运筹学课程设计报告

合集下载

运筹学课程设计报告(附代码)范文

运筹学课程设计报告(附代码)范文

《运筹学》课程设计报告姓名:班级:学号:一、问题描述1、机型指派问题机型指派优化设计是航空公司制定航班计划的重要内容,它要求在满足航班频率和时刻安排以及各机型飞机总数约束的条件下,将各机型飞机指派给相应的航班,使运行成本最小化。

本课程设计要求建立机型指派问题的数学模型,应用优化软件Lindo/Lingo进行建模求解,给出决策建议,包括各机型执行的航班子集和相应的运行成本。

2、问题描述已知某航空公司航班频率和时刻安排如《运筹学课程设计指导书》中表1所示,航班需求数据和运输距离如表2所示,其中,OrignA/P表示起飞机场,Dep.T.表示起飞时间,Dest.A/P表示目标机场,Dist表示轮挡距离,Demand表示航班需求量,Std Dev.表示需求的标准差。

该航空公司的机队有两种机型:9架B737-800,座位数162;6架B757-200,座位数200。

飞八个机场:A,B,I,J,L,M,O,S。

B737-800的CASM(座英里成本)是0.34元,B757-200是0.36元。

两种机型的 RASM(座英里收益)都是 1.2元。

以成本最小为目标进行机型指派,在成本方面不仅考虑运行成本,还必须考虑旅客溢出成本,否则将偏向于选取小飞机,使航空公司损失许多旅客。

旅客溢出成本是指旅客需求大于航班可提供座位数时,旅客流失到其他航空公司造成的损失。

旅客需求服从N(μ,σ)的正态分布。

如果机票推销工作做得好,溢出旅客并不全部损失,有部分溢出旅客将该成本航空公司其他航班,这种现象叫做“再获得”(Recapture)。

设有15%的溢出旅客被再获得。

将飞机指派到航班上去,并使飞机总成本最小。

二、分析建模1.确定决策变量经过对问题描述的分析得出,要解决飞机机型指派问题,我设定了两类变量:(1)针对各条航线的机型,令B737-800和B757-200分别为机型1和机型2,设变量Xi,j.其中101≤i≤142,j=1或2。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

运筹学课程设计报告

运筹学课程设计报告

关于生产计划的线性规划模型摘 要本文利用问题中的数据信息,建立了线性规划模型,并运用LINGO 软件求解,得出了让工厂赢利最大的生产计划,并讨论了增加设备、投产新产品、改进产品工艺等各种情况对生产计划的影响。

对于问题(1):按照题目给出的数据,可以得到一个每月生产赢利最大为目标的线性规划模型。

然后利用LINGO 软件求解出模型的全局最优解,最优值为134.5,最优解为52424321===x x x ,,。

即每月安排生产24件产品Ⅰ,24件产品Ⅱ,5件产品Ⅲ,能使工厂获得最大赢利为134.5千元。

对于问题(2):因为设备B 每台时的租金为0.3千元,高于它的对偶价格,所以得出结论:借用设备B 是不合算的。

我们又建立了线性规划模型来验证结论。

模型计算结果显示借用设备B ,工厂最大赢利为127千元,比原生产计划下的赢利134.5千元少,证明了借用设备B 确实是不合算的。

对于问题(3):为了更好的讨论新产品Ⅳ、Ⅴ投产是否合算,我们分三种情况建立模型:同时投产Ⅳ和Ⅴ、只投产Ⅳ、只投产Ⅴ。

结合三个模型的结果可知:若单独投产Ⅳ或Ⅴ,工厂赢利的增量分别是0.1千元和1.36千元。

只投产Ⅳ则利润增长是很小的,同时投产Ⅳ和Ⅴ的收益增量是最大的,为1.46千元。

所以在计划新产品的投产时,不能单独投产新产品Ⅳ,最好是同时投产新产品Ⅳ和Ⅴ。

对于问题(4):根据新数据,可以得到线性规划模型,模型的最优解为22422321===x x x ,,。

改进工艺结构后最大赢利为152.8千元,给工厂增加了18.3千元的赢利。

关键词:工厂赢利,生产计划,线性规划,LINGO 软件,对偶价格一、问题重述已知某工厂计划生产Ⅰ,Ⅱ,Ⅲ三种产品,各产品需要在C B A ,,设备上加工,有关数据见下表。

