西南大学18秋[0346]《初等数论》作业答案
18秋福师《初等数论》在线作业一标准答案

福师《初等数论》在线作业一-0005试卷总分:100 得分:0一、单选题 (共 25 道试题,共 50 分)1.题见下图A.AB.BC.CD.D正确答案:A2.。
A.AB.BC.CD.D正确答案:B3.不定方程a^2+b^2=c^2+d^2的互素正整数解组个数是()A.0B.1C.有限D.无穷正确答案:D4.。
A.AB.BC.CD.D5.题见图片A.AB.BC.CD.D正确答案:B6.同余方程x^7+3x^6+3x^5+x+2≡0(mod 5)的解的个数是()A.1B.2C.3D.4正确答案:C7.题见图片A.AB.BC.CD.D正确答案:B8.题见图片A.AB.BC.CD.D9.。
A.AB.BC.CD.D正确答案:D10.题见图片A.AB.BC.CD.D正确答案:B11.10^1000的缩剩余系与完全剩余系中元素个数之比是()A.1/5B.1/2C.2/5D.4/5正确答案:C12.。
A.AB.BC.CD.D正确答案:B13.被3除余1,被5除余4,被11除余5的最小正整数一定处于()的区间A.[10,20]B.[20,30]C.[30,40]D.[40,50]正确答案:D14.题见图片A.AB.BC.CD.D正确答案:A15.。
A.AB.BC.CD.D正确答案:B16.100!最高能被45的()次幂整除A.20B.23C.24D.48正确答案:C17.p为素数是2^(2^p)+1为素数的()A.充分条件B.必要条件C.充要条件D.既非充分也非必要条件正确答案:B18.题见图片A.AB.BC.CD.D正确答案:C19.整数p,q互素,则p+q一定与()互素A.p-qB.p*qC.p^2+q^2D.p!+q!正确答案:B20.题见图片A.AB.BC.CD.D正确答案:C21.题见图片A.AB.BC.CD.D正确答案:A22.题见图片A.AB.BC.CD.D正确答案:D23.题见图片A.AB.BC.CD.D正确答案:C24.9x+11y=100的正整数解的个数是()A.0B.1C.2D.无穷正确答案:B25.a,b大于1且互素,则不定方程ax-by=ab的正整数解的个数是()A.0B.1C.2D.无穷正确答案:D二、判断题 (共 25 道试题,共 50 分)1.题面见图片A.错误B.正确正确答案:B2.题见图片A.错误B.正确正确答案:B3.题见图片A.错误B.正确正确答案:B4.题面见图片A.错误B.正确正确答案:B5.题见图片A.错误B.正确正确答案:A6.题见下图A.错误B.正确正确答案:A7.题面见图片A.错误B.正确正确答案:A8.题见图片A.错误B.正确正确答案:B9.题见图片A.错误B.正确正确答案:B10.题面见图片A.错误B.正确正确答案:B11.题见图片A.错误B.正确正确答案:B12.题见下图A.错误B.正确正确答案:A13.题面见图片A.错误B.正确正确答案:B14.题见图片A.错误B.正确正确答案:A15.题面见图片A.错误B.正确正确答案:B16.题面见图片A.错误B.正确正确答案:B17.题见图片A.错误B.正确正确答案:A18.题见图片A.错误B.正确正确答案:B19.题见图片A.错误B.正确正确答案:B20.题见下图A.错误B.正确正确答案:A21.题见下图A.错误B.正确正确答案:B22.题面见图片A.错误B.正确正确答案:B23.题见下图A.错误B.正确正确答案:B24.题见图片A.错误B.正确正确答案:B25.题见图片A.错误B.正确正确答案:A。
西南大学18秋[0346]《初等数论》作业答案
![西南大学18秋[0346]《初等数论》作业答案](https://img.taocdn.com/s3/m/84b5d73faf45b307e87197f9.png)
概念解释题一、简答题1. 判断30是质数还是合数,如果是合数,请给出其标准分解式。
2. 94536是否是9的倍数,为什么?3. 写出模6的最小非负完全剩余系。
4. 叙述质数的概念,并写出小于18的所有质数。
5. 叙述模m的最小非负完全剩余系的概念。
6. 2358是否是3的倍数,为什么?二、给出不定方程ax + by = c有整数解的充要条件并加以证明。
三、给出有关同余的一条性质并加以证明。
四、叙述带余数除法定理的内容并给出证明。
作业1答案一、简答题(每小题10分,共30分)1. 判断30是质数还是合数,如果是合数,请给出其标准分解式。
=⨯⨯。
答:30是合数,其标准分解式为302352. 94536是否是9的倍数,为什么?++++=是9的倍数。
答:94536是9的倍数,因为94536273. 写出模6的最小非负完全剩余系。
答:模6的最小非负完全剩余系为0,1,2,3,4,5。
4. 叙述质数的概念,并写出小于18的所有质数。
答:一个大于1的整数,如果它的正因数只有1和它本身,就叫作质数。
小于18的所有质数是2,3,5,7,11,13,17。
5. 叙述模m的最小非负完全剩余系的概念。
答:0,1,2,…,m-1称为m的最小非负完全剩余系。
6. 2358是否是3的倍数,为什么?答:2358是3的倍数。
因为一个整数能被3整除的充要条件是它的各个位数的数字之和为3的倍数,而2+3+5+8=18,18是3的倍数,所以2358是3的倍数。
二、给出不定方程ax + by = c 有整数解的充要条件并加以证明。
解: 结论:二元一次不定方程ax + by = c 有整数解的充要条件是(,)|a b c 。
证明如下:若ax + by = c 有整数解,设为00,x y ,则00ax by c += 但(,)|a b a ,(,)|a b b ,因而(,)|a b c ,必要性得证。
反之,若(,)|a b c ,则1(,)c c a b =,1c 为整数。
初等数论试卷和答案

