7-4平面向量分解定理
第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

设正方形的边长为
1
,
则
→ AM
= 1,12
,
→ BN
=
-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,
高三数学 平面向量的概念及运算 知识精讲 人教实验版(B)

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B )一. 教学内容:平面向量的概念及运算向量的概念、向量的线性运算、向量的分解和向量的坐标运算二. 课标要求:(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义;②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义。
(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义;②掌握平面向量的正交分解及其坐标表示;③会用坐标表示平面向量的加、减与数乘运算;④理解用坐标表示的平面向量共线的条件。
三. 命题走向本讲内容属于平面向量的基础性内容,与平面向量的数量积比较,出题量小。
以选择题、填空题考查本章的基本概念和性质,重点考查向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。
此类题难度不大,分值5~9分。
预测高考:(1)题型可能为1道选择题或1道填空题;(2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。
【教学过程】一. 基本知识要点回顾1. 向量的概念①向量:既有大小又有方向的量。
向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。
向量的大小即向量的模(长度),记作|AB |,即向量的大小,记作|a |。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
平面向量的正交分解及坐标表示

b
a
思考3:把一个向量分解为两个互相垂直
的向量,叫做把向量正交分解.如图,向 量i、j是两个互相垂直的单位向量,向量 a与i的夹角是30°,且|a|=4,以向量i、 j为基底,向量a如何表示?
B
P
a 2 3坐标系中,分别取与x轴、
y轴方向相同的两个单位向量i、j作为基底,
CD 2i 3 j
探究:平面向量的正交分解及坐标表示
思考1:不共线的向量有不同的方向,对 于两个非零向量a和b,作OA a,OB b, 如图.为了反映这两个向量的位置关系, 称∠AOB为向量a与b的夹角.你认为向量 的夹角的取值范围应如何约定为宜?
ab
B
b [0°,180°]
O aA
思考2:如果向量a与b的夹角是90°,则 称向量a与b垂直,记作a⊥b. 互相垂直 的两个向量能否作为平面内所有向量的 一组基底?
3.向量的坐标表示是一种向量与坐标 的对应关系,它使得向量具有代数意义. 将向量的起点平移到坐标原点,则平移 后向量的终点坐标就是向量的坐标.
作业: P102习题2.3B组:3,4.
对于平面内的一个向量a,由平面向量基本定
理知,有且只有一对实数x、y,使得 a=
xi+yj.我们把有序数对(x,y)叫做向量a
的坐标,记作a=(x,y).其中x叫做a在x轴上
的坐标,y叫做a在y轴 上的坐标,上式叫做向量 y
的坐标表示.那么x、y的
ya
几何意义如何?
j
x
Oi
x
平面向量的坐标表示
y 如图,i,j是分别与x轴,y轴方向相
D a
同的单位向量,若以i,j为基底,则
C
A
对于该平面内的任一向量a,
高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
9平面向量分解定理

1 2 AB , CE ED 3 3
若 AB a, AC b ,试用基 a , b 表示 AE .
分析:在ACE 中, AE AC CE b CE
2 CE CD 5
CD CA AD b AD
BA 有公共的起点
B,所以
小结:平面向量的分解定理,也就是说同一平面内任一向量 都可表示为两个不平行向量的线性组合.
例5 已知平行四边形 ABCD的两条对角线AC,BD 交于E,
O是任意一点 ,求证
OA OB OC OD 4OE
证:E是对角线 AC 和 BD的交点, 所以 AE EC CE , BE ED DE 在三角形 OAE中, OA AE OE 同理 OB BE OE , OC CE OE , OD DE OE 以上个式相加得
作平行四边形 OACB, OC 就是所求作向量. C B
e2
e1
A
O
例2 如图,平行四边形ABCD 的对角线AC,BD相交于M, 若 AB a, AD b ,试用 a , b 表示 MC, MA, MB, MD.
