考研数学极限计算方法:利用单侧极限
考研数学:极限计算方法——利用单侧极限

考研数学:极限计算方法——利用单侧极限今天给大家带来极限计算方法中的利用单侧极限来求极限。
为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢?第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。
例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan )0121x e x x f x x x x ⎧-<⎪⎪⎪==⎨⎪>+-在0=x 处的极限。
分析:在做这道题时我们发现0=x处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即1lim 221arctan lim 121)arctan 1ln(lim 000==⨯=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→xx x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0=→x f x 。
有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。
第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,⎪⎪⎪⎭⎫ ⎝⎛+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x,在脱绝对值时会出现负号,同时出现了e ∞,故分单侧计算极限,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x e x e x e x x x x e e e ++++→→→→⎛⎫⎛⎫+++ ⎪ ⎪+=+== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→⎛⎫⎛⎫+++ ⎪ ⎪+=-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭,所以1sin 12lim 410=⎪⎪⎪⎭⎫ ⎝⎛+++→x x e e x x x 。
考研数学单侧极限和夹逼定理的知识点

考研数学单侧极限和夹逼定理的知识点考研数学单侧极限和夹逼定理的知识点1为什么会有单侧极限这种极限计算方法,是因为在x→∞,x→a包括x→+∞和x→-∞,x→a+和x→a-,而不同的趋近,极限趋近值也不相同,因此需要分别计算左右极限,根据极限的充要条件来判断极限是否存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢?第一:e∞,arctan∞,因为x趋近于+∞,e∞→+∞,arctan∞→π/2,x趋近于-∞,e∞→0,arctan∞→-π/2;第二:绝对值;第三:分段函数在分段点处的极限。
有个这几条我们就可以在计算极限时知道什么情况下分左右极限计算,什么时候正常计算。
夹逼定理分为函数极限的夹逼定理和数列极限的夹逼定理。
要明确夹逼定理是将极限计算出来的方法,而不是用来判断极限是不是存在,以数列极限为例,即n→∞,yn→?,若存在n>0,当n>n时,找到xn,zn,且xn→a,zn→b,a≠b,则不能说明yn极限不存在,函数极限也是一样的。
这一点一定要注意,防止理解偏差。
单调有界收敛定理主要应用是解决数列极限计算问题,一般情况下,题目的类型是固定的,例如:已知x1=a,xn=f(xn-1),n=1,2,.....,求数列{xn}的极限。
当看到这种类型的题目,我们要先知道可以应用于单调有界收敛定理来证明,也就是要证明两点,第一:证明数列有界;第二:证明数列单调。
综合以上两点就可以依据该定理证明数列极限存在,再将xn=f(xn-1)两边同时取极限,即可以得到数列极限的值。
上述几种方法原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,拓宽自己的解题能力。
很多同学都会有这样的感觉,为什么我就是想不到这样解题呢?像这样的'问题在现阶段出现是正常的,因为我们要通过复习来解决问题,所以我们只要认真对待就可以了,首先接受这种方法,然后理解这种方法,最后看看这个解题思路跟题目中的哪个条件是紧密联系在一起的,弄清楚并记住,下次如果做题时遇到了这个条件,我们是不是就可以尝试的做做,时间久了自然而然的就有了自己的解题思路。
考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。
通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。
求函数极限的方法有很多种,以下是几种常见的方法。
对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。
例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。
当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。
例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。
洛必达法则是求未定式极限的重要方法。
如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。
例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。
对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。
通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。
例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。
夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。
如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。
例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。
考研数学极限的运算方法及适用情况

