最新初中数学建模举例复习过程

最新初中数学建模举例复习过程
最新初中数学建模举例复习过程

初中数学建模举例

所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。笔者以一次函数的应用为例,探讨几种不同的数学建模过程。

一、直接给出模型

例1.已知弹簧的长度y在一定的限度内是所挂物质重量x的一次函数。现已测得所挂重物重量为4kg时,弹簧的长度是7.2cm;所挂重物重量为5kg时,弹簧的长度为7.5cm。求所挂重物重量为6kg时弹

簧的长度。

既然题干中已经明确给出了y与x之间具备的是一次函数关系,那么实际上本题目中数学建模过程已经被省略掉了。可以设数学模型为y=kx+b,将已知的两个条件分别代入这个模型关系式中,可得:7.2=4x+b,7.5=5x+b。求解二元一次方程组,得出k=0.3,b=6。从而得到模型y=0.3x+6,将x=6代入该模型中,得到y=7.8。于是得到该问题的最终结果,即当所挂物体重量为6kg时,弹簧长度为7.8cm。这种直接给出数学模型的方法,在初学一次函数理解其待定系数法时,不失为一种较为合适的数学题目设计。但是从数学应用的角度来看,不利于锻炼学生从实际问题中抽象出数学问题的能力。

二、猜测建立模型

例2.爸爸穿42码的鞋,长度为26cm;妈妈穿39码的鞋,长度为

24.5cm。小明穿41码的鞋子,长度为多少?

可以设数学模型为y=kx+b,将已知的两个条件分别代入到这个模型

关系式中,可得:

26=42k+b,24.5=39k+b。求解二元一次方程组,得解k=0.5,b=5。得到模型y=0.5x+5,将x=41代入该模型中,得到y=25.5。从而得到该问题的最终结果,即小明所穿的41码的鞋子,长度为25.5cm。本例至此,似乎已经解决了问题。但实际上,如果只知道两对已知的函数数值,还不能否定尺码和长度之间是否存在着其他函数关系,譬如二次函数关系。因此,在该题目的题设中应该再给出一个条件,比如可以再给出“妹妹穿36码的鞋,长度为23cm”,以便获得一次函数模型后的验证。无疑,例题2中一次函数模型的应用较例题1高了

一个层次。

三、实际推导模型

例3.星期天,张老师提着篮子(篮子重0.5斤)去集市买10斤鸡蛋,当张老师往篮子里装称好的鸡蛋时,发觉比过去买10斤鸡蛋的个数少很多,于是她将鸡蛋装进篮子再让摊主一起称,共称得10.55斤,她即刻要求摊主退1斤鸡蛋的钱。她是怎样知道摊主少称了大约1斤鸡蛋呢(精确到1斤)?请你将分析过程写出来,由此,你受到什么

启发?

把鸡蛋的实际重量看做是未知数x,而把显示的重量看做是y,于是如果没作弊,应该是y=x,但是老板作弊了,那么他又是如何作弊的呢?他无非是想让y>x。老板可以调整他的秤,使得下面的等式成立:y=kx。其中k是大于1的一个数。这样,对于每一个x值,y值都比它大。根据这道题目的已知条件得到以下两个等式:

10=kx ①

10.55=k(x+0.5)②

由②可以得到:10.55=kx+0.5k ③

纵观例3的设计求解过程,处处“原滋原味”。这种“原滋原味”的题目,看似需要用数学知识去解决,却又留给了学生一定的思考空间。如果教师善于利用数学模型,就能充分发挥其在解题过程中对学生诸

多能力的培养。

我国著名的数学家华罗庚曾经指出:“人们对于数学产生枯燥无味、神秘难懂的印象,原因之一便是脱离实际。”因此,每一位数学教师都应该善于挖掘身边的生活实例,将它们作为有效的教学资源,让学生在做数学、体验数学的实践活动中,自主构建数学模型,感受数学的魅力,提高学生学习数学的兴趣,并增强学习数学的自信心。

安全生产风险分级管控制度

第一章总则

第一条为落实“安全第一、预防为主、综合治理”安全生产方针,全面推行安全风险分级评估,提升安全风险管控水平,保障安全生产,制定本制度。

第二条本制度所指的安全风险分级管控,是指公司内部为保障安全生产自主组织开展的,对生产、建设、管理各环节可能存在或产生的危险、危害因素进行超前辨识、分析、分级评估、管理控制的活动。本制度不包括国家法律法规要求的由中介机构承担的各类安全评价活动。