试回答:(1)如何充分发挥设备能力,使生产赢利最大?(2)若为了增加产量,可借用其他工厂的设备B ,每月可借用60台时,租金为8.1万元,问借用B 设备是否合算?(3)若另有两种新产品Ⅳ,Ⅴ,其中Ⅳ需用设备A 为12台时,B 为5台时;C 为10台时,单位产品赢利1.2千元;新产品Ⅴ需用设备A 为4台时,B 为4台设备代号 ⅠⅡ Ⅲ 设备有效台时/月 A 82 10 300 B 105 8 400 C 213 10 420 单位产品利润/千元3 2 2.9时;C 为12台时,单位产品赢利87.1千元。

运筹学课程设计

运筹学课程设计

摘要人力资源不仅决定着财富的形成,还是推动财富发展的主要力量。

随着科学技术的不断发展,知识技能的不断提高,人力资源对价值创造的贡献力度越来越大,社会经济发展对人力资源的依赖程度也越来越大。

我们这次课程设计就是通过运用整数线性规划的的方法,利用LINDO软件,分析公司尽量减少辞退人员时,相应的招工和培训计划,以及公司尽量减少费用时,相应的招工和培训计划,并分别计算两种不同方案时的费用与辞退人数进行比较分析,得出结论。

关键词:整数规划,辞退人数,最低费用目录1 问题的提出 (1)1.1 背景资料 (1)1.2 主要研究内容及问题 (2)2模型的建立 (3)2.1 符号约定 (3)2.2 建立目标函数 (3)2.3 建立约束函数 (4)2.3.1 不熟练员工的约束函数 (4)2.3.2 半熟练员工的约束函数 (4)2.3.3 熟练员工的约束函数 (5)2.3.4员工人数限制约束限制 (6)2.4 建立模型 (6)2.4.1第一个问题的模型 (6)2.4.2第二个问题的模型 (7)3 最优方案的确定 (8)3.1 模型求解及最优方案的确定 (8)3.1.1 模型的求解 (8)3.1.2 确定最优方案 (11)4结束语 (13)1 问题的提出1.1 背景资料一个公司需要以下三类人员:不熟练工人、半熟练工人和熟练工人。

据估计,当前以及以后三年需要的各类人员的人数如附表1-8。

不熟练半熟练熟练当前拥有2310 1810 1310第一年1310 1710 1310第二年810 2310 1810第三年0 2810 2810为满足以上人力需要,该公司考虑以下四种途径:1.招聘工人;2.培训工人;3.辞退多余工人;4.用短工。

每年都有自然离职的人员,在招聘的工人中,第一年离职的比例特别多,工作一年以上再离职的人数就很少了,离职人数的比例如附表1-9。

不熟练半熟练熟练工作不到一年26 19 12工作一年以上19 6 4 当前没有招工,现有的工人都已工作一年以上。

运筹学课程设计报告(完)

运筹学课程设计报告(完)

运筹学课程设计报告组别:第三组设计人员:设计时间:2012年6月25日-2012年7月6日1 设计进度本课程设计时间分为两周:第一周(2012年6月25日----2012年6月29日):建模阶段。

