运筹学课程设计
运筹学课程设计范文

摘要
本文本着企业生产与需求同时考虑,相互影响的原则,利用线性规划的知识 对山东临沂景德地毯有限公司的生产及运输进行了初步规划。 论文首先对我国生产企业生产与运输方面的现状进行了基本概述, 然后以此 家地毯企业为例,讲解了进行生产和运输决策时可以采用的基本方法。本文首先 对这家企业的情况进行了部分说明,然后针对企业遇到的问题,建立模型,求解 对策。在对企业问题选择最优化模型时,选择了线性规划这一最为简单也最为实 用的方法,利用 lingo 软件对问题进行了相应的求解,并对结果进行了评述,形 成了对企业生产运输规划的一些基本建议。 本文意在通过对此家企业问题的解决方法来对企业的一些问题做出指导, 以 促进企业的发展壮大。
模型的建立 ………………………………………分析……………………………………… (10)
3.1 3.2 模型的最优解 ……………………………………………………… (10) 模型的分析与评价 ……………………………………………………(14)
第四章 结论与建议 ………………………………………………………(15)
1.3 研究的意义 企业利润问题是事关企业生死存亡的重大问题。 企业利润与产品质量存在巨 大关系,但是对于生产水平较为落后,且产品质量已经基本确定或产品质量难以 再获巨大提高的企业, 对产品生产和销售的准确把握则无疑是企业获得利润的法 宝。 而通过数学规划来计算最优情况下的生产量和销售量则是既实用又简单的方 法。 产品的生产和销售自商品经济产生之初便应该是一体的, 对两者进行统一考 虑才能对企业生产制定更好的决策,此种对供求关系,生产和销售限制条件统一 考虑的规划方法建立了关于生产与销售集中考虑的一般步骤, 对企业的更优决策 与发展必然具有一定的指导意义。
1.4 研究的主要方法和思路
运筹课程设计案例

运筹课程设计案例一、课程目标知识目标:1. 让学生掌握运筹学的基本概念,如线性规划、整数规划等,并能够理解其在实际问题中的应用。
2. 使学生了解运筹学中的常用方法与工具,如图表法、单纯形法等,并能运用这些方法解决简单的实际问题。
3. 引导学生理解优化问题的本质,培养他们运用数学语言描述现实问题的能力。
技能目标:1. 培养学生运用运筹学方法分析问题和解决问题的能力,特别是针对实际案例,能够设计出有效的优化方案。
2. 提高学生的数据处理和计算能力,使其能够熟练运用运筹学软件工具解决复杂的优化问题。
3. 培养学生的团队协作和沟通能力,通过小组讨论和报告,共享解决问题的思路和方法。
情感态度价值观目标:1. 培养学生对运筹学学科的兴趣,激发他们探索优化问题的热情,形成积极向上的学习态度。
2. 培养学生具有批判性思维和创新精神,面对复杂问题能够勇于挑战,寻求最佳解决方案。
3. 引导学生认识到运筹学在国家和企业发展中的重要作用,增强社会责任感和使命感。
本课程针对的学生特点是具有一定数学基础和逻辑思维能力的初中生。
在教学过程中,教师应注重理论联系实际,激发学生的兴趣和好奇心,注重培养学生的动手操作能力和实际应用能力。
通过本课程的学习,期望学生能够掌握基本的运筹学知识和方法,提高解决实际问题的能力,同时培养他们的团队合作精神和批判性思维。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程及其在现实生活中的应用,重点讲解线性规划和整数规划的基本原理。
教材章节:第一章 运筹学概述,第三节 线性规划2. 运筹学方法与工具:详细讲解图表法、单纯形法等常用优化方法,并通过实例分析展示这些方法在实际问题中的应用。
教材章节:第二章 线性规划的图解法与单纯形法,第四节 整数规划简介3. 运筹学案例分析:选择具有代表性的实际案例,如生产计划、物流配送等,让学生运用所学方法解决实际问题。
教材章节:第三章 运筹学应用案例分析4. 运筹学软件工具介绍:介绍运筹学软件(如Lingo、CPLEX等)的基本功能和使用方法,帮助学生提高优化问题的求解效率。
最优化运筹学课程设计

最优化运筹学课程设计一、课程目标知识目标:1. 学生能理解最优化运筹学的基本概念,掌握线性规划、整数规划等基本模型及其应用。
2. 学生能掌握求解最优化问题的常用方法,如单纯形法、分支定界法等,并能够运用这些方法解决实际问题。
3. 学生能了解最优化运筹学在各领域的应用,如生产计划、物流配送、人力资源等。
技能目标:1. 学生能够运用数学建模方法,将现实问题抽象为最优化模型,并运用相应算法求解。
