D.512、若m=,则m5﹣2m4﹣2016m3=()A.2015B.2016C.2017D.0【典型例题5】13、已知:实数a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.14、若的整数部分是a,小数部分是b ,求的值.15、已知△ABC的三边长a,b,c均为整数,且a和b 满足试求△ABC的c边的长.勾股定理1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。

新人教版八年级数学下册全册总复习同步整理共49页文档

新人教版八年级数学下册全册总复习同步整理共49页文档

谢谢!
Hale Waihona Puke 新人教版八年级数学下册全册总复习 同步整理
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

人教版初二下册数学知识点

人教版初二下册数学知识点

人教版初二下册数学知识点第十六章二次根式。

一、二次根式的概念。

1. 定义。

形如√(a)(a≥0)的式子叫做二次根式。

其中“√()”称为二次根号,a叫做被开方数。

- 被开方数a必须是非负数,这是二次根式有意义的条件。

例如√(x - 1),则x-1≥0,即x≥1时该二次根式才有意义。

二、二次根式的性质。

1. (√(a))^2=a(a≥0)- 例如(√(5))^2 = 5。

2. √(a^2)=| a|=a(a≥0) -a(a < 0)- 当a = 3时,√(3^2)=3;当a=-3时,√((-3)^2)=| - 3|=3。

3. 积的算术平方根√(ab)=√(a)·√(b)(a≥0,b≥0)- 例如√(12)=√(4×3)=√(4)×√(3)=2√(3)。

4. 商的算术平方根√(frac{a){b}}=(√(a))/(√(b))(a≥0,b > 0)- 例如√(frac{8){2}}=(√(8))/(√(2))=√(frac{8){2}}=√(4) = 2。

三、二次根式的运算。

1. 二次根式的加减法。

- 先将二次根式化为最简二次根式,然后合并同类二次根式。

- 最简二次根式满足被开方数不含分母,被开方数中不含能开得尽方的因数或因式。

例如√(8)不是最简二次根式,化为最简二次根式为2√(2)。

- 合并同类二次根式,就是把几个同类二次根式合并为一个二次根式。

同类二次根式是指几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如3√(2)+2√(2)=(3 + 2)√(2)=5√(2)。

2. 二次根式的乘除法。

- 二次根式相乘,把被开方数相乘,根指数不变,即√(a)·√(b)=√(ab)(a≥0,b≥0)。

- 二次根式相除,把被开方数相除,根指数不变,即√(a)÷√(b)=√(frac{a){b}}(a≥0,b > 0)。

人教版八年级数学下册知识点总结和复习要点

人教版八年级数学下册知识点总结和复习要点

人教版八年级数学下册知识点总结和复习要点一、分式1分式的概念概念:一般地,如果A、B表示两个整式,且B中含有字母,那么式子A/B就叫做分式。

2分式的基本性质性质:分式的分子与分母同乘(或除以)一个不等于零的整式,分式的值不变。

3分式的约分与通分约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

通分:把几个异分母的分式化成与原来的分式相等的同分母的分式,叫做分式的通分。

例子:对于分式(2x^2y)/(4xy^2),我们可以约分为(x/2y)。

二、反比例函数1反比例函数的概念概念:一般地,函数y=k/x (k为常数且k≠0)叫做反比例函数。

2反比例函数的性质性质:反比例函数的图像是双曲线;当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限。

例子:函数y=2/x的图像是一个位于第一、三象限的双曲线。

三、勾股定理1勾股定理的概念概念:直角三角形两直角边的平方和等于斜边的平方。

2勾股定理的逆定理逆定理:如果三角形三边满足两边平方和等于第三边平方,那么这个三角形是直角三角形。

例子:在△ABC中,若AB^2 + BC^2 = AC^2,则△ABC是直角三角形。

四、四边形1平行四边形的性质与判定性质:对边平行且相等;对角相等;邻角互补。

判定:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

2矩形的性质与判定性质:四个角都是直角;对角线相等且互相平分。

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形。

3菱形的性质与判定性质:四条边都相等;对角线互相垂直且平分。

判定:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。

4正方形的性质与判定性质:具有矩形和菱形的所有性质。

判定:有一个角是直角的菱形是正方形;对角线相等的菱形是正方形;邻边相等的矩形是正方形。

例子:一个四边形的对角线互相平分且垂直,那么这个四边形是菱形。

新人教版八年级数学下册培优辅导资料(全册)

新人教版八年级数学下册培优辅导资料(全册)