第三条本制定适用于公司所属各生产经营和项目建设单位(以下简称各厂矿)。

第二章组织管理

第四条公司负责安全风险分级评估、管控工作的总体组织、协调。安全监察部是安全风险评估管理工作的牵头部门,负责组织制订公司安全风险分级管控制度和考核标准,定期协调组织相关业务职能部门对各单位安全风险管控工作进行监督检查和考核。各业务职能部门是安全风险管控工作专业管理部门,负责本专业范围内安全风险评估、管控工作的组织协调、业务指导和检查督导。

第五条各厂矿

数学建模经典案例:最优截断切割问题复习进程

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时,只 需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式.

初中常用数学模型

【1】中点+平行模型如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 ) 答案:1.3 2;2.D 【2】一线三等角模型如图,若∠B=∠C=∠DEF=α(0<α≤90)则一定有△BDE 与△CEF 相似。十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。

【例题1】(2009 ) 【例题 2】(2006 ) 【例题3】(原创) 答案:1. 2或3-24或25 2.(5 453-,) 【3】巧造旋转模型在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。巧造旋转往往要有一定的等量关系和特殊角度,如下题:

通过观察可得∠ ABC=∠C=45°,AB=AC。我们可以将△ACD绕A顺时针旋转90°得到△ABE,使得AC与AB 重合。那么就有EB⊥BC,而在RT△AED中,DE2=2AD2(等腰直角三角形)所以BE2+BD2=DE2,即BD2+CD2=2AD2是不是赶脚很难想到?要学会判断,这种感觉是要练出来的!【例题1】(2014 ) 【例题2】【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略 【4】等腰模型这是一个很基础的模型——什么样的结构会生成等腰三角形首先:平行+角平 分线,如图,若AD‖BE,BC 平分∠ABE,则AB=AC,很好证的,导角即可。其次:垂直+角平分这个不难理解,因为等 腰三角形三线合一。这种模型很常用,常常需要做辅助线(延长之类)【例题1】(原创)

初中数学几个常用模型

初中数学几个数学模型 模型1、l:r=3600:n0 ①圆锥母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是 216 。 ②劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心 角等于( C )A.45°B.60°C.90°D.120° ③要制作一个圆锥形的模型,要求底面半径为2cm,母线长为4cm,在一个边长为8cm的正 方形纸板上,能否裁剪制作一个这种模型(侧面和底面要完整,不能拼凑)( C ) (A)一个也不能做(B)能做一个(C)可做二个(D)可做二个以上 4、(2004河北T7)在正方形铁皮上剪下个圆形和扇形,使之恰好围成如图所示的圆锥模型.设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是(D )A、2r=R B、C、 D、 模型2、角平分线+平行=等腰三角形 如图,ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC, 交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的 大小关系( B ). (A)EF>BE+CF (B)EF=BE+CF (C)EF

③(2006邵阳T8. ) 将一副三角板按图(一)叠放,则△AOB 与△DOC 的面积之比等于(1:3 ) ④(2005年浙江绍兴T18.)(以下两小题选做一题,第(1)小题满分5分,第(2)小题满分为3分。若两小题都做,以第(1)小题计分) 选做第________小题,答案为________ (1) 将一副三角板如图叠放,则左右阴影部分面积:之比等于________ (2) 将一副三角板如图放置,则上下两块三角板面积 : 之比等于________ ⑤(2006年武汉市T24.10分)已知:将一副三角板(Rt △ABC 和Rt △DEF )如图①摆放, 点E 、A 、D 、B 在一条直线上,且D 是AB 的中点。将Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE 、AC 相交于点M ,直线DF 、BC 相交于点N ,分别过点M 、N 作直线AB 的垂线,垂足为G 、H 。 (1)当α=30°时(如图②),求证:AG =DH ; (2)当α=60°时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由。 ⑥一副三角板由一个等腰直角三角形和一个含300 的直角三角形组成,利用这副三角板构成 一个含有150 角的方法较多,请你画出其中两种不同构成的示意图,并在图上标出必要的标注,不写作法. ⑦将一副三角尺如图摆放一起,连接AD, 则∠ADB 的余切值为 . ⑧如图, 中, , , ,过点 作 于 , A G D H M E F C B N 第24题图 图③ E F M N D A B G H 图④ C 45° 60° A E D B C F A G D H M E F C B (N ) 第24题图 图① 图②