此阶段各小组根据给出的题目完成模型的建立。

主要环节包括:2.1 6月25日上午:发指导书;按组布置设计题目;说明进度安排。

2.2 6月25日下午至6月27日:各小组审题,查阅资料,进行建模前的必要准备(包括求解程序的编写与查找)。

2.3 6月28日至6月29日:各个小组进行建模,并根据题目及设计要求拟定设计提纲,指导教师审阅;同时阅读,理解求解程序,为上机求解做好准备。

第二周(2012年7月2日---7月6日):上机求解,结果分析及答辩。

主要环节包括2.1 7月2日至7月3日:上机调试程序2.2 7月4日:完成计算机求解与结果分析。

2.3 7月5日:撰写设计报告。

2.4 7月6日:设计答辩及成绩评定。

2 设计题目第三十三题某商店要制订明年第一季度某种商品的进货和销售计划。

一直该店的仓库容量最多可存储该种商品500件,而今年年底有200件存货。

该店在每月月初进货一次。

已知各月份进货和销售该种商品的单价如下表所示。

问每个月应进货和销售该种商品各多少件,才能使总利润最大。

并按要求分别完成下列分析:(1)2月份的进货单价在何范围内变化时最优进销策略不变?(2)3月份的售价在何范围内变化是最优进销策略不变?(3)第一月份初库存量在何范围内变化时最优基不变?(4)仓库容量在何范围内变化时最优基不变?3 建模过程(1)分析过程设定变量设x1表示一月的进货量,x4表示一月的销售量。

x2表示二月的进货量,x5表示二月的销售量。

x3表示三月的进货量,x6表示三月的销售量。

根据题意推理总成本费用=8 x1+6 x2+9 x3总收益=9 x4+8 x5+10 x6各约束条件的范围:一月份的进货量与年底存货之和不能大于500:x1+200≦500一月份的销售量不能大于一月份的进货量与年底存货量之和:x4 ≦x1+200二月份的进货量与一月份剩余量之和不能大于500:x2+(x1+200 -x4)≦500二月份的销售量不能大于二月份的进货量与一月份剩余量之和:x5≦x2+ x1+200-x4三月份的进货量与二月份剩余量之和不能大于500:x3+(x1+200 -x4+ x2–x5)≦500三月份的销售量不能大于三月份的进货量与二月份剩余量之和:x6≦x3+(x1+200 -x4+ x2–x5)(2)模型由以上设定和题目要求,整理得数学模型如下:max z=-8 x1-6 x2-9 x3+9 x4+8 x5+10x6约束条件:x1≦300- x1+x4≦200x1+ x2- x4≦300- x1- x2+x4+ x5≦200x1+ x2+ x3 -x4- x5≦300- x1- x2- x3+x4+x5+ x6≦200x i≧0,i=1 (6)(3)计算机求解前的手工数据准备将原问题添加松弛变量:x7、x8、x9、x10、x11、x12化成标准形式:max z=-8 x1-6 x2-9 x3+9 x4+8 x5+10x6约束条件:x1+ x7=300- x1+x4+ x8=200x1+ x2- x4+ x9=300- x1- x2+x4+ x5+ x10=200x1+ x2+ x3 -x4- x5+ x11=300- x1- x2- x3+x4+x5+ x6+ x12=200x i≧0,i=1 (12)4 求解程序功能介绍(1)程序功能介绍Java是一种可以撰写跨平台应用软件的面向对象的程序设计语言,Java 技术具有卓越的通用性、高效性、平台移植性和安全性,能运行于不同的平台,对程序提供了安全管理器,防止程序的非法访问。

《运筹学》课程设计报告

《运筹学》课程设计报告

《运筹学》课程设计报告姓名:班级:学号:一、问题描述1、机型指派问题众所周知,机型指派优化设计是航空公司制定航班计划的重要内容,它要求在满足航班频率和时刻安排以及各级型飞机总数的约束条件下,将各级型飞机指派给相应的航班,使运行成本最小化。

本课程设计就是通过建立机型指派问题的数学模型,并应用优化软件Lindo/Lingo进行建模求解,同时给出决策建议,包括各机型执行的航班子集和相应的运行成本。

2、问题描述已知某航空公司航班频率和时刻安排如《运筹学课程设计指导书》中表1所示,航班需求数据和运输距离如表2所示,其中,OrignA/P表示起飞机场,Dep.T.表示起飞时间,Dest.A/P表示目标机场,Dist表示轮挡距离,Demand表示航班需求量,Std Dev.表示需求的标准差。

