运筹学课程设计报告书---运输问题的表上作业法
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。

运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题是一种常见的工业应用问题,涉及到如何安排运输工具和货物,以最小化总成本或最大化利润。
表上作业法(Tableau Programming)是解决运输问题的一种有效方法,其解题思路和原理、具体步骤如下:1. 确定问题的状态在表上作业法中,我们需要先确定问题的状态。
状态是指某个特定时间段内,某个运输问题需要满足的条件。
例如,在一个例子中,我们可以将运输问题的状态定义为“需要从A城市运输货物到B城市,运输工具数量为3,运输距离为100公里”。
2. 定义状态转移方程接下来,我们需要定义状态转移方程,以描述在不同状态下可能采取的行动。
例如,在这个问题中,我们可以定义一个状态转移方程,表示当运输工具数量为2时,货物可以运输到B城市,而运输距离为80公里。
3. 确定最优解一旦我们定义了状态转移方程,我们就可以计算出在不同状态下的最优解。
例如,在这个问题中,当运输工具数量为2时,货物可以运输到B城市,运输距离为80公里,总成本为200元。
因此,该状态下的最优解是运输距离为80公里,运输工具数量为2,总成本为200元。
4. 确定边界条件最后,我们需要确定边界条件,以确保问题的状态不会无限制地变化。
例如,在这个问题中,当运输工具数量为3时,运输距离为120公里,超过了B城市的运输距离范围。
因此,我们需要设置一个限制条件,以确保运输工具数量不超过3,且运输距离不超过120公里。
表上作业法是一种简单有效的解决运输问题的方法,其原理和具体步骤如下。
通过定义状态转移方程、确定最优解、确定边界条件,我们可以计算出问题的最优解,从而实现最小化总成本和最大化利润的目标。
运筹学运输问题表上作业法答案Word

运筹学运输问题,表上作业法运筹学李细霞 2013物流工程1班 2014~2015学年第二学期运筹学运输问题,表上作业法课程主要内容绪论线性规划及单纯形法对偶理论与灵敏度分析目标规划整数规划运输问题动态规划图与网络运筹学运输问题,表上作业法第三章运输问题Transportation problem运筹学运输问题,表上作业法学习目标什么是运输问题?复杂运输问题如何解决运输问题?运筹学运输问题,表上作业法用单纯形法求解线性规划问题的步骤基本可行解基变换初始解最优性检验调整检验数18运筹学运输问题,表上作业法表上作业法单纯形法在求解运输问题时的一种简化方法运筹学运输问题,表上作业法表上作业法步骤1.西北角法 2.最小元素法3.伏格尔法闭回路法初始方案最优性检验方案调整1.闭回路法2.位势法20运筹学运输问题,表上作业法B1 A1 A2 A3 销量B2B3B4 10 8 5 6产量 7 4 9总产=总销31 7 311 94 632 10 5运筹学运输问题,表上作业法最小元素法西北角法初始方案的确定伏格尔法运筹学运输问题,表上作业法西北角法B1 A1 A2 A3 销量3 4有何疑问?B2 4 2B3B4产量32 3 67 4 93656Z cij xij 3 3 11 4 9 2 2 2 10 3 5 6 108i 1 j 123 运筹学运输问题,表上作业法西北角法的优劣?太简单咯!最优解有点望尘莫及呢24。
运筹学运输问题表上作业法详述

+1
-1
-1
+1
54
3. 得到调整后的调运方案:
B1
B2
B3
B4
A1
5
2
A2
3
1
A3
6
3
4.计算新方案的检验数,重复上述步骤,直至所 有检验数都 ≥0,即得到最优方案。
55
最优调运方案
B1 B2 B3 B4
A1
52
A2 3
1
A3
6
3
相应的最小总运费为:
34
Z
cij xij 3 5 10 2 1 3 81 4 6 5 3 85
θ=miinj {该闭回路中奇数次顶点调运量xij}
若有多个检验数小于零,则取其中最小的负数
52
继续上例,因σ24= -1 ,画出以x24为起始变量的闭回路
53
计算调整量: θ =Min(3,1)=1
2. 按照下面的方法调整调运量:
闭回路上,奇数次顶点的调运量减去θ ,偶数 次顶点(包括起始顶点)的调运量加上θ ;闭回 路之外的变量调运量不变。
列差额 2 5 1 3
2-13
2-12
--12
34
34 Z
cij xij 3 5 10 2 1 3 81 4 6 5 3 85
i1 j1
伏格尔法的优劣?
离最优解貌 似很近了哦
求解过程有点 麻烦呢!
用Vogel法求出的初始解叫做“近似最优解”
35
课堂练习:用最小元素法求初始解
A1 A2 A3 销量
1
1
1
1
n
行
15
产销平衡运输问题模型的特点
1.变量数:mn个 2.约束方程数:m+n个
管理运筹学 第七章 运输问题之表上作业法