2. 学生能够使用相关软件工具(如Lingo、MATLAB等)辅助求解最优化问题,提高问题求解的效率。
3. 学生能够通过团队协作,共同分析、讨论并解决复杂的优化问题。
情感态度价值观目标:1. 学生能够认识到最优化运筹学在现实生活中的重要性,培养对优化思维的兴趣和热情。
2. 学生在解决优化问题的过程中,培养严谨、细致的科学态度和良好的逻辑思维能力。
3. 学生能够通过团队协作,培养沟通、协作能力和集体荣誉感。
本课程针对高中年级学生,结合学科特点,注重培养学生的理论联系实际的能力,提高学生的数学建模和问题求解技能。
课程目标既注重知识传授,又强调技能培养和情感态度价值观的塑造,旨在使学生能够运用最优化运筹学的知识解决实际问题,并为未来进一步学习打下坚实基础。
二、教学内容本章节教学内容主要包括以下几部分:1. 最优化运筹学基本概念:介绍最优化问题的定义、分类及其应用领域,解析线性规划、整数规划等基本模型。
2. 最优化问题求解方法:- 单纯形法:讲解线性规划问题的求解过程,包括初始可行解、迭代过程、最优解的判定等。
- 分支定界法:介绍整数规划问题的求解方法,理解其原理和求解步骤。
3. 应用案例分析:结合实际案例,分析最优化运筹学在生产计划、物流配送、人力资源等领域的应用。
4. 软件工具应用:教授如何运用Lingo、MATLAB等软件工具辅助求解最优化问题,提高问题求解效率。
5. 教学实践:- 数学建模:引导学生运用所学知识,将现实问题抽象为最优化模型。
运筹学选课问题课程设计

运筹学选课问题课程设计一、课程目标知识目标:1. 掌握运筹学基本概念,了解其在现实生活中的应用;2. 学习并掌握线性规划、整数规划等基本优化方法;3. 理解选课问题的数学模型,并能运用相关优化方法进行求解。
技能目标:1. 培养学生运用数学知识解决实际问题的能力;2. 提高学生运用运筹学方法进行问题分析、建模和求解的技能;3. 培养学生运用计算机软件(如Excel、Lingo等)进行数据处理和求解的能力。
情感态度价值观目标:1. 培养学生对运筹学学科的兴趣,激发学习热情;2. 培养学生团队协作、共同解决问题的精神;3. 增强学生面对复杂问题时的信心和毅力,培养勇于挑战的精神。
课程性质分析:本课程为选修课,旨在帮助学生掌握运筹学的基本知识和方法,提高解决实际问题的能力。
学生特点分析:学生为高中年级,具有一定的数学基础和逻辑思维能力,但可能对运筹学了解较少。
教学要求:1. 结合实际案例,引导学生理解并掌握运筹学基本概念和方法;2. 注重培养学生的动手实践能力,鼓励学生运用所学知识解决实际问题;3. 关注学生的情感态度,激发学习兴趣,提高学生的综合素质。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程、应用领域等,让学生对运筹学有初步的认识。
教材章节:第一章 运筹学概述内容安排:1课时2. 线性规划:讲解线性规划的基本概念、数学模型、求解方法(单纯形法、图形法等)。
教材章节:第二章 线性规划内容安排:3课时3. 整数规划:介绍整数规划的基本概念、特点,以及求解方法(分支定界法、割平面法等)。
教材章节:第三章 整数规划内容安排:2课时4. 选课问题数学模型:分析选课问题的背景,构建数学模型,探讨求解方法。
教材章节:第四章 应用实例内容安排:2课时5. 计算机软件应用:介绍Excel、Lingo等软件在运筹学问题求解中的应用。
教材章节:第五章 运筹学软件应用内容安排:2课时6. 实践环节:设计选课问题的实际案例,让学生动手实践,运用所学知识解决问题。
运筹学课程设计报告

运筹学课程设计报告一、课程设计的理论依据及背景随着社会的不断发展,组织的规模不断增大,越来越多的管理问题也不断出现,而运筹学正是针对这些管理问题而产生的一门重要的理论学科。
运筹学主要研究解决复杂系统优化问题,提供有效的策略,帮助我们解决现实环境中的棘手问题。
运筹学课程设计的背景考虑在本科阶段的分析方法教学。
基于实践的教学方法,结合参数实验以及现实环境中的案例,以深入浅出的思路更好的向学生传授运筹学知识和方法,从而引导他们对运筹学理论的理解以及实践运用。
二、课程设计的内容1.教学内容运筹学课程设计主要围绕运筹学理论知识及其实践应用进行阐述,具体分为六部分:1) 运筹学基础原理、模型和方法:讲授运筹学基础原理,其中包括系统的优化模型和解决方法,如线性规划、非线性规划、随机过程模型及混合规划模型等。