初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则().A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15()n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数().A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果(),则不定方程c by ax =+有解. A c b a ),(B ),(b a c C c a D a b a ),(6、整数5874192能被()整除.A3B3与9C9D3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是().2、同余式)(mod 0m b ax ≡+有解的充分必要条件是().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为().4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者().5、b a ,的公倍数是它们最小公倍数的().6、如果b a ,是两个正整数,则存在()整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数.(8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、b a ,的公倍数是它们最小公倍数的(倍数).6、如果b a ,是两个正整数,则存在(唯一)整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解[136,221,391]=[[136,221],391]=[391,17221136⨯]=[1768,391]------------(4分) =173911768⨯=104⨯391=40664.------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解;----------------------------(2分) 化简得4873=+y x ;-------------------(1分)考虑173=+y x ,有1,2=-=y x ,-------------------(2分)所以原方程的特解为48,96=-=y x ,-------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论试卷和答案

初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ; -------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
0346初等数论

所以125与50的最大公因数是52,即25。
四、解:因为(1,9) = 1,所以不定方程有整数解。
显然x = 1,y = 0是其一个特解,
所以不定方程的一切整数解为,其中t取一切整数。
五、证明:若m或n为3的倍数,则mn是3的倍数;若m是3的倍数加1,n是3的倍数加1,则m-n是3的倍数;若m是3的倍数加1,n是3的倍数加2,则m+n是3的倍数;若m是3的倍数加2,n是3的倍数加1,则m+n是3的倍数;若m是3的倍数加2,n是3的倍数加2,则m-n是3的倍数,结论成立。
三、(15分)求125与50的最大公因数。
四、(15分)求不定方程x+9y=1的一切整数解。
五、(10分)设m,n为整数,证明m+n,m-n与mn中一定有一个是3的倍数。
一、解释概念
1.答:若a,b是两个整数,其中b>0,则存在两个整数q及r,使得
a=bq+r, 0<=r<b 成立,而且q及r是唯一的,q叫做a被b除所得的不完全商。学与应用数学2017年06月
课程名称【编号】:初等数论【0346】 A卷
大作业满分:100 分
一、解释下列概念(每小题15分,共30分)
1.叙述整数a被b除的不完全商的概念。
2.叙述整数a,b对模m同余的概念。
二、(30分)给出有关整除的一条性质并加以证明。
2.答:如果用m去除任意两个整数a与b所得的余数相同,我们就说a与b对模m同余,记为a≡b(mod m)。
二、答:若a是b的倍数,b是c的倍数,则a是c的倍数。即:若b| a,c| b,则 c|a。
证:由b|a,c|b及整除的定义知存在整数q1,q2 使得a=bq1,b=cq2。因此a=(cq2)q1=c(q1q2),但q1q2是一个整数,故c|a。
初等数论答案01