D
C M
b
A
a
B
例3 如图在
ABC , AD
GD GE GF 0
F
E B D C
2. 如图在平行四边形 ABCD CD, 中,E,F分别为 BC的中点,且 AE m, AF n ,试用基 ,n 表 m 。 示 D E AB, AD C m F n A B
回家作业
例4
已知OA , OB 是不平行的两个向量,k是实数,且
8.3 平面向量的分解定理

资源信息表8.3平面向量的分解定理一、教学内容分析本节课内容是对前面向量知识的综合运用,在本章知识结构中起着承上启下的作用,是平面向量线性运算向坐标运算过渡的桥梁,是运用向量知识解决问题的理论基础.二、教学目标1.理解和掌握平面向量的分解定理;2.掌握平面内任一向量都可以用两个不平行向量来表示;3.掌握基的概念,并能够用基表示平面内的向量;4.经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、交流合作能力.三、教学重点及难点平面向量分解定理的发现和形成过程.四、教学用具准备电脑,幻灯机,实验用的图片等等.五、教学流程设计(一)、设置情景,引入课题1.观察前面我们学过向量的加法,知道两个向量可以合成一个向量,反过来,一个向量是否可以分解成两个向量呢?下面让我们来看一个实例:实例:一盏电灯,可以由电线CO吊在天花板上,也可以由电线OA和绳BO拉住.CO所受的力F与电灯重力平衡,拉力F可以分解设置情景,引入课堂1.数学实验12.数学实验23.探究结果4.证明唯一性5.归纳概括,得出结论为AO 与BO 所受的拉力F 1和 F 2 .2.思考:从这个实例我们看到了什么?答:一个向量可以分成两个不同方向的向量. 3. 概括讨论,提出新问题:如果21,e e 是平面内的两个不平行的向量,a 是该平面内的任意一个非零向量,那么a 与21,e e 之间有什么关系呢?(二)、探索探究,主动建构1、 数学实验1 实验设计:(1)实验目的:通过实验让学生探究:给定平面内的两个不平行向量21,e e ,对于给定的非零向量a 是否能分解成21,e e 方向上的两个向量,且分解是否是唯一的? (2)实验步骤:a.以四位同学为一组,给每一位同学一个图,上面有两个不平行向量21,e e 和a ;b.每个同学先独立作图;c.小组对照,比较所分解的两向量的长度和方向是否相同.并得出结论.(3)实验报告:(由小组长发言)可以分解,且分解的长度和方向唯一的. 师:既然可以分解并且是唯一的,能不能用数学式子把a 和21,e e 的关系表示出来?生:21,e e 是不平行向量,a 是平面内给定的向量 (1) 作111,e OM e OA λ==, (2) 作222,e ON e OB λ==, (3) 作c OC =,(4) 作平行四边形ONCM ,则2211e e ON OM a OC λλ+=+==. 对于给定的向量可以唯一分解成给定的两个不平行向量,那么对于任意的向量a 是否也可以得到同样的结论呢?下面让我们来做一个实验.2、数学实验2 实验设计:(1)实验目的:通过几何画板向量分解动画,让学生体会对于任意向量都可以分解成给定的两个不平行向量,且分解是唯一的. (2)实验步骤:a.利用几何画板画出两个不平行向量21,e e ,画出一个任意向量(该向量可以任意拖动终点来改变);b.学生自己拖动从中体会其向量的任意性. (3)实验报告:(让学生来概括整实验的过程.) 3、探究结果(实验报告)平面内的任一非零向量a 都可以表示为给定的两个不平行向量21,e e 的线性组合,即2211e e a λλ+=,且分解是唯一的. 4、证明唯一性:证明:(1)当0=a 时,21000e e ⋅+⋅=(2)当0≠a 时,假设2211e e a ⋅'+⋅'=λλ,则有0)()(2211=⋅'-+⋅'-e e λλλλ.由于21,e e 不平行,故0)(,0)(21='-='-λλλλ,即'='=21,λλλλ.5、概括得出定理:平面向量分解定理:如果21,e e 是平面内的两个不平行向量,那么对于这一平面内的任意向量a ,有且只有一对实数21,λλ,使2211e e a λλ+=,我们把不平行的向量21,e e 叫做这一平面内所有向量的一组基. (三).例题分析例1:自定义两个不共线向量21,e e ,求作向量 2123e e +-.(图见课件ppt)解:1.取点O ,作212,3e OB e OA =-=; 2.作平行四边形OACB ,OC 即为所求例2.如图:平行四边形ABCD 的两条对角线相交于点M ,且b AD a AB ==, ,分别用b a ,表示MC MB MA ,,和MD .(图见课件ppt) 解: 在平行四边形ABCD 中,,b a AD AB AC +=+= ,b a AD AB DB -=-=,2121)(2121b a b a AC MA --=+-=-=∴,2121)(2121b a b a DB MB -=-==∴ )(2121b a AC MC +==,b a DB MB MD 212121+-=-=-=思考题:例 3.如图,已知OB OA ,是不平行的两个向量,k 是实数,且)(R k AB k AP ∈=,用OB OA ,表示OP .(图见课件ppt) 解:,AB k AP =.)1()(OB k OA k OA k OB k OA OA OB k OA AB k OA AP OA OP +-=-+=-+=+=+=∴(四)、课堂小结 (五)、作业布置1、组织学生完成教材后面练习,由学生自评或互评。