新人教版八年级数学下册辅导资料(01)姓名:________ 得分:_____一、知识点梳理: 1、二次根式的定义.一般地,式子 a (a ≥0)叫做二次根式,a 叫做被开方数。

两个非负数:(1)a ≥0 ;(2)a ≥02、二次根式的性质:(1).()0≥a a 是一个________ 数 ; (2)()=2a __________(a ≥0)(3)()()()⎪⎩⎪⎨⎧〈=〉==0_______0_______0_______2a a a a a3、二次根式的乘除:积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ,二次根式乘法法则:__________=⋅b a (a ≥0,b ≥0)商的算术平方根的性质:ba b a =).0,0(>≥b a 二次根式除法法则:)0,0(>≥=b a bab a1.被开方数不含分母; 4、最简二次根式 2.分母中不含根号;3. 被开方数中不含能开得尽方的因数或因式. 分母有理化:是指把分母中的根号化去,达到化去分母中的根号的目的. 二、典型例题:例1:当x 是怎样实数时,下列各式在实数范围内有意义? ⑴ 2-x ⑵xx -+2)1(0⑶13-+-x x ⑷12+x (5)12-+x x小结:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。

(2)分式的分母不例2:化简:(1)|21|)22(2-+- (2)|3254|)3253(2-+-例3: (1)已知y=x -3+62-x +5,求xy的值. (2) 已知01442=-+++-y x y y ,求xy 的值.小结:(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 例4:化简:(1)32; (2)2ba 33; (3)48.0 (4)yxx2(5)2925x y例5:计算: (1)351223⨯ (2) 21335÷ (3) ()0,02123〉〉⎪⎪⎭⎫ ⎝⎛-÷b a b a b a例6:化去下列各式分母中的二次根式: (1)323+ (2)813 (3)251+ (4)()0,03〉〉y x xy三、强化训练:1、使式子有意义的x 的取值范围是( ) A 、x ≤1; B 、x ≤1且2x ≠-; C 、2x ≠-; D 、x <1且2x ≠-. 2、已知0<x<1时,化简()21--x x 的结果是( )A 2X-1B 1-2XC -1D 1 3、已知直角三角形的一条直角边为9,斜边长为10,则别一条直角边长为( )A 、1;B 、C 、19;D .4、n 的最小值是( )A 、4;B 、5;C 、6;D 、7. 5、下列二次根式中,是最简二次根式的是( ) A 、a 16 B 、b 3 C 、abD 、45 6、下列计算正确的是( ) A()()69494-=-⨯-=-⨯- B 188142712=⨯=⨯C 624416416=+=+=+D 1212414414=⨯=⨯= 7、等式33-=-x x x x成立的条件是( )A x ≠3B x ≥0C x ≥0且x ≠3D x>3 8、已知053232=--+--y x y x 则y x 8-的值为 9、23231+-与的关系是 。