最优解的判断与调整
最优解的判断
比较目标函数值,如果当前基础可行解 的目标函数值最优,则该解为最优解。
VS
最优解的调整
如果当前基础可行解不是最优解,需要对 其进行调整。通过比较不同运输路线的运 输费用,对运输量进行优化分配,以降低 总运输费用。
最优解的验证与
要点一
最优解的验证
对求得的最优解进行检验,确保其满足所有约束条件且目 标函数值最优。
01
将智能优化算法(如遗传算法、模拟退火算法等)与表上作业
法相结合,以提高求解效率和精度。
发展混合算法
02
结合多种算法的优势,发展混合算法以处理更复杂的运输问题。
拓展应用范围
03
在保持简单易行的基础上,拓展表上作业法的应用范围,使其
能够处理更多类型的运筹问题。
THANKS FOR WATCHING
果达到最优解,则确定最优解;如果未达到最优解,则确定次优解。
表上作业法的应用范围
总结词
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。
详细描述
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。在这种情况下,可以通过在运输表 格上填入数字来求解最小运输成本。此外,表上作业法还可以用于解决其他类型的线性规划问题,如资源分配问 题、生产计划问题等。
03 表上作业法的求解过程
初始基础可行解的求解
确定初始基础可行解
根据已知的发货地和收货地的供需关系,以及运输能力限制,通 过试算和调整,求得初始的基础可行解。
初始解的检验
检查初始解是否满足非负约束条件,即所有出发地到收货地的运输 量不能为负数。
初始解的调整
如果初始解不满足非负约束条件,需要对运输量进行调整,直到满 足所有约束条件。
第二节运输问题求解表上作业法-精品文档

应用西北角法、最小元素法和 Vogel法,每次填完数,都只划去一 行或一列,只有最后一个元例外(同 时划去一行和一列)。当填上一个数 后行、列同时饱和时,也应任意划去 一行(列),在保留的列(行)中没 被划去的格内标一个0。
11
[例 3-2] 某食品公司下属的 A1、A2、 A3 ,3 个厂生产方便食品,要运输到 B1、 B2、B3、B4 ,4 个销售点,数据如下: 表1 B1 B2 A1 3 11 A2 1 9 A3 7 4 销量 bj 3 6 求最优运输方案。 B3 3 2 10 5 B4 产量 ai 10 7 8 4 5 9 6 20(产销平衡)
(1)西 北 角 法 B3 B4 10
产量 ai 7
8 2 5 3 6 6
4
9
销量 bj
3
6
5
20
14
( 2) 最 小 元 素 法 B1 B2 A1 3 11
B3 3 4 10
B4
产 量 ai 7 3
A2
1 3
9
2 1
8
4
A3
7
4 6
10
5 3 5 6
9
销 量 bj
3
6
2015
( 2) 最 小 元 素 法 B1 B2 A1 3 11
(4)若运输平衡表中所有的行与列均被 划去,则得到了一个初始基本可行解。否 则在剩下的运输平衡表中选下一个变量, 转(4)。
4
上述计算过程可用流程图描述如下
取未划去的单元格xij ,令 xij = min { ai , bj }
ai’ = ai - xij bj’ = bj - xij
否
ai’ = 0?
第二节 运输问题求解 —表上作业法
运输问题表上作业法应用的课题设计感想