2) 系统分析理论:讲授系统分析的基本原理,如决策方程、决策层次、决策结构和意义以及决策过程等。
3) 优化技术应用:讲授优化技术的各种方法和应用,比如灰色分析、神经网络模型和启发式方法等。
4)投资风险管理:探讨投资风险管理的技术和理论,学生将学习到如何运用优化方法处理投资风险管理问题。
5)运输规划:探讨运输系统规划问题,根据客观情况下,学生将学到如何分析现实商务环境的运输问题,并根据其大量的量化要求,对相关的各种运输方案进行比较评估,找到最优的运输方案。
6) 数据挖掘技术:数据挖掘技术是一种结合决策分析与优化技术的数据处理方法,本部分会介绍数据挖掘技术的原理和应用。
2.教学模式一般的,本课程设计采取的教学模式是以案例教学和对比分析为主。
首先,教师会从典型的案例中为学生讲解运筹学的基本原理及其应用。
接着,教师引导学生分析案例中的优化问题,总结出相应的运筹学解决方法,并与其他优化方式进行对比分析。
最后,学生可以结合现实环境中的具体情况和自身实际能力,针对给定的问题,运用运筹学理论模型及解决方法给出最优解决方案,实现运筹学理论的落地应用。
运筹课程设计摘要

运筹课程设计摘要一、课程目标知识目标:1. 让学生掌握运筹学的基本概念、原理及方法,如线性规划、整数规划等;2. 使学生了解运筹学在现实生活中的应用,如资源配置、路径优化等;3. 帮助学生理解运筹学与其他学科之间的联系,提高跨学科综合运用能力。
技能目标:1. 培养学生运用运筹学方法解决实际问题的能力;2. 培养学生运用数学软件进行运筹问题求解的操作技能;3. 提高学生团队协作、沟通表达及分析解决问题的能力。
情感态度价值观目标:1. 培养学生对运筹学的兴趣,激发其探索精神;2. 培养学生面对问题时积极寻求解决方案的态度,增强自信心;3. 培养学生具备良好的道德品质,如诚信、合作、尊重他人等。
本课程针对高中年级学生,结合学科特点和教学要求,将课程目标分解为具体的学习成果。
在教学过程中,注重培养学生的实际操作能力和团队协作精神,使学生在掌握运筹学知识的同时,提高解决实际问题的能力。
通过本课程的学习,期望学生能够运用所学知识为我国经济发展和社会进步作出贡献。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程及研究领域,对应教材第一章内容。
- 定义与性质- 发展历程与现状- 研究领域与应用2. 线性规划:讲解线性规划的基本理论、建模方法及求解技巧,对应教材第二章内容。
- 线性规划模型- 单纯形法- 对偶理论与灵敏度分析3. 整数规划:介绍整数规划的概念、分类及求解方法,对应教材第三章内容。
- 整数规划模型- 分支定界法- 割平面法4. 运筹学应用案例分析:分析实际生活中的运筹学应用案例,培养学生解决实际问题的能力,对应教材第四章内容。
- 资源配置问题- 路径优化问题- 排队论与库存控制5. 数学软件在运筹学中的应用:教授学生运用数学软件(如MATLAB、Lingo 等)求解运筹问题,对应教材第五章内容。
- 软件操作方法- 求解线性规划- 求解整数规划本教学内容根据课程目标制定,涵盖运筹学的基本概念、理论、方法及其在实际中的应用。
工程管理运筹学课程设计

工程管理运筹学课程设计一、课程目标知识目标:1. 理解工程管理中运筹学的基本概念、原理及方法;2. 掌握线性规划、整数规划等运筹学模型在工程管理中的应用;3. 了解如何运用运筹学方法解决实际工程管理问题。
技能目标:1. 能够运用运筹学方法建立工程管理问题的数学模型;2. 能够运用线性规划、整数规划等方法求解工程管理问题;3. 能够运用运筹学软件工具进行模型求解和分析。
情感态度价值观目标:1. 培养学生对工程管理运筹学学科的兴趣,激发学习热情;2. 培养学生具备良好的团队合作精神和沟通能力;3. 培养学生运用科学方法解决实际问题的能力,增强社会责任感。
课程性质:本课程为工程管理专业核心课程,旨在通过运筹学的基本理论和方法,培养学生解决实际工程管理问题的能力。
学生特点:学生具备一定的数学基础,对工程管理有一定了解,但可能缺乏实际运用能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力和解决问题的能力。
通过本课程的学习,使学生能够将所学知识应用于实际工程管理领域,为未来职业生涯奠定基础。
教学过程中,将目标分解为具体的学习成果,以便于后续教学设计和评估。