初中数学建模

初中数学建模教学有感 摘要:数学模型可以有效地描述自然现象和社会现象.数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.初中数学建模教学宜低起点、小步子、多活动.数学思想是数学知识的结晶,是高度概括的数学理论.数学建模教学要重视数学知识,更应突出数学思想方法,让学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,在获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.关键词:初中数学;数学建模;建模教学 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展[1]. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.[2]数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.[2]从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 数学建模的基本过程大致为: 一、初中数学建模教学宜低起点、小步子、多活动 过去数学建模只作为高等院校数学专业和部分计算机专业的课程.初中

数学建模教学和高校的数学建模教学有很大的不同,初中数学建模教学一般先提出问题、引入正题;然后分析问题,在“引导——探索——创造”中建立模型;最后利用模型解决问题.[3]根据初中学生的身心发展水平、已经掌握的知识结构,初中数学建模教学宜“低起点、小步子、多活动”.低起点,就是根据学生的现有水平,结合课程标准的要求,降低教学的起点,以便全体学生都能真正进入到教学活动中去.小步子,就是按照由易到难,由浅入深,由单一到综合,由简单到复杂的原则,安排层次分明,但梯度较小的教学情境,分散教学难点,突出教学重点,引领学生沿着数学学习活动的台阶拾级而上,最终达到课程标准的要求.多活动,就是恰当地设计问题情境,引领学生动眼看、动脑想、动口说、动手做,引领学生开展自主学习、合作交流、提问质疑等数学学习活动,引领学生在活动中获得知识,引领学生在活动中发展思维. [案例1]销售中的盈亏问题的建模教学 1、背景问题 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? (人教版数学七年级上册第104页) 2、数学建模 (1)问题分析 ①假设一件衣服的进价是x元,以60元卖出,卖出后盈利25%,那么这件衣服的利润是多少元? ②假设一件衣服的进价是y元,以60元卖出,卖出后亏损25%,那么这件衣服的利润是多少元? (2)模型建立 问题1 你认为销售价与进价之间具有怎样的关系时是盈利的?

初中常用数学模型

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 ) 答案:1.3 2 ;2.D

如图,若∠B=∠C=∠DEF=α(0<α≤90) 则一定有△BDE与△CEF相似。 十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。 【例题1】(2009 ) 【例题2】(2006 ) 【例题3】(原创)

答案:1. 2或3-24或 25 2.(5 453-,) 【3】巧造旋转模型 在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。 巧造旋转往往要有一定的等量关系和特殊角度,如下题: 通过观察可得∠ABC=∠C=45°,AB=AC 。 我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。 那么就有EB ⊥BC ,而在RT △AED 中,DE2=2AD2(等腰直角三角形) 所以BE2+BD2=DE2,即BD2+CD2=2AD2 是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 ) 【例题2】 【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略【4】等腰模型 这是一个很基础的模型——什么样的结构会生成等腰三角形 首先:平行+角平分线, 如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。 其次:垂直+角平分 这个不难理解,因为等腰三角形三线合一。 这种模型很常用,常常需要做辅助线(延长之类)

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

初中数学建模案例40056

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

最新初中数学几个常用模型

初 中 数 学 几 个 数 学 模 型 ①圆锥母线长5cm ,底面半径长3cm ,那么它的侧面展开图的圆心角是 216 。 ②劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心角等于( C ) A .45° B.60° C .90° D.120° ③要制作一个圆锥形的模型,要求底面半径为2cm ,母线长为4cm ,在一个边长为8cm 的正方形纸板上,能否裁剪制作一个这种模型(侧面和底面要完整,不能拼凑)( C ) (A)一个也不能做 (B)能做一个 (C)可做二个 (D)可做二个以上 4、(2004河北T7)在正方形铁皮上剪下个圆形和扇形,使之恰好围成如图所示的圆锥模型.设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是 (D )A 、2r=R B 、R r =4 9 C 、R r =3 D 、r 4 模型2如图,?ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC , 交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE+CF 的大小关系( B ). (A )EF>BE+CF (B )EF=BE+CF (C )EF