平面向量基本定理(教学设计)
《平面向量基本定理(第一课时)》教学设计一、教材分析:本节内容是人教A版普通高中课程标准实验教科书必修4第二章第3节“平面向量基本定理及坐标表示”的第一课时内容,本节共2个课时。
平面向量基本定理是本节的重点也是本节的难点。
平面向量基本定理告诉我们同一平面内任一向量都可以表示为两个不共线向量的线性组合,由于高中数学设计的向量是自由向量,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任何一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点和两个不共线的向量得到表示,这是引进平面向量基本定理一个原因(学生可以不讲)。
实际上,本节课在本章中起到一个“承上启下”的作用,一方面要在平面向量线性运算的基础上归纳定理,另一方面,作为平面向量基本定理的特殊情况,研究平面向量的正交分解及坐标表示,是建立向量坐标的一个逻辑基础,它揭示了平面向量的基本关系和基本结构,是学生后续学习向量坐标表示的基础。
二、学情分析:知识方面:学生学习了第一节“平面向量的实际背景及基本概念”和第二节“平面向量的线性运算”,已经有了一定的平面向量基础知识,学力和能力方面:授课对象为省级示范学校高一学生,有比较扎实的数学基本知识,其数学基本素养和学习能力应该在普通高中学生中处于中上水平。
三、教师教学的出发点:根据课程标准的要求备课,备学生,把课程标准的要求溶解在课堂中,让学生在潜移默化中提高数学素养。
本节课的教学设计主要是针对学习情况为中等的学生(占大多数),第一、注重知识的生成,通过创设问题情境,引导学生自主学习,主动探究发现新知(平面向量基本定理);第二、注重数学思维的培养,通过问题的两个方面,即平面向量合成和分解,培养学生的观察能力,启发学生的逆向思考能力,抽象概括能力,引导学生进行适当的合情推理(定理的证明);第三、注重对知识的理解、消化、应用,主要通过典型的问题,掌握对新知的应用,可进行适当的拓展,发散思维;第四:激发学生的学习兴趣,在3个方向:新知识的维度拓展的兴趣激发,解决几何问题的兴趣激发,后续学习的兴趣激发。
人教版高中数学必修四平面向量的基本定理及坐标表示课件 (3)
填要点·记疑点
单位向量
xi+yj
有序数对(x,y)
a=(x,y)
2.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),则a+b= ,即两个向量和的坐标等于这两个向量相应坐标的和.
(x,y)
(x2-x1,y2-y1)
(x1+x2,y1+y2)
反思与感悟 选定基底之后,就要“咬定”基底不放,并围绕它做中心工作,千方百计用基底表示目标向量.要充分利用平面几何知识,将平面几何知识中的性质、结论与向量知识有机结合,具体问题具体分析,从而解决问题.
反思与感悟 用基底表示向量的关键是利用三角形或平行四边形将基底和所要表示的向量联系起来.解决此类题时,首先仔细观察所给图形.借助于平面几何知识和共线向量定理,结合平面向量基本定理解决.
跟踪训练3 如图,已知△ABC是等边三角形.
解 (1)∵△ABC为等边三角形,∴∠ABC=60°.
如图,延长AB至点D,使AB=BD,
∵∠DBC=120°,
解 ∵E为BC的中点,∴AE⊥BC,
当堂测·查疑缺
1
2
3
4
1.等边△ABC中, 与的夹角是( )A.30° B.45° C.60° D.120°
D
1
2
3
4
2.设e1、e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1;④e1+e2与e1-e2.其中能作为平面内所有向量的一组基底的序号是_________.(写出所有满足条件的序号)解析 对于③4e2-2e1=-2e1+4e2=-2(e1-2e2),∴e1-2e2与4e2-2e1共线,不能作为基底.
思考2 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如图,向量i、j是两个互相垂直的单位向量,向量a与i的夹角是30°,且|a|=4,以向量i、j为基底,向量a如何表示?