二、教学内容1. 运筹学基本概念与原理:介绍运筹学的起源、发展及其在工程管理领域的应用,解析线性规划、整数规划等基本模型。
教材章节:第一章 运筹学概述,第二章 线性规划。
2. 运筹学方法与应用:详细讲解线性规划、整数规划、非线性规划等方法的原理及求解过程,并结合实际案例进行分析。
教材章节:第三章 整数规划,第四章 非线性规划。
3. 运筹学软件应用:介绍运筹学常用软件(如LINGO、CPLEX等)的功能、操作及在实际工程管理问题中的应用。
教材章节:第五章 运筹学软件及其应用。
4. 实践案例分析:选取具有代表性的实际工程管理案例,指导学生运用运筹学方法建立模型、求解问题,并进行结果分析。
教材章节:第六章 运筹学在工程管理中的应用案例分析。
运筹学课程设计总结

运筹学课程设计总结一、教学目标本课程的教学目标分为三个维度:知识目标、技能目标和情感态度价值观目标。
1.知识目标:通过本课程的学习,学生将掌握运筹学的基本概念、方法和应用,包括线性规划、整数规划、动态规划、概率论和统计学等。
2.技能目标:学生将能够运用运筹学的方法解决实际问题,提高问题分析和解决的能力。
具体包括:(1)能够运用线性规划解决最大(小)化问题;(2)能够运用整数规划解决组合优化问题;(3)能够运用动态规划解决多阶段决策问题;(4)能够运用概率论和统计学方法分析不确定性问题。
3.情感态度价值观目标:通过本课程的学习,学生将培养严谨的科学态度、团队合作精神和创新意识,提高综合素质。
二、教学内容本课程的教学内容主要包括以下几个部分:1.运筹学基本概念和方法:线性规划、整数规划、动态规划、概率论和统计学等;2.线性规划:图解法、单纯形法、灵敏度分析等;3.整数规划:分支定界法、动态规划法等;4.动态规划:多阶段决策问题、最优化原理等;5.概率论和统计学:随机事件、随机变量、数学期望、方差、协方差、假设检验等。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:用于传授基本概念、理论和方法;2.案例分析法:通过实际案例,让学生学会运用运筹学方法解决问题;3.实验法:上机实验,巩固理论知识,提高实际操作能力;4.讨论法:分组讨论,培养学生的团队合作精神和沟通能力。
四、教学资源本课程的教学资源包括:1.教材:《运筹学导论》、《线性规划与应用》、《整数规划》等;2.参考书:相关领域的研究论文、书籍等;3.多媒体资料:课件、教学视频等;4.实验设备:计算机、投影仪等。
以上教学资源将有助于实现本课程的教学目标,提高学生的综合素质。
五、教学评估本课程的评估方式包括平时表现、作业、考试等,以全面客观地评价学生的学习成果。
1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和理解能力;2.作业:布置适量作业,检验学生对知识的掌握和运用能力;3.考试:包括期中考试和期末考试,全面测试学生的知识水平和运用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学课程设计实践报告姓名:***班级:信管1班学号:**********1. 杂粮销售问一贸易公司专门经营某种杂粮的批发业务,公司现有库容5127担的仓库。
一月一日,公司拥有库存1000担杂粮,并有资金20000元。
估计第一季度杂粮价格如下所示:一月份,进货价2.85元,出货价3.10元;二月份,进货价3.05元,出货价3.25元;三月份,进货价2.90元,出货价2.95元;如买进的杂粮当月到货,需到下月才能卖出,且规定“货到付款”。
公司希望本季度末库存为2000担,问应采取什么样的买进与卖出的策略使三个月总的获利最大,每个月考虑先卖后买?解:设第一月买进a x 1卖出b x 1,第二个月买进a x 2卖出b x 2,第三个月买进a x 3卖b x 3MaxZ=3.1*b x 1+3.25*b x 2+2.95*b x 3-2.85*a x 1-3.05*a x 2-2.9*a x 3 1000-b x 1+ax 1≤51271000-b x 1+a x 1-b x 2+a x 2≤5127b x 1≤10001000+a x 1-b x 1+a x 2-b x 2+a x 3-b x 3=2000 1000+a x 1-bx 1≥bx 21000+a x 1-b x 1-b x 2+a x 2≥b x 320000+3.1*bx 1≥2.85*a x 120000+3.1*b x 1-2.85*a x 1+3.25*bx 2≥3.05*a x 220000+3.1*b x 1-2.85*a x 1+3.25*b x 2-3.05*a x 2+2.95*b x 3≥2.9*a x 3a x 1,b x 1……. b x 3≥0利用winQSB 求解1x ,2x ,3x ,4x ,5x ,6x 分别代表a x 1,b x 1,a x 2,b x 2,a x 3,b x 3知一月卖出1000担,买进5127担,二月卖出5127担,买进0担,三月买进2000担不出货。