该航空公司的机队有两种机型:9架B737-800,座位数162;6架B757-200,座位数200。

飞八个机场:A, B, I, J, L, M, O, S.B737-800的CASM(座英里成本)是0.34元,B757-200是0.36元。

两种机型的 RASM(座英里收益)都是 1.2元。

以成本最小为目标进行机型指派,在成本方面不仅考虑运行成本,还必须考虑旅客溢出成本,否则将偏向于选取小飞机,使航空公司损失许多旅客。

旅客溢出成本是指旅客需求大于航班可提供座位数时,旅客流失到其他航空公司造成的损失。

旅客需求服从N(μ,σ)的正态分布。

如果机票工作做得好,溢出旅客并不全部损失,有部分溢出旅客将该成本航空公司其他航班,这种现象叫做“再获得(Recapture)”。

设有15%的溢出旅客被再获得。

将飞机指派到航班上去,并使飞机总成本最小。

二、分析建模1.目标函数以成本最小为求解目标。

该成本包括两个部分,第一是运输成本,其表达式为:机型1的架数*每架座位数*座英里成本*该航班的飞行距离+机型2的架数*每架座位数*座英里成本*该航班的飞行距离;第二个为旅客溢出成本,表达式为:机型1旅客溢出的期望值*机型1的架数*机型1的座英里收益*该航班的飞行距离*0.85+机型2旅客溢出的期望值*机型2的架数*机型2的座英里收益*该航班的飞行距离*0.85。

运筹学课设报告

运筹学课设报告

运筹学课设报告⽬录Ⅰ研究报告 (1)课程设计题⽬(⼀):值班安排问题 (1)摘要 (1)1.问题提出 (1)2.问题分析 (1)3.基本假设与符号说明 (1)4.模型建⽴于求解 (2)5.结果分析 (3)6.模型评价 (3)课程设计题⽬(⼆):⽣产任务分配问题研究 (4)摘要 (4)1.问题提出 (4)2.问题分析 (5)3.基本假设与符号说明 (5)4.模型的建⽴及求解结果 (6)5.结果分析 (7)6.模型评价 (7)课程设计题⽬(三):数学建模⼩组成员的系统综合评价 (8)摘要 (8)1.问题提出 (8)2.问题分析 (8)3.系统评价 (10)4.系统决策 (13)5.模型评价 (13)参考⽂献 (15)Ⅱ⼯作报告 (16)1.本组成员分⼯情况 (16)2.⼼得与体会 (16)附件⼀:值班安排问题lingo程序及结果 (18)附件⼆:⽣产任务分配问题lingo程序及结果 (22)Ⅰ研究报告课程设计题⽬(⼀):值班安排问题摘要本题主要是有关⼤学计算机机房值班的问题,其中受到⼤学⽣和研究⽣⼈数以及各⾃值班时间的限制,还要求总报酬费⽤最低。

从实际出发,建⽴简单可⾏的基本模型,得出符合要求的最优可⾏⽅案,进⽽为⼤学计算机机房值班问题提供参考和指导。

1.问题提出某⼤学计算机机房聘⽤三名⼤学⽣(代号1,2,3)和三名研究⽣(代号4,5,6)值班。

已知每⼈从周⼀⾄周五每天最多可安排的值班时间及每⼈每⼩时的报酬见表下表。

该实验室开放时间为上午9:00⾄晚上10:00,开放时间内须有且仅须⼀名学⽣值班,规定⼤学⽣每周值班不少于8⼩时,研究⽣每周不少于9⼩时,每名学⽣每周值班不超过5次,每次值班不少于2⼩时,每天安排值班的学⽣不超过4⼈,且其中必须有⼀名研究⽣。