平面向量的分解定理
1 2 1(1 , 2 R) 使得 AM 1 AB 2 AD .
-q4:;BCE5xI6 wDp'y.A3HOM andueilgcvtosr2hf,b(j)km 作 理 管 司 公 分 到 战 转 位 岗 工 施 量 测 由 他 , 下 势 态 压 高 产 生 全 安 在
1 2 1(1 , 2 R)
思考 1.变式 4 的逆命题成立吗?为什么? 设 A 是 直 线 BD 外 任 意 一 点 , 若 B , M , D 三 点 满 足 AM 1 AB 2 AD 且
1 2 1(1 , 2 R) ,则 B,M,D 三点共线.
图2 图1
问题 3.如图 3,给定平面内两个向量 e1 、 e2 ,向量 a 能否用含有 e1 、 e2 的式子表示出来?
e2
e1
e1
a
图3
e2
图4
问题 4.如图 4,给定平面内两个向量 e1 、 e2 ,任意给定向量 a , a 能否用含有 e1 、 e2 的式 子表示出来?
-q4:;BCE5xI6 wDp'y.A3HOM andueilgcvtosr2hf,b(j)km 作 理 管 司 公 分 到 战 转 位 岗 工 施 量 测 由 他 , 下 势 态 压 高 产 生 全 安 在
五、教学技术条件要求(演示教具、多媒体、器材、场地等) 电脑,投影等
六、课堂流程预设(导课设计、组织教学环节设计、问题设计、演示设计、学生活动设计、 应变调控预案、学法指导、当堂迁移应用练习、课后巩固练习设计等)
2024年高考数学总复习第五章《平面向量与复数》平面向量基本定理及坐标表示
2024年高考数学总复习第五章《平面向量与复数》§5.2平面向量基本定理及坐标表示最新考纲 1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加、减与数乘运算.4.理解用坐标表示的平面向量共线的条件.1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=x21+y21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1),|AB→|=(x2-x1)2+(y2-y1)2.3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔x1y2-x2y1=0.概念方法微思考1.若两个向量存在夹角,则向量的夹角与直线的夹角一样吗?为什么?提示不一样.因为向量有方向,而直线不考虑方向.当向量的夹角为直角或锐角时,与直线的夹角相同.当向量的夹角为钝角或平角时,与直线的夹角不一样.2.平面内的任一向量可以用任意两个非零向量表示吗?提示不一定.当两个向量共线时,这两个向量就不能表示,即两向量只有不共线时,才能作为一组基底表示平面内的任一向量.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内的任意两个向量都可以作为一组基底.(×)(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.(√)(3)在等边三角形ABC 中,向量AB →与BC →的夹角为60°.(×)(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.(×)(5)平面向量不论经过怎样的平移变换之后其坐标不变.(√)(6)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.(√)题组二教材改编2.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.答案(1,5)解析设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),=5-x ,=6-y ,=1,=5.3.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案-12解析由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12.题组三易错自纠4.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________.答案5.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________.答案(-7,-4)解析根据题意得AB →=(3,1),∴BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).6.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________.答案-6解析因为a ∥b ,所以(-2)×m -4×3=0,解得m =-6.题型一平面向量基本定理的应用例1如图,已知△OCB 中,A 是CB 的中点,D 是将OB →分成2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB →=b.(1)用a 和b 表示向量OC →,DC →;(2)若OE →=λOA →,求实数λ的值.解(1)由题意知,A 是BC 的中点,且OD →=23OB →,由平行四边形法则,得OB →+OC →=2OA →,所以OC →=2OA →-OB →=2a -b ,DC →=OC →-OD →=(2a -b )-23b =2a -53b .(2)由题意知,EC →∥DC →,故设EC →=xDC →.因为EC →=OC →-OE →=(2a -b )-λa =(2-λ)a -b ,DC →=2a -53b .所以(2-λ)a -b =2a -53b.因为a 与b 不共线,由平面向量基本定理,2-λ=2x ,-1=-53x ,x =35,λ=45.故λ=45.思维升华应用平面向量基本定理的注意事项(1)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.(2)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.(3)强化共线向量定理的应用.跟踪训练1在△ABC 中,点P 是AB 上一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案34解析∵CP →=23CA →+13CB →,∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →,∴2AP →=PB →,即P 为AB的一个三等分点,如图所示.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC →,而CB →=AB →-AC →,∴CM →=x 2AB →.又CP →=CA →-PA →=-AC →+13AB →,由已知CM →=tCP →,可得x 2AB →=AC →+13AB 又AB →,AC →不共线,=t 3,1=-t,解得t =34.