此时资金剩余20000-649.1994=19350.80062.生产计划问题某厂生产四种产品。
每种产品要经过A,B两道工序加工。
设该厂有两种规格的设备能完成A工序,以A1 ,A2表示;有三种规格的设备能完成B工序,以B1 ,B2,B3 表示。
产品D可在A,B任何一种规格的设备上加工。
产品E可在任何规格的A设备上加工,但完成B工序时只能在B1设备上加工。
产品F可在A2及B2 ,B3上加工。
产品G可在任何一种规格的A设备上加工,但完成B工序时只能在B1 ,B2设备上加工。
已知生产单件产品的设备工时,原材料费,及产品单价,各种设备有效台时如下表,要求安排最优的生产计划,使该厂利润最大?设备产品设备有效台时1 2 3 4A1 A2 B1 B2 B357647109812111068108612710000400070004000原料费(元/件)单价(元/件)0.251.250.352.000.502.800.42.4解:设1da x 表示d 在a1上加工的个数,2da x 表示d 在a2上加工的个数一次类推。
MaxZ=1da x +2da x +1db x +2db x +3db x +1.65*(1ea x +2ea x +1eb x )+2.3*(2fa x +2fb x +3fb x )+2*(1ga x +2ga x +1gb x +2gb x )5*1da x +10*1ea x +6*1ga x ≤61277*2da x +9*2ea x +12*2fa x +8*2ga x ≤100006*1db x +8*1eb x +1gb x ≤40004*2db x +11*2fb x +8*2gb x ≤70007*3db x +10*3fb x ≤40001da x +2da x +1ea x +2ea x +2fa x +1ga x +2ga x -1db x -2db x -3db x -1eb x -2fb x -1gb x -2gb x =0 ij x ≥0且都是整数,i=d,e,f,g . j=1a ,2a ,321,,b b b利用winQSB 求解1da x ,2da x ,1db x ,2db x ,3db x ,1ea x ,2ea x ,1eb x ,2fa x ,2fb x ,3fb x ,1ga x ,2ga x ,1gb x ,2gb x 分别用k x (k=1,2,3,4…..15)代替。
知道最大利润Z=9394.83.报刊征订问题解:该问题可以看成是求费用最小的产销平衡运输问题,日本香港特别行政区韩国产量中文书刊出口部10.20 7 13.6 15000 深圳分公司12.50 4 14 7500 上海分公司 6 8 7.5 7500 销量15000 10000 5000即最优任务分配如下:日本香港特别行政区韩国中文书刊出口部12500 2500深圳分公司7500上海分公司2500 5000采用此方案费用最小,为227500(元)。
4.供电交通安排问题某供电部门有十三个供电所,担负本地区的电能转供任务,工作地点多,涉及面广。
变电所有104名通勤职工,居住遍布全地区。
结果使一些职工上下班行程时间长,影响职工的生活和工作,也造成供电安全的隐患。
而企业不仅支出大量的通勤杂费,也增加了社会交通负担。
为减轻职工负担,保证安全生产,节约通勤杂费,企业决定研究如何重新安排通勤职工的工作地点问题。
经研究,将职工的住地按就近乘车的原则,合并为十八个乘车点,并求出每个住地的职工数。
对十三个变电所,按职工上班终到站点合并为八个工作地点,并根据定员确定每个地点所需要的职工数。
于是,问题变为怎样把十八个住地的104名职工分配到八个地点。
因此可以把问题看成一个产销平衡的运输问题。
我们把通勤费作为优化的目标。
ai (i=1,2,......18)表示住地的职工人数,用bj (j=1,2,.......8)表示工作地点的定员,cij (i=1,2,.....18; j=1,2,......8)表示每个职工从住地到各工作地点的月通勤费(单位:元),有关数据列表如下表:试建立此问题的数学模型并求解。