试为该实验室安排⼀张⼈员的值班表,使总⽀付的报酬为最少。

2.问题分析此问题考虑如何合理的安排学⽣值班,并且花费的费⽤最少。

1:每位学⽣⼀周的值班天数对安排值班的约束;2:每天每位学⽣的值班时间对安排值班的约束;3:每位学⽣每周的值班时间不能低于8⼩时对安排值班的约束;3.基本假设与符号说明3.1基本假设x (i ,j ):表⽰学⽣i 周j 值班的时间; 3.2 符号说明pay (i ):学⽣i 每⼩时值班的报酬; t (i ,j ):学⽣i 周j 最多值班时间; c (i ,j ):学⽣i 周j 是否值班; 4.模型建⽴于求解 4.1模型的建⽴⽬标函数minZ=约束条件s.t ①学⽣每天值班时间约束: x(i,j)≤t(i,j)②值班的次数约束: c(i,j)=1(x>0)(i,j)=0(x=0)③值班⼈数的约束:1),(64≥∑=i j i c④学⽣每周值班时间的约束:8),(51≥∑=j j i x (i =1,2,3)9),(51≥∑=j j i x (i=4,5,6)⑤开放时间为上午9:00⾄晚上10:00,且开放时间内须有且仅须⼀名学⽣值班:13),(61=∑=i j i xx 为整数;4.2模型求解的结果Global optimal solution found.Objective value: 739.0000 Infeasibilities: 0.000000 Total solver iterations: 478∑∑==5161),(*)(j i j i x i pay 4),(61≤∑=i j i c 5),(6151≤∑∑j i c5.结果分析通过对求解结果的观察与分析,按求解结果表中进⾏⼤学⽣和研究⽣的值班安排为全局最优结果。

运筹学实验报告设计书

运筹学实验报告设计书

《运筹学课程设计》实验报告项目选择:综合实验A线材切割问题设能购买到的不同长度的原线材有m种,长度分别为L1,...,Lm,这些原线材只是长度不同,其它都相同。

某工程中所要切割出的线材长度分别为li,i=1,2,...,n(这里 li < 所有Li),对应数量分别为Ni,i=1,2,...,n。

设计优化计算方案,求出分别需要购买多少根不同长度的原线材,并能给出切割方案及线材利用率。

现假设某装修工程中需要对铝合金线材进行切割,工程能购买到的同一规格的铝合金线材有二种长度,一种长度是8米,另一种是12米。

现在假设要切割长度和数量如下所示的铝合金线材:表 5.1应用所设计的计算方案,请问至少需要购买多少根8米和12米的线材,使浪费的线材比较少,并给出切割方案和计算线材利用率。

实验目的:一、学习LINDO软件的操作,能够用LINDO解决基本的运筹学规划问题LP和运筹学整数规划问题IP。

二、培养利用运筹学理论知识,结合lindo软件,加上团结合作的能力,解决复杂性的综合性问题。

实验原理:一、本课程设计使用LINDO 6.01进行操作。

LINDO (Linear Interactive and Discrete Optimizer )是一种专门用于求解数学规划问题的软件包,主要用于解线性规划、非线性规划、二次规划和整数规划等问题。

二、LINDO 可用于求解单纯的或混合型的整数规划(IP)问题. 但目前尚无相应完善的敏感性分析理论. IP 问题的输入与LP 问题类似, 但在END 标志后需定义整型变量.三、就本课程设计而言,主要任务是建摸的过程,然后由lindo 软件进行规划。

因为要求得最少的原材料根数,考虑到“全部用完,没有剩余”的原则,首先将切割后没有剩余的情况全部列出,利用lindo 软件求出最优结果。

四、本课程设计采用整数规划,整数线性规划数学模型的一般形式为:⎪⎪⎩⎪⎪⎨⎧--=≥-=≥=≤-=∑∑==)44(,,,)34(,,2,10)24(,,2,1),(..)14(min)max(2111中部分或全部取整数或或或nj nj ij ij nj jj x x x n j x m i b x a t s x c z实验步骤:一、安装LINDO软件,学习软件自带的HELP文档,掌握该软件的基本操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告课程设计名称运筹学课程设计课程设计内容某厂排气管车间生产计划的优化问题专业班级姓名学号指导教师xxxx年 xx 月 xx 日目录1、问题描述…………………………………………………………………( 2 )2、建模分析……………………………………………………………………( 5 )2.1…………………………………………………………………………( 5 )2.2…………………………………………………………………………( 5 )2.3…………………………………………………………………………( 6 )3、程序设计……………………………………………………………………( 7 )4、结果分析………………………………………………………………………( 9 )小组人员详细分工学号姓名具体分工1、问题描述:排气管作为发动机的重要部件之一,极大地影响着发动机的性能。