表上作业法在物资运输问题中的应用讨论了产销平衡运输问题的表上作业法,利用Vogel法求初始方案,位势法求检验数,闭回路法对可行解进行调整和改进.提出了带有转运的物资运输问题的求解方法,将所有产地、中间转运站、销地都可以看做产地,又可看做销地,把整个问题当做一个扩大的运输问题处理. 主要应用的方法有: 表上作业法 ,Vogel法 ,位势法, 检验数一,研究的题目运输问题的数学模型[1]物资调运问题是:若某种产品有m个产地A1,A2,…,Am,各产地的产量分别是a1,a2,…,am,另有n个销地B1,B2,…,Bn,销量分别为b1,b2,…,bn.已知从产地Ai到销地Bj的单位产品的运价cij,如何调运这批产品才能使总的运费最低.二,分工合作在我们10个人的小组中,我主要负责给出计算的流程,具体的操作由其他的人来分工。
三,我利用以前运筹学的知识和解题步骤,给出了如下步骤:(1)确定初始基本可行解,得到基变量,(视具体题目而定)。
求解初始基本可行解的方法很多,最常见的是西北角法,最小元素法和差额法。
一般情况,差额法确定的基本可行解质量最好,最接近最优解。
(2)判定是否最优。
用位势法判别可行解是否为最优解,如果所有判别数非正,说明得到最优解,否则转入(3)。
(3)若是最优,则问题得解;若不是最优,则按闭回路法对运输方案进行调整。
a.从具有最大的判别数的空格作为闭回路的第一格.b.第二格的确定。
找出基向量,找基向量中与第一格中同在的行(列)的元素,作为第二格。
c.第k格的确定。
在基向量中寻找,与第k-1格同在一列(行)的元素,若存在,则选择其一作为第k格,令k=k+1,转入第d步;否则令k=k-1,转入第d步。
d.找与第k-1格同在一行(列)的元素,判断是否与第k格在同一列(行),若在同一列(行),则得到闭回路;否则转入第c步。
四,代表上台讲解管梦成作为我们的班长和前任的学习委员,理所当然的就被我们推荐上去了,他讲解的非常到位,把各种问题都考虑到了,大家也都收获了好多。
表上作业法求解运输问题的思考

表上作业法求解运输问题的思考
解决运输问题的表上作业法(Table Method)是一种用于解决线性
规划问题的数学方法。
它通过在一张表中,将运输需求、供求量及其
价格等信息进行对应的方式来寻找最优的供运输体系。
总的来说,表
上作业法的步骤有:
一、建立运输问题模型:
1. 根据要求绘制好运输管理模型,规定出配送来源和配送目的地,包
括途经站点;
2. 确定进行配送的各节点、道路等的运行路径及具体情况;
3. 整理出和计算出各节点之间运输量及单位运输成本,将这些信息录
入表格;
二、建立表上作业法:
1. 根据运输问题模型中的信息进行汇总,建立表格,计算出来的表格
有4个部分:
不变量,运输供求量,单位运输成本,最优总成本;
2. 根据具体情况,计算各节点之间的运输量;
3. 将运输量填入表格中,计算出每一节点的运输成本,找出最优方案;
三、调整成本:
1. 检查各个节点的运输成本,比较并调整,计算最小成本;
2. 对最小成本进行再探索,优化调整和最小化运输供求量;
四、总结结果:
根据计算结果,进行概括性总结和说明,得到最合理的解决方案。
表上作业法,通过模型的结果来完成最优运输体系,是一种实用性很
强的模型。
由于其最大的特点在于可以有效解决大量的运输安排问题,因此有助于企业在实现安全便捷物流运输的同时,节约物流成本,提
升企业竞争力。
运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。