③(2006邵阳T8. ) 将一副三角板按图(一)叠放,则△AOB 与△DOC 的面积之比等于(1:3 ) ④(2005年浙江绍兴T18.)(以下两小题选做一题,第(1)小题满分5分,第(2)小题满分为3分。若两小题都做,以第(1)小题计分) 选做第________小题,答案为________ (1) 将一副三角板如图叠放,则左右阴影部分面积1S :2S 之比等于________ (2) 将一副三角板如图放置,则上下两块三角板面积1A :2A 之比等于________ ⑤(2006年武汉市T24.10分)已知:将一副三角板(Rt △ABC 和Rt △DEF )如图①摆放, 点E 、A 、D 、B 在一条直线上,且D 是AB 的中点。将Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE 、AC 相交于点M ,直线DF 、BC 相交于点N ,分别过点M 、N 作直线AB 的垂线,垂足为G 、H 。 (1)当α=30°时(如图②),求证:AG =DH ; (2)当α=60°时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由。 ⑥一副三角板由一个等腰直角三角形和一个含300 的直角三角形组成,利用这副三角板构成 一个含有150 角的方法较多,请你画出其中两种不同构成的示意图,并在图上标出必要的标注,不写作法. ⑦将一副三角尺如图摆放一起,连接AD, 则∠ADB 的余切值为 . ⑧如图,ABC ?中,?=∠90ACB ,?=∠30B ,1=AC ,过点C 作AB CD ⊥1于1D ,A G D H M E F C B N 第24题图 图③ E F M N D A B G H 图④ C 45° 60° A E D B C F A G D H M E F C B (N ) 第24题图 图① 图②

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

初中数学建模案例

初中数学建模案例 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。

第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤 1. 确定题目 选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。 2. 开展科研课题

数学建模经典案例:最优截断切割问题

建模案例:最优截断切割问题 一、 问 题 从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过 6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用 e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少. 二、 假 设 1、假设水平切割单位面积的费用为r ,垂直切割单位面积费用为1; 2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e ; 3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割. 三、 模型的建立与求解 设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工. 由此准则,只需考虑 P 6622290!!! ??=种切割方式.即在求最少加工费用时, 只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5在M6前的切割方式. 1、 e=0 的情况

初中常用数学模型

初中常用数学模型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 深圳) 答案:1.32 ;2.D

如图,若∠B=∠C=∠DEF=α(0<α≤90) 则一定有△BDE与△CEF相似。 十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。 【例题1】(2009 太原) 【例题2】(2006 河南) 【例题3】(原创)

答案:1. 2或3-24或 25 2.(5 453-,) 【3】巧造旋转模型 在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。 巧造旋转往往要有一定的等量关系和特殊角度,如下题: 通过观察可得∠ABC=∠C=45°,AB=AC 。 我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。 那么就有EB ⊥BC ,而在RT △AED 中,DE2=2AD2(等腰直角三角形) 所以BE2+BD2=DE2,即BD2+CD2=2AD2 是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 武汉) 【例题2】 【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略 【4】等腰模型 这是一个很基础的模型——什么样的结构会生成等腰三角形 首先:平行+角平分线, 如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。其次:垂直+角平分 这个不难理解,因为等腰三角形三线合一。

初中数学-12345模型

学悟有别,你我自取,教学践行,适切至 数学解题五境界 第一个境界:正确解题.很多同学以为如果一道题目做错,订正一下,知道哪里错了,怎么做,就行了,其实这只是最低境界. 第二个境界:一题多解.我们要养成的良好习惯是,不要满足于用一种做法和思路解题.一道题目做完之后想一想还有没有其它方法,哪种方法更简单.对于最后的结果,是不是可以有其它 的合理解释. 第三个境界:多题一解.完成一道题目的分析后,尝试推而广之,或把其中的数字换成字母,或把一些条件做一些改变,从这道题目延伸出去,探究与此相关的一类题目. 第四个境界:发现定理.到了这个境界,可以自己发现一些结论或定理、规律。这些结论、定理规律都是解题的有用工具。解题高手都有自己的定理库. 第五个境界:自己编题.解题的最高境界是能够编题。不是所有的老师都具备编题的能力。解题高手拿到一道题目,会知道出题者的意图,会发现出题者的陷阱。即便出题者粗心出现了一个 错误,他也能够很快地纠正纠偏. 刘俊勇:如果没有真正消化吸收为自己的东西,过一段时间就忘却了,真正弄清楚更重要,远胜于蜻蜓点水式浏览一遍.