某发动机厂排气管车间长期以来,只生产一种四缸及一种六缸发动机的排气管。

由于其产量一直徘徊不前,致使投资较大的排气管生产线,一直处于不饱和状态,造成资源的大量浪费,全车间设备开动率不足50%。

针对这个问题,该车间组织工程技术人员对8种排气管的产品图纸进行了评审、工艺设计和开发、样品试制,同时对现生产能力和成本进行了核算与预测工作。

其相关的生产状况及资料如下:(1)、车间概况:车间按两班制生产,每班8小时,标准工作日为22天。

车间现有员工30名,其中生产工人27人,每月安排职工政治学习及业务培训时间为4小时,进行文明生产等非生产性工作每人每月平均2小时,排气管工废按产量的1%计算,料费按2%计算。

(2)、生产状况:该车间排气管生产为10道工序,分别在不同的10类机床上进行加工,每种排气管所占用的设备时间如表C-1所示。

各种排气管的成本构成如表C-2所示。

根据以往经验,设备加工能力见表C-3.同时,客户对某些产品提出了特殊要求如下:第一种、第七种排气管月产量均不低于10000根,第三种不低于5000根/月,第六种排气管产量不高于60000根/月,第二与第四种排气管配对使用,但由于第二种排气管使用中易损,因此每月必须多生产3000根。

表C-1 8种排气管设备消耗时间(单位:台时/1000根)1 2 3 4 5 6 7 81、平面铣床 4 4.5 4.8 5.8 5.2 4.0 4.6 5.62、卧铣床 3.9 4.5 4.3 5.0 4.9 4.4 5.1 4.83、组合铣床 5.9 5.8 5.7 6.3 6.5 6.0 6.6 6.44、单面铣床 3.5 3.0 3.7 4.0 3.8 3.0 4.1 3.45、攻丝床 5.8 6.2 5.7 6.4 6.3 6.0 6.5 6.26、精铣床 5.5 5.7 4.7 6.0 5.9 5.2 6.2 5.67、扩孔钻床 3.9 3.8 4.0 4.1 3.7 3.5 4.1 3.68、摇臂钻床 4.1 4.0 4.0 4.3 4.2 3.8 4.3 4.39、去毛刺机 2.5 2.9 2.7 3.0 3.0 2.5 3.1 2.810、清洗机 2.8 2.9 2.1 3.2 3.0 2.5 3.2 3.0总计 41.9 43.3 41.7 48.1 46.5 40.9 47.8 45.7表C-2 8种排气管成本构成表表C-3 设备加工能力一览表设备台数(台) 标准工作日(日/月) 标准工作日长度(时/日)台均维修保养时间(时/月) 月可利用工时1、平面铣床 4 22 16 4 13922、卧铣床 4 22 16 2 14003、组合铣床 6221652082产品项目1 2 3 4 5 6 7 8毛坯价格 98 104 94 112 106 97 104 102 辅料消耗 2 2 2 2 2 2 22 2 动能消耗 10 10 10 10 10 10 10 10 工具等消耗 10 13 12 14 15 8 9 11 管理费用 1.455 1.099 1.21 1.44 1.188 1.2265 1.308 1.56 税收 15 16 14.8 17 16.5 14.5 15.6 15.5 售价 150 160.1 149 172 166 145.6 157.8 155.8 利润(元)13.54514.00114.9915.5615.31212.87315.89213.744、单面铣床 2 22 16 2 7005、攻丝床 6 22 16 4 20886、精铣床 4 22 16 3 13967、扩孔钻床 4 22 16 8 13768、摇臂钻床 4 22 16 6 13849、去毛刺机 2 22 16 2 70010、清洗机 2 22 16 2 700(3)求解问题:各种产品月生产量、月总利润以及相关数据的说明。