第一章整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节数的整除性定义1设a,b是整数,b≠ 0,如果存在整数c,使得a = bc成立,则称a被b整除,a是b的倍数,b是a的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被b 整除,记为b|/a。
显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1下面的结论成立:(ⅰ) a∣b⇔±a∣±b;(ⅱ) a∣b,b∣c⇒a∣c;(ⅲ) b∣a i,i = 1, 2, , k⇒b∣a1x1+a2x2+ +a k x k,此处x i(i = 1, 2, , k)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒ |b| ≤ |a|;b∣a且|a| < |b| ⇒a = 0。
证明留作习题。
定义2若整数a≠ 0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2任何大于1的整数a都至少有一个素约数。
证明若a是素数,则定理是显然的。
若a 不是素数,那么它有两个以上的正的非平凡约数,设它们是d 1, d 2, , d k 。
不妨设d 1是其中最小的。
若d 1不是素数,则存在e 1 > 1,e 2 > 1,使得d 1 = e 1e 2,因此,e 1和e 2也是a 的正的非平凡约数。
这与d 1的最小性矛盾。
所以d 1是素数。
证毕。
推论 任何大于1的合数a 必有一个不超过a 的素约数。
证明 使用定理2中的记号,有a = d 1d 2,其中d 1 > 1是最小的素约数,所以d 12 ≤ a 。
(0346)《初等数论》网上作业题及答案

(0346)《初等数论》网上作业题及答案1:第一次作业2:第二次作业3:第三次作业4:第四次作业5:第五次作业1:[论述题]数论第一次作业参考答案:数论第一次作业答案2:[单选题]如果a|b,b|c,则()。
A:a=cB:a=-cC:a|cD:c|a参考答案:C马克思主义哲学是我们时代的思想智慧。
作为时代的思想智慧,马克思主义哲学主要具有反思功能、概括功能、批判功能和预测功能。
(1)“反思”是哲学思维的基本特征,是以思想的本身为内容,力求思想自觉其为思想。
通过不断的反思,揭示自己时代的本质和规律,达到对事物本质和规律性的认识。
(2)概括是马克思主义哲学的重要功能,是马克思主义哲学把握人与世界总体性关系的基本思维方式。
(3)马克思主义哲学的批判功能主要是指对现存世界的积极否定。
(4)马克思主义哲学的预测功能在于预见现存世界的发展趋势。
3:[单选题]360与200的最大公约数是()。
A:10B:20C:30D:40参考答案:D数论第一次作业答案4:[单选题]如果a|b,b|a ,则()。
A:a=bB:a=-bC:a=b或a=-bD:a,b的关系无法确定参考答案:C数论第一次作业答案5:[单选题]-4除-39的余数是()。
A:3B:2C:1D:0参考答案:C数论第一次作业答案6:[单选题]设n,m为整数,如果3整除n,3整除m,则9()mn。
A:整除B:不整除C:等于D:小于参考答案:A数论第一次作业答案7:[单选题]整数6的正约数的个数是()。
A:1B:2C:3D:4参考答案:D数论第一次作业答案8:[单选题]如果5|n ,7|n,则35()n 。
A:不整除B:等于C:不一定D:整除参考答案:D数论第一次作业答案1:[论述题]数论第二次作业参考答案:数论第二次作业答案2:[单选题]288与158的最大公约数是()。
A:2B:4C:6D:8参考答案:A数论第二次作业答案3:[单选题]-337被4除余数是()。
《初等数论》习题解答