8年级数学人教版下册

一、三角形1. 三角形的分类:按角分类:锐角三角形、直角三角形、钝角三角形;按边分类:不等边三角形、等腰三角形、等边三角形。

2. 三角形的性质:(1)任意两边之和大于第三边;任意两边之差小于第三边。

(2)三角形内角和为180°。

(3)等腰三角形的性质:两腰相等,底角相等;等边三角形的性质:三边相等,三个角都是60°。

3. 三角形的全等:SSS(三边对应相等)、SAS(两边及其夹角对应相等)、ASA (两角及其夹边对应相等)、AAS(两角及其非夹边对应相等)。

4. 全等三角形的性质:全等三角形的对应边相等,对应角相等。

二、四边形1. 四边形的分类:按边分类:不等边形、等边形;按角分类:锐角四边形、直角四边形、钝角四边形。

2. 四边形的性质:(1)对角线互相平分的四边形是平行四边形。

(2)平行四边形的性质:对边平行且相等,对角相等,邻角互补。

(3)菱形的性质:四边相等,对角线互相垂直平分。

(4)矩形的性质:四个角都是直角,对边平行且相等。

(5)正方形的性质:四边相等,四个角都是直角,对角线互相垂直平分。

三、圆1. 圆的定义:平面内,到一个定点的距离都相等的点组成的图形叫做圆。

2. 圆的性质:(1)圆的半径、直径、周长、面积的计算公式。

(2)圆心角、弧、弦、切线的定义和性质。

(3)圆周角定理:圆周角等于它所对的圆心角的一半。

(4)弦切角定理:弦切角等于它所对的圆周角。

四、一元一次方程1. 一元一次方程的定义:只含有一个未知数,且未知数的最高次数是1的方程。

2. 一元一次方程的解法:(1)代入法:将未知数的值代入方程中,判断方程是否成立。

(2)移项法:将方程中的项移到等号的另一边,使未知数系数为1。

(3)合并同类项:将方程中的同类项合并。

(4)化简:将方程中的表达式化简。

五、一元一次不等式1. 一元一次不等式的定义:只含有一个未知数,且未知数的最高次数是1的不等式。

2. 一元一次不等式的解法:(1)代入法:将未知数的值代入不等式中,判断不等式是否成立。

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。

每章节都包括基本概念、计算方法和应用场景等内容。

阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。

(word完整版)新人教版数学初二下总复习(知识点归纳习题,文档

二次根式【知识回忆】1.二次根式:式子 a 〔a≥0〕叫做二次根式。

2.最简二次根式:必定同时满足以下条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,假设被开方数相同,那么这几个二次根式就是同类二次根式。

4.二次根式的性质:〔1〕〔2〔 a ≥0〕;2 a 〔a>0〕a 〕= a〔2〕0 〔a =0〕;aaa 〔a<0〕5.二次根式的运算:〔 1〕因式的外移和内移:若是被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;若是被开方数是代数和的形式,那么先解因式, ? 变形为积的形式,再移因式到根号外面,反之也能够将根号外面的正因式平方后移到根号里面.(2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.ab = a · b 〔a≥0,b≥0〕;b b〔b≥0,a>0〕.a a(4〕有理数的加法交换律、结合律,乘法交换律及结合律, ?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例 3、在根式 1) a2b2 ;2)x;3)x2xy ;4)27abc ,最简二次根式是〔〕5A. 1) 2)B.3) 4)C. 1) 3)D.1) 4)例 5、数 a, b,假设(a b)2=b-a,那么( )A. a>bB. a<bC. a≥bD. a ≤b2、二次根式的化简与计算例 1 . 将根号外的a移到根号内,得()A.;B.-;C.-;D.1例 2 . 把〔 a- b〕-a-b化成最简二次根式例4 、先化简,再求值:11b,其中 a=5 1, b= 5 1 .a b b a( a b)22例 5、如图,实数 a 、b在数轴上的地址,化简:a2b2(a b)24、比较数值〔1 〕、根式变形法当 a 0, b 0 时,①若是a b ,那么a b ;②若是a b ,那么a b 。

最新人教版八年级下学期数学全册复习资料

人教版八年级下学期数学复习资料(01)一、知识点梳理: 1、二次根式的定义.一般地,式子 a (a ≥0)叫做二次根式,a 叫做被开方数。

两个非负数:(1)a ≥0 ;(2) a ≥0 2、二次根式的性质:(1).()0≥a a 是一个________ 数 ; (2)()=2a __________(a ≥0)(3)()()()⎪⎩⎪⎨⎧〈=〉==0_______0_______0_______2a a a a a3、二次根式的乘除: 积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ,二次根式乘法法则:__________=⋅b a (a≥0,b ≥0)商的算术平方根的性质: ba ba =).0,0(>≥b a 二次根式除法法则:)0,0(>≥=b a ba ba1.被开方数不含分母; 4、最简二次根式 2.分母中不含根号;3. 被开方数中不含能开得尽方的因数或因式. 分母有理化:是指把分母中的根号化去,达到化去分母中的根号的目的. 二、典型例题:例1:当x 是怎样实数时,下列各式在实数范围内有意义? ⑴ 2-x ⑵xx -+2)1(0⑶13-+-x x ⑷12+x (5)12-+x x小结:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。