2、建模分析(1)、数学模型的变量设置:假设8种型号的排气管每月产量分别为X1、X2、X3、X4、X5、X6、X7、X8,单位为千根;最大利润为Z元。

(2)、数学模型的约束方程:a、人力资源约束:车间按两班制生产,每班8小时,标准工作日为22天。

车间现有员工30名,其中生产工人27人,每月安排职工政治学习及业务培训时间为4小时,进行文明生产等非生产性工作每人每月平均2小时,排气管工废按产量的1%计算,料费按2%计算。

由于机床加工时间小于工人工作时间,则()()%11*2*274*2727*22*887.4578.4769.4055.4641.4837.4123.4319.41---≤+++++++XXXXXXXXb、设备约束:根据表C-1,表C-2以及相关要求得出约束条件:()%11*139286.576.460.452.548.538.425.414-≤+++++++XXXXXXXX()%11*140088.471.564.459.440.533.425.419.3-≤+++++++XXXXXXXX()%11*208284.676.660.655.643.637.528.519.5-≤+++++++X X X X X X X X()%11*70084.371.460.358.340.437.320.315.3-≤+++++++X X X X X X X X ()%11*208882.675.660.653.644.637.522.618.5-≤+++++++X X X X X X X X ()%11*139682.675.660.653.644..637.522.615.5-≤+++++++X X X X X X X X()%11*137683.473.468.352.443.430.428.319.3-≤+++++++X X X X X X X X ()%11*138483.473.468.352.443.430.420.411.4-≤+++++++X X X X X X X X()%11*70088.271.365.250.340.337.229.215.2-≤+++++++X X X X X X X X ()%11*70080.372.365.250.342.331.229.218.2-≤+++++++X X X X X X X Xc 、生产产品约束:第一种、第七种排气管月产量均不低于10000根,第三种不低于5000根/月,第六种排气管产量不高于60000根/月,第二与第四种排气管配对使用,但由于第二种排气管使用中易损,因此每月必须多生产3000根。

101≥X 107≥X53≥X 606≤X342=-X X(3)、数学模型的目标函数:由于生产过程中存在料废,按2%计算,得出:8%)2*10213740(7%)2*10415893(6%)2*9712873(5%)2*10615312(4%)2*11215560(3%)2*9414990(2%)2*10414001(1%)2*9813545(X X X X X X X X MaxZ -+-+-+-+-+-+-+-=3、程序设计根据原问题输入数据如图所示:图1与图3为最优整数解的原型与结果;图2与图4是最优解得原型与结果。

图1、图2、图3、图4、4、结果分析(1)、如图4中数据显示,各种产品月生产量,即整数解分别为:10000、3000、82000、0、0、0、12000、0(单位:根);由数据得到月总利润为1392377元。

同时,由图4中的数据显示,人工工时利用率达到100%,而设备资源还存在利用空间,因此应调整人工工时问题。

(2)、根据图4中的影子价格数据显示,由于原问题是非规范化的线性规划问题,故影子价格小于0,但在计算是仍用其绝对值。

因为人工工时的影子价格大于0,故人工工时是影响增加利润的关键。

(3)、若各排气管需求量分别为15000,5000,5000,3000,15000,60000,10000,60000根,将这些数据各除以1000代入原模型,可知正常时间内1个月不能完成任务,如要完成,各排气管需增产5,2,0,3,15,60,0,60千根,设备1需加班*5*5.48.4*2+小时,其+8.5++++4=+6.5**60*7006.44.2.53*15*0.460中被乘数由表C-1得到,类似设备2需加班*55.4*2*3.4++小时,同理++++9.3=4.40.58.4*66601.*605*9.43*15*设备3需加班901.5小时,设备4需加班476.5小时,设备5需加班887.1小时,设备6需加班793.4小时,设备7需加班682.9小时,设备8需加班590.4小时,设备9需加班390.3小时,设备10需加班404.4小时。

总结:根据结果分析(1)、(2)不难看出,排气管生产车间各种设备资源利用率不高,人工工时小于设备可利用工时。

因此,建议相对增加工人工时或者增加工人数,使得设备资源的利用率增加。

附录A:指导教师评语及成绩指导教师评语:成绩评定:指导教师:年月日。

相关文档
最新文档