运输问题的求解方法(过程)——表上作业法的解题思路和原理、具体步骤。
运输问题是指在给定的供应地和需求地之间,选择最佳的运输方案,使总运输成本最低的问题。
表上作业法是一种常用的解决运输问题的方法,它基于线性规划的思想,通过逐步逼近最优解的方式来求解运输问题。
表上作业法的原理是将运输问题转化为一个线性规划问题,通过构建一个供需平衡表来描述运输问题。
在该表中,将供应地和需求地分别作为行和列,并在表中填入运输量的变量。
同时,引入一个辅助表来记录每个供应地和需求地的运输量。
具体的求解步骤如下:1. 构建供需平衡表:将给定的供应地和需求地以及对应的运输量填入表格中,并计算每个供应地和需求地的供应总量和需求总量。
2. 确定初始基本可行解:根据运输量的限制条件,确定一个初始的基本可行解。
可以选择将某些运输量设置为0,使得每个供应地和需求地都满足其供应总量和需求总量。
3. 计算单位运输成本:根据给定的运输成本,计算每个供应地和需求地之间的单位运输成本,填入表格中。
4. 判断最优解条件:检查当前的基本可行解是否满足最优解的条件。
如果每个供应地和需求地都满足其供应总量和需求总量,并且没有其他更低成本的运输方案,则当前解为最优解。
5. 迭代改进解:如果当前解不满足最优解的条件,则需要进行迭代改进。
在每一次迭代中,选择一个非基本变量(即非0运输量)进行改变,并计算改变后的基本可行解。
6. 更新供需平衡表和辅助表:根据改变后的基本可行解,更新供需平衡表和辅助表的运输量,并重新计算单位运输成本。
7. 重复步骤4-6,直到找到最优解为止。
通过以上的步骤,表上作业法能够有效地求解运输问题,并得到最优的运输方案。
它在实践中广泛应用于物流管理、供应链优化等领域,为运输问题的决策提供了科学的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某种物资有m个产地Ai,产量是ai(i=1,2,…,m),有m个销售地Bi,销量(需求量)是bj(j=1,2,…,m)。若从Ai运到Bi单位运价为dij(i=1,2,…,m;j=1,2,…,m),又假设产销平衡,即
问如何安排运输可使总运费最小?
若用xij(i=1,2,…,m;j=1,2,…,n)表示由Ai运到Bj的运输量,则平衡运输问题可写出以下线性规划模型:
参考文献:《运筹学》《C++程序基础教程》
附件:程序的主函数:
int main()
{ int M, N, i, j;
double* C; // 存储运价, 产量及销量
double* X; // 存储运量分配方案
double z;
double sum;
int psum,csum
cout<<"请输入产地/销地数量: ";
约束条件
表上作业法原理同于单纯形法,首先给出一个初始的调运方案(实际上是初始基本可行解),求出各非基变量的检验数去判定当前解是否为最优解,若不是则进行方案调整(即从一个基本可行解转换成另一个基本可行解),再判定是否为最优解,重复以上步骤,直到获得最优解为止。这些步骤在表上进行十分方便。
操作过程在表上进行
运筹学课程设计报告书
专业
班级
学号
姓名LMZZ
日期2011.09.01
设计题目:运输问题的表上作业法
设计方案:运输问题是一种应用广泛的网络最优化模型,该问题的主要目的是为物资调运、车辆高度选择最经济的运输路线。有些问题,如m台机床加工零件问题、工厂合理布局问题,虽要求与提法不同,经适当变化也可以使用本模型求得最佳方案。
经历了这次课程设计,不仅对我的学习提供了帮助,而且在意志力方面也得到了锻炼。没有足够的耐力和信心就很难坚持对课程设计每一步的。实践是捡验真理的唯一标准。通过实践,使我们加强了对理论知道的理解。
致谢:首先感谢老师给了我们这次锻炼的机会,让我们能够学会怎么去运用运筹学的方法解决实际的问题,其次是感谢我的队友——,正是他和我的一起努力才使我们能按时完成这次课程设计,这使我明白了团队合作的重要性。还有就是感谢我的学长在C++教育方面的帮助。
方案实施:通过运输问题在C++程序中的运用,从而实现方案的最优。程序主要分两部:(1)求解,(2)最优解判断
结果与结论:程序运行过程中,依次输入所需要的运价,产量,销量等数据,单击回车可以再次现实所需数据,按任意键可以运行至求出初始可行解并显示,再次按任意键程序进行最优解的判断,并求出最优解,显示在程序页面上,从而可以得到该运输问题的最优方案。
return 0;
}
// 记录闭回路点结构
struct PATH
{ int i,j,f;
};
指导教师评语:
课程设计报告成绩:,占总成绩比例:20%
答辩成绩:,占总成绩比例:30%
课程设计作品,占总成绩比例:50%
总成绩:。
else
{ cout<<setw(10)<<x(i,j);
sum+=(x(i,j)*c(i,j));
}
cout<<endl;
}
cout<<"\n\n\t最优方案:"<<setw(10)<<sum<<endl; //我们现在是在求max,max=-min
free(X);
free(C);
system("pause");
cin>>psum>>csum
M=psum+1;
N=csum+1;
X=new double[sizeof(double)*(M-1)*(N-1)];
C=new double[sizeof(double)*M*N];
// 把运价, 供应量和需求量的数据读入到数组 c( i, j )
cout<<"输入所需要的相关数据(按顺序):"<<endl;
cout<<endl;
}
TP(M,N,C,X)#34;\n============= 最优解 ===================\n";
sum=0;
for(i=0;i<M-1;++i)
{for(j=0;j<N-1;++j)
if(x(i,j)>=BIG_NUM)
cout<<setw(10)<<"******";
for(i=0;i<M;i++)
{for(j=0;j<N;j++)
{ cin>>z;
c(i,j)=z;
}
}
cout<<"\n============= 显示数据 ================\n";
for(i=0;i<M;++i)
{ for(j=0;j<N;++j)
cout<<setw(10)<<c(i,j);
收获与致谢:收获:通过对《运筹学》运输问题的课程设计对《运筹学》的书本知识得到了进一步的巩固,具体化就是加深了我对运输问题深层理解,使我们能成熟的理解和应用运筹学模型,使我们认识运筹学在生产与技术管理和经营管理决策中的作用,领会其基本思想和分析与解决问题的思路。为我们以后毕业参加工作单位的策略策划打下坚实的基础。还又我了解并发现了很多调试程序的方法,而且懂得了如何处理错误的方法。对C语言以及C++的使用得到了进一步的提高。