(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 例2:化简:(1)|21|)22(2-+- (2)|3254|)3253(2-+-例3: (1)已知y=x -3+62-x +5,求xy的值. (2) 已知01442=-+++-y x y y ,求xy 的值.小结:(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0.例4:化简:(1)32; (2)2b a 33; (3)48.0 (4)yx x 2 (5)2925x y例5:计算: (1) 351223⨯ (2) 21335÷ (3) ()0,02123〉〉⎪⎪⎭⎫ ⎝⎛-÷b a b a b a例6:化去下列各式分母中的二次根式: (1)323+ (2)813 (3)251+ (4)()0,03〉〉y x xy三、强化训练:1x 的取值范围是( )A 、x ≤1;B 、x ≤1且2x ≠-;C 、2x ≠-;D 、x <1且2x ≠-. 2、已知0<x<1时,化简()21--x x 的结果是( )A 2X-1B 1-2XC -1D 1 3、 已知直角三角形的一条直角边为9,斜边长为10,则别一条直角边长为( ) A 、1; BC 、19;D 4n 的最小值是( )A 、4;B 、5;C 、6;D 、7. 5、下列二次根式中,是最简二次根式的是( ) A 、a 16 B 、b 3 C 、ab D 、456、下列计算正确的是( )A ()()69494-=-⨯-=-⨯-B 188142712=⨯=⨯C 624416416=+=+=+D 1212414414=⨯=⨯=7、等式33-=-x x x x成立的条件是( ) A x ≠3 B x ≥0 C x ≥0且x ≠3 D x>3 8、已知053232=--+--y x y x 则y x 8-的值为9、23231+-与的关系是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014暑假八年级数学复习班辅导资料(01)理想文化教育培训中心 姓名:________ 得分:_____一、知识点梳理: 1、二次根式的定义.一般地,式子 a (a ≥0)叫做二次根式,a 叫做被开方数。

两个非负数:(1)a ≥0 ;(2)a ≥02、二次根式的性质:(1).()0≥a a 是一个________ 数 ; (2)()=2a __________(a ≥0)(3)()()()⎪⎩⎪⎨⎧〈=〉==0_______0_______0_______2a a a a a3、二次根式的乘除:积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ,二次根式乘法法则:__________=⋅b a (a ≥0,b ≥0)商的算术平方根的性质:ba b a =).0,0(>≥b a 二次根式除法法则:)0,0(>≥=b a bab a1.被开方数不含分母; 4、最简二次根式 2.分母中不含根号;3. 被开方数中不含能开得尽方的因数或因式. 分母有理化:是指把分母中的根号化去,达到化去分母中的根号的目的. 二、典型例题:例1:当x 是怎样实数时,下列各式在实数范围内有意义? ⑴ 2-x ⑵xx -+2)1(0⑶13-+-x x ⑷12+x (5)12-+x x小结:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。

(2)分式的分母不例2:化简:(1)|21|)22(2-+- (2)|3254|)3253(2-+-例3: (1)已知y=x -3+62-x +5,求xy的值. (2) 已知01442=-+++-y x y y ,求xy 的值.小结:(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 例4:化简:(1)32; (2)2ba 33; (3)48.0 (4)yxx2(5)2925x y例5:计算: (1)351223⨯ (2) 21335÷ (3) ()0,02123〉〉⎪⎪⎭⎫ ⎝⎛-÷b a b a b a例6:化去下列各式分母中的二次根式: (1)323+ (2)813 (3)251+ (4)()0,03〉〉y x xy三、强化训练:1、使式子有意义的x 的取值范围是( ) A 、x ≤1; B 、x ≤1且2x ≠-; C 、2x ≠-; D 、x <1且2x ≠-. 2、已知0<x<1时,化简()21--x x 的结果是( )A 2X-1B 1-2XC -1D 1 3、已知直角三角形的一条直角边为9,斜边长为10,则别一条直角边长为( )A 、1;B 、C 、19;D .4、n 的最小值是( )A 、4;B 、5;C 、6;D 、7. 5、下列二次根式中,是最简二次根式的是( ) A 、a 16 B 、b 3 C 、abD 、45 6、下列计算正确的是( ) A()()69494-=-⨯-=-⨯- B 188142712=⨯=⨯C 624416416=+=+=+D 1212414414=⨯=⨯= 7、等式33-=-x x x x成立的条件是( )A x ≠3B x ≥0C x ≥0且x ≠3D x>3 8、已知053232=--+--y x y x 则y x 8-的值为 9、23231+-与的关系是 。

10、若588+-+-=x x y ,则xy = _______ 11、当a<0时,||2a a -=________12、实数范围内分解因式:422-x =_____________。

13、在Rt △ABC 中,斜边AB=5,直角边BC=5,则△ABC 的面积是________14、已知01442=-+++-y x y y ,求xy 的值。

15、在△ABC 中,a,b,c 是三角形的三边长,试化简()b a c c b a ---+-22。

16、计算:(1).144262⨯⨯ (2).xy y x 2162÷(3)yxx y xy x 155102÷÷ (4) )4831()15(2023-•-•17、已知:11a a +=+221a a+的值。

2014暑假八年级数学复习班辅导资料(02)理想文化教育培训中心 姓名:________ 得分:_____一、知识点梳理:1、同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式。