解:建模如下∑∑=81181ji baMinZ=∑181ij ijX C∑81i j ija x=∑=81i=1,2,3 (18)j i ijb x=∑=181j=1,2,3 (8)≥ij x 0 i=1,2,3....18 j=1,2,3. (8)利用软件求解最小总月通勤费用为:343.20 (元)5.篮球队员选拔问题队员号码身高(厘米)月薪(元)技术分位置1 185 25278.2 中锋2 186 3000 9 中锋3 192 2600 8.4 中锋4 190 3500 9.5 中锋5 182 2500 8.3 前锋6 184 1800 8 前锋7 188 2200 8.1 前锋8 186 1900 7.8 后卫9 190 2400 8.2 后卫10 192 3200 9.2 后卫队员的挑选要满足下面条件:(1)至少补充一名中锋。
(2)至多补充2名后卫。
(3)1号和3号队员最多只能入选1个。
(4)平均身高要达到187厘米。
(5)技术分平均要求不低于8.4分。
由于经费有限,希望月薪总数越少越好。
试建立此问题的数学模型。
解:设i x 表示第几号队员,i=1,2,3 (10)MinZ=2527*3200*2400*1900*2200*1800*2500*3500*2600*3000987654321+++++++++x x x x x x x x x *10x0 不选此队员i x =1 选此队员5....1021=+++x x x14321≥+++x x x x 21098≤++x x x 131≤+x x0*5*2*3*5*3*5*210987654321≥++-+--++--x x x x x x x x x x*8.0*2.0*6.0*3.0*4.0*1.0*1.1*6.0*2.010********≥+-----++-x x x x x x x x x 利用winQSB 求解应选2,6,7,8,10.最小费用为121006.工程项目选择问题某承包企业在同一时期内有八项工程可供选择投标。
其中有五项住宅工程,三项工业车间。
由于这些工程要求同时施工,而企业又没有能力同时承担,企业应根据自身的能力,分析这两类工程的盈利水平,作出正确的投标方案。
有关数据见下表:表1 可供选择投标工程的有关数据统计工程类型 预期利润/元 抹灰量/m 2混凝土量/ m 3砌筑量/ m 3住宅每项 50127 25 000 280 4 200 工业车间每项 80 000480 880 1 800 企业尚有能力108 0003 68013 800解:设承包商承包X1项住宅工程,X2项工业车间工程可获利最高,依题意可建立如下整数模型:Max Z=50127*21*80000x x25000*108000*48021≤+x x 280*3680*88021≤+x x 4200*13800*180021≤+x x51≤x 32≤x0,021≥≥x x 且21,x x 为整数利用winQSB 求解承包商对2项住宅工程,3项车间工程进行投标,可获利最大,目标函数Max z=340254元。
7.高校教职工认聘问题变量承担的教学工作量 所占教师的百分比 年工资本科生 研究生最大 最小由校方确定的各级决策目标为:P 1 要求教师有一定的学术水平。
即:要求75%的教师是专职的。
要求担任本科生教学工作的教师中,至少有40%的人具有博士学位。
要求担任研究生教学工作的教师中,至少有75%的人具有博士学位。
P 2 要求各类人员增加工资的总额不得超过176,000美元,其中x1、x2和x9增加的工资数为其原工资基数的6%,而其他人员为8%。
P 3 要求能完成学校的各项教学工作。
即学校计划招收本科生1,820名,研究生100名。
要求为本科生每周开课不低于910学时。
要求为研究生每周开课不低于100学时。
要求本科生教师与学生人数比为1:20,即为本科生上课的教师数不超过1820/20=91人。
要求研究生教师与学生人数比为1:10,即为研究生上课的教师数不超过100/10=10人。
P 4 设教师总数∑∑==+=8151i i ii y x T,要求各类教学人员有适当比例,如上表。
P 5 要求教师与行政管理职工之比不超过4:1。
P 6 要求教师与助研x1之比不超过5:1。
P 7 设所有人员总的年工资基数为1,850,000美元,要求其尽可能小。