题型二平面向量的坐标运算例2(1)已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为()A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)答案A解析设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0.(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,a =m b +n c (m ,n ∈R ),则m +n =________.答案-2解析由已知得a =(5,-5),b =(-6,-3),c =(1,8).∵m b +n c =(-6m +n ,-3m +8n ),-6m +n =5,-3m +8n =-5,m =-1,n =-1.∴m +n =-2.思维升华平面向量坐标运算的技巧(1)利用向量加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则坐标相同”这一结论,由此可列方程(组)进行求解.跟踪训练2线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =________.答案-2或6解析由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ).由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →1-x =6,-4=2-2y ,x =-5,y =3,此时x +y =-2;当AC →=-2BC →1-x =-6,-4=-2+2y ,x =7,y =-1,此时x +y =6.综上可知,x +y =-2或6.题型三向量共线的坐标表示命题点1利用向量共线求向量或点的坐标例3已知O 为坐标原点,点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________.答案(3,3)解析方法一由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).命题点2利用向量共线求参数例4(2018·洛阳模拟)已知平面向量a =(2,-1),b =(1,1),c =(-5,1),若(a +k b )∥c ,则实数k 的值为()A .-114 B.12C .2D.114答案B解析因为a =(2,-1),b =(1,1),所以a +k b =(2+k ,-1+k ),又c =(-5,1),由(a +k b )∥c得(2+k )×1=-5×(k -1),解得k =12,故选B.思维升华平面向量共线的坐标表示问题的解题策略(1)如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”.(2)在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ).跟踪训练3(1)(2018·济南模拟)已知向量a =(1,1),b =(2,x ),若a +b 与3a -b 平行,则实数x 的值是__________________.答案2解析∵a =(1,1),b =(2,x ),∴a +b =(3,x +1),3a -b =(1,3-x ),∵a +b 与3a -b 平行,∴3(3-x )-(x +1)=0,解得x =2.(2)已知向量OA →=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则实数k 的值是________.答案-23解析AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(-2k ,-2).∵A ,B ,C 三点共线,∴AB →,AC →共线,∴-2×(4-k )=-7×(-2k ),解得k =-23.1.已知M (3,-2),N (-5,-1),且MP →=12MN →,则P 点的坐标为()A .(-8,1)1D .(8,-1)答案B解析设P (x ,y ),则MP →=(x -3,y +2).而12MN →=12(-8,1)4-3=-4,+2=12,=-1,=-32,∴1故选B.2.(2019·山西榆社中学诊断)若向量AB →=DC →=(2,0),AD →=(1,1),则AC →+BC →等于()A .(3,1)B .(4,2)C .(5,3)D .(4,3)答案B解析AC →=AD →+DC →=(3,1),又BD →=AD →-AB →=(-1,1),则BC →=BD →+DC →=(1,1),所以AC →+BC →=(4,2).故选B.3.(2018·海南联考)设向量a =(x ,-4),b =(1,-x ),若向量a 与b 同向,则x 等于()A .-2B .2C .±2D .0答案B解析由向量a 与b 共线得-x 2=-4,所以x =±2.又向量a 与b 同向,所以x =2.故选B.4.已知平面直角坐标系内的两个向量a =(1,2),b =(m ,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则实数m 的取值范围是()A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)答案D解析由题意知向量a ,b 不共线,故2m ≠3m -2,即m ≠2.5.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点,∠AOC =π4,且|OC |=2,若OC →=λOA →+μOB →,则λ+μ等于()A .22 B.2C .2D .42答案A解析因为|OC |=2,∠AOC =π4,所以C (2,2),又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.6.(2019·蚌埠期中)已知向量m A n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角,则角A 的大小为()A.π6B.π4C.π3D.π2答案C 解析∵m ∥n ,∴sin A (sin A +3cos A )-32=0,∴2sin 2A +23sin A cos A =3,∴1-cos 2A +3sin 2A =3,∴A 1,∵A ∈(0,π),∴2A -π6∈-π6,因此2A -π6=π2,解得A =π3,故选C.7.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.答案-54解析AB →=(a -1,3),AC →=(-3,4),根据题意知AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5,∴a =-54.8.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________.