《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念解释题
一、简答题
1. 判断30是质数还是合数,如果是合数,请给出其标准分解式。
2. 94536是否是9的倍数,为什么?
3. 写出模6的最小非负完全剩余系。
4. 叙述质数的概念,并写出小于18的所有质数。
5. 叙述模m的最小非负完全剩余系的概念。
6. 2358是否是3的倍数,为什么?
二、给出不定方程ax + by = c有整数解的充要条件并加以证明。
三、给出有关同余的一条性质并加以证明。
四、叙述带余数除法定理的内容并给出证明。
作业1答案
一、简答题(每小题10分,共30分)
1. 判断30是质数还是合数,如果是合数,请给出其标准分解式。
=⨯⨯。
答:30是合数,其标准分解式为30235
2. 94536是否是9的倍数,为什么?
++++=是9的倍数。
答:94536是9的倍数,因为9453627
3. 写出模6的最小非负完全剩余系。
答:模6的最小非负完全剩余系为0,1,2,3,4,5。
4. 叙述质数的概念,并写出小于18的所有质数。
答:一个大于1的整数,如果它的正因数只有1和它本身,就叫作质数。
小于18的所有质数是2,3,5,7,11,13,17。
5. 叙述模m的最小非负完全剩余系的概念。
答:0,1,2,…,m-1称为m的最小非负完全剩余系。
6. 2358是否是3的倍数,为什么?
答:2358是3的倍数。
因为一个整数能被3整除的充要条件是它的各个位数的数字之和为3的倍数,而2+3+5+8=18,18是3的倍数,所以2358是3的倍数。
二、给出不定方程ax + by = c 有整数解的充要条件并加以证明。
解: 结论:二元一次不定方程ax + by = c 有整数解的充要条件是(,)|a b c 。
证明如下:
若ax + by = c 有整数解,设为00,x y ,则
00ax by c += 但(,)|a b a ,(,)|a b b ,因而(,)|a b c ,必要性得证。
反之,若(,)|a b c ,则1(,)c c a b =,1c 为整数。
由最大公因数的性质,存在两个整数s ,t 满足下列等式
(,)as bt a b +=
于是111()()(,)a sc b tc c a b c +==。
令0101x sc tc ==,y ,则00ax by c +=,故00,x y 为ax + by = c 的整数解,从而ax + by = c 有整数解。
三、给出有关同余的一条性质并加以证明。
答:同余的一条性质:整数a ,b 对模m 同余的充要条件是m |a -b ,即a =b +mt ,t 是整数。
证明如下: 设11r mq a +=,22r mq b +=,10r ≤,m r <2。
若a ≡b (mod m ),
则21r r =,因此)(21q q m b a -=-,即m |a -b 。
反之,若m |a -b ,则)()(|2121r r q q m m -+-,因此21|r r m -,但
m r r <-21,故21r r =,即a ≡b (mod m )。
四、叙述带余数除法定理的内容并给出证明。
答:若a ,b 是两个整数,其中b >0,则存在两个整数q 及r ,使得
a =bq +r ,
b r <≤0
成立,而且q 及r 是唯一的。
下面给出证明:
证作整数序列
…,-3b ,-2b ,-b ,0,b ,2b ,3b ,…
则a 必在上述序列的某两项之间,及存在一个整数q 使得qb ≤a <(q +1)b 成立。
令a -qb =r ,则r 为整数,且a =qb +r ,而b r <≤0。