考研数学极限的运算方法及适用情况考研数学极限的运算方法及适用情况在数学考察中,极限的计算占据很大一部分,所以考生必须熟练掌握。
店铺为大家精心准备了考研数学极限的运算秘诀和适用情况,欢迎大家前来阅读。
考研数学极限的运算技巧及使用情况基础阶段,我们的目标是三基本:基本概念、基本定理、基本方法,因此在基础阶段学习极限应从两个方面着手,一是极限的定义,二是极限的运算。
极限的定义在考试大纲中明确要求是理解,理解的意思并不是会背诵定义内容,而是能够领会定义内容背后的所蕴含的含义,正确理解所代表的任意小以及代表的距离。
除定义本身以外,极限的趋近状态也要注意区分,对于函数来说有六种趋近状态:各自的含义要非常清楚,而数列只有一种趋近状态,虽然没有指明,但是数列里边的隐含之意为。
极限的计算则需要首先掌握考研数学要考到的七种基本方法,知道七种方法适用的情况。
第一种是四则运算,此方法大家最为熟悉,但比较容易出错,需要注意使用四则运算的前提是进行运算的函数极限必须都是存在的;第二种是等价无穷小替换,这一方法比较受欢迎,而且很多极限计算的问题只需经过等价无穷小代换就能得出结果,不需再使用其他方法,需要注意的是等价无穷小代换前提必须首先是无穷小才可代换,另外只能在乘积因子内代换(有些是可以在加减因子中代换的,但是在没有十足把握的情况下应避免使用在加减因子中代换);第三种是洛必达法则,适用于及型未定式,在使用的过程中需要注意一下几点:1、洛必达法则必须结合等价无穷小使用;2、使用一次整理一次;3、其他类型未定式需要转化成及型才可以使用洛必达法则等;第四种是泰勒展式,这是解决极限问题的利器,在基础阶段不必要求掌握如何使用,只需了解泰勒展式的内容即可,具体使用原则会在强化阶段给出;第五种是夹逼定理,主要用于解决含有不等式关系的极限问题,特别应用于个分式之和的数列极限问题,通过放缩分母来达到出现不等关系的目的;第六种是定积分的定义,与夹逼定理相区别,夹逼定理解决的问题放缩分母后分子可用一个式子去表示,而定积分的定义可解决夹逼定理不能解决的问题,通过主要的三步:1、提取,2、凑出,3、极限符号及连加符号改写为,改写为,改写为计算定积分即可解决个分式之和的数列极限问题;第七种方法是适用于数列极限的单调有界性定理,难点在于如何确定证明方向,一般单调有界性定理适用于由递推公式给出的数列极限问题,因此可采取数学归纳法证明有界性,做差的办法证明单调性。
数学分析中求极限的方法总结

数学分析中求极限的方法总结数学分析中求极限的方法总结1 利用极限的四则运算法则和简单技巧极限的四则运算法则叙述如下:定理1.1:如果(1)(2)(3)若B≠0 则:(4)(5)(n为自然数)上述性质对于也同样成立由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。
例1. 求的极限解:由定理中的第三式可以知道例2. 求的极限解:分子分母同时乘以式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3. 已知,求解:观察因此得到所以12 利用导数的定义求极限导数的定义:函数f(x)在附近有定义,,则如果存在,则此极限值就称函数f(x)在点的导数记为。
即在这种方法的运用过程中,首先要选好f(x)。
然后把所求极限都表示成f(x)在定点的导数。
例4. 求的极限解:3 利用两个重要极限公式求极限两个极限公式:(1),(2)但我们经常使用的是它们的变形:,(2)求极限。
例5:解:为了利用极限故把原式括号内式子拆成两项,使得第一项为1,第二项和括号外的指数互为倒数进行配平。
==例6:解:将分母变形后再化成“0/0”型所以==例7: 求的极限解:原式=利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。
一般常用的方法是换元法和配指数法。
4 利用函数的连续性因为一切初等函数在其定义区间内都是连续的,所以如果是初等函数,且是的定义区间内的点, 则。
例8:解:因为复合函数是初等函数,而是其定义区间内的点,所以极限值就等于该点处的函数值.因此例8:求解:复合函数在处是连续的,所以在这点的极限值就等于该点处的函数值即有==05 利用两个准则求极限。
(1)函数极限的迫敛性:若一正整数 N,当n>N时,有且则有。
利用夹逼准则求极限关键在于从的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列和,使得。
微积分 函数之单侧极限与无穷大

3x2 10x 7
当 x 1 当 x 1
, 当 x 1
的极限 lim f (x) 存在 , 并算出 lim f (x) .
x1
x1
解:(1) lim f (x) 存在,故 lim f (x) lim f (x) 均存在,
x1
类似地,如果 0 , 0 , 当 x x x
0
0
便可成立 : f (x) A , 这时的具体含义是:
只考虑点 x0 的 右邻域 内,自变量 从右边趋于 有限数 x0 时,函 数值 f ( x ) 有 向常数 A 无限趋近的变化趋势。
这种情况下,称函数 f ( x ) 在点 x0 的右极限 存在,记为:
解:若 a 满足 k 1 a k ,其中 k 为某个正整数 ,
则 lim [x] lim k 1 k 1 [a] ;
xa x xa x
aa
若 a k ,其中 k 为某个正整数 ,
lim [x] lim k 1 k 1 a 1 1 ;
x xa0
x2
x2
解: lim f (x) 存在, lim f (x) lim f (x) .
x2
x 20
x 20
由于
lim
f (x) lim (x3 ax 3a)
代入法
8a
,
x 20
x 20
lim f (x) lim (2ax 4)
x 20
x 20
x 10
x 10
lim f (x) lim (ax b)
x 10
x 10
代入法
ab ,
2021考研数学基础复习:求极限的16种方法