二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例1.(1 )A.(2)与 )A.例2:计算(1); (2; (3)0)13(27132--+-【课堂练习1】1、下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式;C. D. 同类二次根式是根指数为2的根式 2、下列式子中正确的是( )A. =a b =-C. (a b =-2==3、计算:(1)3(2)3118122++-2、二次根式的计算:先乘方,然后乘除,最后是加减; 例2:计算: (1)3133⨯÷ (2)20142013)23()23(+⋅- (3))1(932x x x x +- (4)222333---例3:先阅读下列的解答过程,然后作答:形如m±2n 的化简,只要我们找到两个数a ,b使a +b =m ,ab =n ,这样( a )2+( b )2=m ,a ·b =n ,:那么便有m±2n =( a ±b )2= a ±b (a >b )。

例如:化简7+4 3 解:首先把7+4 3 化为7+212 , 这里m =7,n =12;由于4+3=7,4×3=12,即( 4 )2+( 3 )2=7, 4 ·3 =12 ,∴7+4 3 =7+212 =( 4 + 3 )2 =2+ 3 由上述例题的方法化简:(1)42213- (2)407- (3)32-二、巩固练习:1、下列计算中,正确的是( )A 、2+3=32B 、3936==+C 、235)23(3253=--=- D 、72572173=- 2、计算221-631+8的结果是( ) A .32-23 B .5-2 C .5-3 D .223、以下二次根式:①12;②22;③23;④27中,与3是同类二次根式的是( ). A .①和② B .②和③ C .①和④ D .③和④ 4、下列各式:①33+3=63;②177=1;③2+6=8=22;④243=22,其中错误的有( ).A .3个B .2个C .1个D .0个 5、下列计算正确的是( )A .235+=B .236=· C .84= D .2(3)3-=-6、在8,12,18,20中,与2是同类二次根式的是 。

7、若35-=x ,则562++x x 的值为 。

8、 若最简二次根式23412a +与22613a -是同类二次根式,则______a =。

9、已知32,32x y =+=-,则.__________22=+y x x y 10、计算:(1)8 +18 +12; (2)185038-+(3) (4)3182328a a a a11、已知:|a -4|+09=-b ,计算22222b a aba b ab a --•+的值。

12、若223+=a ,223-=b ,求22ab b a -的值。

13、阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;;23)23)(23(23231-=-+-=+25)25)(25(25251-=-+-=+。

试求:(1)671+_______;(2)17231+=________; (3)nn ++11=__________(n为正整数)。

(4) 计算:(+……+201320141-)(2014+1)的值.2014暑假八年级数学复习班辅导资料(03)理想文化教育培训中心 姓名:________ 得分:_____一、知识点梳理:1、勾股定理:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方。

(1)在直角三角形中,若已知任意两边,就可以运用勾股定理求出第三边.无直角时,可作垂线构造直角三角形. 变式:a cb cb ab ac 222222;;-=-=+=(2)勾股定理的作用:(1)计算;(2)证明带有平方的问题;(3)实际应用.(3)利用勾股定理可以画出长度是无理数的线段,也就可以在数轴上画出表示无理数的点. 2、勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. 即如果三角形三边a, b, c 长满足c b a 222=+那么这个三角形是直角三角形.(1)满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.(2)应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较. (3) 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.3、定理:经过人们的证明是正确的命题叫做定理。

逆定理及互逆命题、互逆定理。

二、典型例题:例1、(1)如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草。

(2)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为_______cm 2.(3)蚂蚁沿图中的折线从A 点爬到D 点,一共爬了______厘米.(小方格的边长为1厘米)“路”4m3mCBAD课堂练习1:(1)要登上12 m 高的建筑物,为了安全需使梯子底端离建筑物5 m ,则梯子的长度至少为( ) 12 m B .13 m C .14 m D .15 m (2)下列几组数中,不能作为直角三角形三边长度的是( ) A .1.5,2,2.5 B .3,4,5 C .5,12,13 D .20,30,40 (3)下列条件能够得到直角三角形的有( )①.三个内角度数之比为1:2:3 ②.三个内角度数之比为3:4:5 ③.三边长之比为3:4:5 ④.三边长之比为5:12:13 A .4个 B .3个 C .2个 D .1个(4)如图,1====DE CD BC AB ,且AB BC ⊥,AC CD ⊥,AD DE ⊥,则线段AE 的长为( )A .23B .2C .25D .3例2、如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AC 凿通?例3、如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB . A DAD.三、强化训练:1、如图1,一根旗杆在离地面5米处断裂旗杆顶部落在旗杆底部 12米处,原旗杆的长为 。

相关文档
最新文档