答案(-4,-2)解析∵b =(2,1),且a 与b 的方向相反,∴设a =(2λ,λ)(λ<0).∵|a |=25,∴4λ2+λ2=20,λ2=4,λ=-2.∴a =(-4,-2).9.(2018·全国Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.答案12解析由题意得2a +b =(4,2),因为c ∥(2a +b ),所以4λ=2,得λ=12.10.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.答案k ≠1解析若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.∵AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k+1)-2k≠0,解得k≠1.11.已知a=(1,0),b=(2,1),(1)当k为何值时,k a-b与a+2b共线;(2)若AB→=2a+3b,BC→=a+m b且A,B,C三点共线,求m的值.解(1)k a-b=k(1,0)-(2,1)=(k-2,-1),a+2b=(1,0)+2(2,1)=(5,2).∵k a-b与a+2b共线,∴2(k-2)-(-1)×5=0,即2k-4+5=0,得k=-1 2 .(2)方法一∵A,B,C三点共线,∴AB→=λBC→,即2a+3b=λ(a+m b),=λ,=mλ,解得m=32.方法二AB→=2a+3b=2(1,0)+3(2,1)=(8,3),BC→=a+m b=(1,0)+m(2,1)=(2m+1,m),∵A,B,C三点共线,∴AB→∥BC→,∴8m-3(2m+1)=0,即2m-3=0,∴m=32.12.如图,已知平面内有三个向量OA→,OB→,OC→,其中OA→与OB→的夹角为120°,OA→与OC→的夹角为30°,且|OA→|=|OB→|=1,|OC→|=23.若OC→=λOA→+μOB→(λ,μ∈R),求λ+μ的值.解方法一如图,作平行四边形OB1CA1,则OC→=OB1→+OA1→,因为OA→与OB→的夹角为120°,OA→与OC→的夹角为30°,所以∠B1OC=90°.在Rt△OB1C中,∠OCB1=30°,|OC→|=23,所以|OB1→|=2,|B1C→|=4,所以|OA1→|=|B1C→|=4,所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6.方法二以O为原点,建立如图所示的平面直角坐标系,则A (1,0),-12,C (3,3).由OC →=λOA →+μOB →,λ-12μ,=32μ,=4,=2.所以λ+μ=6.13.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若点P 为CD 的中点,且AP →=λAB →+μAE →,则λ+μ等于()A .3B.52C .2D .1答案B 解析由题意,设正方形的边长为1,建立平面直角坐标系如图,则B (1,0),E (-1,1),∴AB →=(1,0),AE →=(-1,1),∵AP →=λAB →+μAE →=(λ-μ,μ),又∵P 为CD 的中点,∴AP →-μ=12,=1,∴λ=32,μ=1,∴λ+μ=52.14.(2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为()A .3B .22 C.5D.2答案A 解析建立如图所示的平面直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .∵CD =1,BC =2,∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0)0=2+255cos θ,0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤sin φ=55,cos φ当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A.15.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =2,AB =4,E ,F 分别为AB ,BC的中点,以A 为圆心,AD 为半径的圆弧DE 的中点为P (如图所示),若AP →=λED →+μAF →,则2λ-μ的值是________.答案0解析建立如图所示的平面直角坐标系,则A (0,0),B (4,0),C (2,2),D (0,2),E (2,0),F (3,1),所以ED →=(-2,2),AF →=(3,1),则AP →=λED →+μAF →=(-2λ+3μ,2λ+μ),又因为以A 为圆心,AD 为半径的圆弧DE 的中点为P ,所以点P 的坐标为(2,2),AP →=(2,2),所以-2λ+3μ=2,2λ+μ=2,所以λ=24,μ=22,所以2λ-μ=0.16.如图,在同一个平面内,三个单位向量OA →,OB →,OC →满足条件:OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解建立如图所示的平面直角坐标系,由tan α=7知α为锐角,且sin α=7210,cos α=210,故cos(α+45°)=-35,sin(α+45°)=45.∴点B ,C -35,∴OB →-35,OC →又OC →=mOA →+nOB →,m (1,0)+-35,-35n =210,=7210,=528,=728,∴m +n =528+728=322.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) (3)
即 综上,有下面的重要定理
c xa yb
2.平面向量分解定理:设 a , b 是同一平面内的两个不共线向量,那么对于这一平面内的
任意向量 c ,有且只有一对实数 x, y ,使 c xa yb . 证明:前面已证 c 可以由 a , b 线性表出。下证表出方式惟一。 (反证法)假设有两种表出方式: c x1 a y1 b ,和 c x2 a y2 b x1 a y1 b x2 a y2 b 则
分析: (1)如果 c 0 ,则 0 0a 0b 下面假设 c 0
(2)如果 c 与 a 共线,则存在实数 ,使得 c a a 0b ; (3)如果 c 与 b 共线,则存在实数 ,使得 c b 0a b ;
移项并合并同类项,得
( x1 x2 )a ( y2 y1 )b
(4)
假设 x1 x2 0 ,则从(4)式得
y y a 2 1b x1 x2
x1 x2 0 。
(5)
(5)式表明 a 与 b 共线,与已知条件矛盾,因此
(6) (7) (8)
将(6)式代入(4)式得
教学过程 一 、复习引入 1.前面我们学过向量的加法,知道两个向量可以合成一个向量,反过来,一个向量是否 可以分解成两个向量呢? 提出新问题:
如果向量 a , b 是同一平面内的两个不共线的向量,c 是该平面内的一个非零向量,是
否能用向量 a , b 表示向量 c ?即 c 能不能写成 a b 的形式?