2021考研数学基础复习:求极限的16种方法1.极限分为一般极限,还有个数列极限区别在于数列极限是发散的,是一般极限的一种。
2.解决极限的方法如下(1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记。
(x趋近无穷的时候还原成无穷小)(2)洛必达法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提。
必须是X趋近而不是N趋近。
(所以面对数列极候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。
还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况(1)0比0无穷比无穷时候直接用(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了(3)0的0次方,1的无穷次方,无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)3.泰勒公式含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则项除分子分母!看上去复杂处理很简单。
5.无穷小与有界函数的处理办法面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!6.夹逼定理主要对付的是数列极限这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
数学分析中求极限的几种重要方法

数学分析中求极限的几种重要方法数学分析中求极限的几种重要方法极限是数学分析的重要内容,是高等数学的理论基础和研究工具,学习极限相关理论对学习数学分析和掌握高等数学众多理论有着极其关键的作用。
由于极限的计算题目类型多变,而极限的求取方法也种类繁多,因此,针对不同问题找到正确且最简洁的方法意义重大。
1、利用定义求极限极限的概念可细分为函数的极限和数列的极限。
2、利用法则求极限2.1 四则运算法则法2.2 两个准则法本文简单介绍两个准则,分别为夹逼准则和单调有界准则,常用于数列极限的求解。
(2)单调有界准则:单调有界数列必有极限,且极限唯一。
利用单调有界准则求极限过程中,首先需要证明数列的单调性和有界性,然后要证明数列极限的存在,最后根据数列的通项递推公式以及极限的唯一性来求极限。
2.3 洛比达法则法3、利用公式求极限3.1 两个重要极限公式法(1)极限及其变换,常用于包含三角函数的“”型未定式。
利用这两个重要极限公式来求极限时要仔细观察函数形式是否符合。
3.2 泰勒公式法泰勒公式法是指在求极限时,利用泰勒公式将函数进行展开后再通过一般求极限的'方法进行计算的方法。
泰勒公式法对一些比较复杂的求极限过程可以起到简化作用。
4、利用性质求极限4.1 无穷小量性质法利用下列几点无穷小量的性质可解决相关的极限问题。
性质1:有限无穷小量的代数和为无穷小。
性质2:无穷小量与有界函数的乘积为无穷小。
性质3:有限无穷小量的乘积为无穷小。
4.2 函数连续性法函数的连续性:5、其他方法5.1 中值定理法中值定理法包括利用微分或积分中值定理求极限,通过微分或积分中值定理将函数进行变换,再求极限。
5.2 定积分法则可知定积分可化为和式极限的形式,同样,在求和式极限时,可转为定积分的形式来求解。
具体步骤:(1)首先选择恰当的可积函数f(x)。
(2)然后将所求和式极限表示成为f(x)在某区间[a,b]上的等分的积分和式的极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
版权所有翻印必究
考研数学极限计算方法:利用单侧极限
今天给大家带来极限计算方法中的利用单侧极限来求极限。
为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢?
第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。
例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan ),0121x e x x f x x x x x ⎧-<⎪⎪⎪==⎨⎪+⎪>+-⎪⎩
在0=x 处的极限。
分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即
1lim 22
1arctan lim 121)arctan 1ln(lim 000==⨯=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x
x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0
=→x f x 。
有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。
第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,⎪⎪⎪⎭
⎫ ⎝⎛+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时
版权所有翻印必究
2会出现负号,同时出现了e ∞,故分单侧计算极限,
11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ++++→→→→⎛⎫⎛⎫+++ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→⎛⎫⎛⎫+++ ⎪ ⎪+=-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭
,所以1sin 12lim 410=⎪⎪⎪⎭
⎫ ⎝⎛+++→x x e e x x x 。
上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。