一方面重视技巧,尤其是考试技巧学习技巧,另一方面回归数学本质,回归教育意义当我们听到一个技巧的时候,除了拿来使用之外,还需要去体会专家在思考、总结过程的数学思考,这个我觉得更加重要和有意义。因为专家的本意也正是立足于思想的交流,而不是一招一式的传递,在本地方的一些小型的培训中,我注意到活动中最最怕的就是坐在下面的教师一直把自己当成听众、容器,同时,相当一部教师的都有简单的拿来主义和简单的怀疑主义倾向,这个也特别可怕数学是思维的体操,没有绝技想拿冠军是不可能的。以教材为主对大部分学生适用,但在我们这光靠教材的知识点,中考想考满分概率为零。学灵魂在于积累、创新、规纳而不是照搬的模仿和接受,要有自己的数学大格局,适合自己的就是最好的! 版块一引入问题 1.如图1-1,在3×3的网格中标出了∠1和∠2,则∠1+∠2= 图1-1图1-2 2.如图1-2,在△ABC 中,∠BAC =45°,AD 是BC 边上的高,BD =3,DC =2,则AD 的长为_________.版块二“123”+“45”的来源 一般化结论:若45αβ+=?则有1tan 1a a α-= +,1tan a β=(1a >),当32a =时,则得到21tan tan =3 5αβ=(了解)当a =2时,则得到1 1tan tan =23 αβ=(重要)当52a =时,则得到23tan tan =5 7αβ=(了解);当4a =时,则得到1 3tan tan =45 αβ=(次重要)

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

初中数学九大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 D (1)等边三角形 O O C E C A 图 1B A 图 2 【条件】:△ OAB和△ OCD均为等边三角形; 【结论】:①△ OAC≌△ OBD;②∠ AEB=60°;③ OE平分∠ AED D (2)等腰直角三角形 O C E A B A 图 1 D E B D O E C B 图2 【条件】:△ OAB和△ OCD均为等腰直角三角形; 【结论】:①△ OAC≌△ OBD;②∠ AEB=90°;③ OE平分∠ AED (3)顶角相等的两任意等腰三角形 D O O C 【条件】:△ OAB和△ OCD均为等腰三角形; D E 且∠ COD=∠AOB E 【结论】:①△ OAC≌△ OBD;C ②∠ AEB=∠AOB; ③OE平分∠ AED A图 1B A图 2B

O O 二、模型二:手拉手模型----旋转型相似 (1)一般情况 D 【条件】: CD∥ AB,C D 将△ OCD旋转至右图的位置 A B 【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD; ②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA O (2)特殊情况 C D 【条件】:CD∥ AB,∠ AOB=90° 将△ OCD旋转至右图的位置 A B 【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD; ②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA; ③ BD OD OB tan ∠ OCD;④ BD⊥AC; AC OC OA ⑤连接 AD、 BC,必有AD2BC 22 2 ;⑥ S△BCD ABCD 三、模型三、对角互补模型 (1)全等型 -90 ° 【条件】:①∠ AOB=∠ DCE=90°;② OC平分∠ AOB E C A B D O C E A B 1 A C BD 2A C D O E B 图 1 【结论】:①;② OD+OE=2;③S △DCE S △OCD S △OCE 1 OC2 CD=CE OC2 证明提示:A C M ①作垂直,如图 2,证明△ CDM≌△ CEN D ②过点 C 作 CF⊥ OC,如图 3,证明△ ODC≌△ FEC ※当∠ DCE的一边交 AO的延长线于 D 时(如图4):O N EB 图 2 以上三个结论:① CD=CE;② OE-OD= 2 OC;A 1 OC 2M C ③ S S △OCE△OCD2A C D O N B E O图 3E F B D 图 4

初中数学建模案例

初中数学建模案例Last revision on 21 December 2020

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。

第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤 1. 确定题目 选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。 2. 开展科研课题

数学模型:初中数学常用经典解题方法介绍

初中数学常用经典解题方法介绍 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。 8.、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

相关文档
最新文档