1 1 1 1 MA AC (a b) a b, 2 2 2 2
MB 1 1 1 1 DB (a b) a b, 2 2 2 2
b
MC
1 1 AC (a b) 2 2
,
A
a
1 1 1 MD MB DB a b 2 2 2
b
教学小结
A
a
B
(1)平面向量的分解定理. 对分解定理的理解:基底 a ,b 为两个不平行向量,向量 c 的 任意性,实数对 x, y 的存在性和唯一性; (2)从基的角度认识几何图形。
作业布置
课堂练习 课后作业
P19 A 1,3,4 P19 A 2
3
因为 b 0 ,所以从(7)式得
( y2 y1 )b 0
y2 y1 0 y1 y2
这证明了表出方式惟一。
几何角度:平面内的任一向量 c 都可以表示为给定的两个不平行向量 a , b 的线性组合, 即 c xa yb ,且分解是唯一的. 代数角度:说明唯一性:
第 五 讲 课题:7-4 平面向量分解定理 1.理解和掌握平面内任一向量都可以用两个不平行向量来表示; 知 2.平面向量分解定理及其唯一性的证明; 识 目 3.掌握基的概念,并能够用基表示平面内的向量。 标 能 经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力,体会从特殊 力 到一般及化归的思想。 目 标 重 1、重点:平面向量的分解定理; 点 2、难点:分解定理唯一性的证明。 难 点 时量 教 学 方 式 设 计 90 分钟 1、课前复习(15 分钟) 2、不共线的平面向量(25 分钟) ; 3、平面向量分解定理(30 分钟) ; 4、课堂练习及布置作业(20 分钟) 。
B
注:(1)把 a , b 作为一组基,用向量 a , b 表示平面内的任何一个向量 (2)平行四边形法则简化为三角形法则。
1 例 2 如图所示,在平等四边形 ABCD 中,AH=HD,MC= BC,设 AB a, AD b ,以 a , b 为 4 D C 基底表示 AM , MH , MD .
OC OM ON .
(1)
由于 OM 与 a 共线,因此存在实数 x ,使得 OM xa 。由于 ON 与 b 共线,因此存在
实数 y ,使得 ON yb .将它们代入(1)式,得
OC xa yb
2
3. 根据平面向量分解定理,设 a ,b 是平面上不共线的连个向量,则平面上每一个向量 c 可以惟一地表示成 a , b 的线性组合: c xa yb 我们把 a , 把上式中系数组成的有序书对 ( x, y ) 叫做向量 c 在基 a , b 成为平面上的一个基, b 下的坐标。
例 1 如图: 平行四边形 ABCD 的两条对角线相交于点 M, 且 AB a , AD b , 分别用 a , b 表 示 MA, MB, MC 和 MD . 解: 在平行四边形 ABCD 中,
AC AB AD a b, DB AB AD a b,
D C M
(4)如果 c 与 a 不共线,且 c 与 b 不共线,则以 O 为起点作有向线段 OA, OB, OC , 分别表示
1
a , b , c 。如图所示。过点 C 做直线与 OB 平行,它与直线 OA 交于点 M ;再过点 C 作直
线与 OA 平行,它与直线 OB 交于点 N ,于是四边形 ONCM 为平行四边形,从而有