keilc温度控制直流电机转速课程设计报告

keilc温度控制直流电机转速课程设计报告
keilc温度控制直流电机转速课程设计报告

目录

一、设计目的及要求 (3)

1.1 设计目的 (3)

1.2 设计要求 (3)

二、设计方案及论证之硬件电路设计 (3)

2.1芯片简介 (3)

2.2 电路原理图 (4)

2.21 电机测速即驱动部分: (4)

2.22电路供电系部分 (5)

2.23显示部分 (5)

三、设计方案及论证之软件设计 (6)

3.1 程序设计思路 (6)

四、器件清单 (13)

五、器件识别与检测 (14)

六、仿真结果: (15)

七、软件简述 (15)

7.1 keil 简介 (15)

7.2 keil与proteus联调与仿真实现 (16)

九、参考文献 (17)

课程设计任务书

一、设计目的及要求

1.1 设计目的

本设计主要是应用proteus软件和嵌入式C语言编程工具,结合单片机原理及应用。危机原理与接口技术等专业课程,强化和巩固专业理论基础,掌握Proteus仿真的技巧和嵌入式C语言编程工具,提高单片机开发能力,并为嵌入式开发打下基础。

1.2 设计要求

(1) 使用 AT89C51单片机为核心,使用 4 位集成式数码管显示当前温度,温度传感器使用 DS18B20,使用 L298 驱动直流电动机。

(2)用 4 位集成式数码管显示当前温度, , 当温度在≥ 45 C 时, 直流电动机在 L298 0 0 驱动下加速正转,温度在≥ 75 C 全速正转;当温度≤ 10 C 时,直流电动机加速反转,温度≤ 0 C 时,直流电动机全速反转;温度 10 C ~ 45 C 之间时,直流电动机停止转动。

(3)控制程序在 Keil 软件中编写,编译,整个控制电路在 Proteus 仿真软件中连接调示。

二、设计方案及论证之硬件电路设计

2.1芯片简介

本设计选择采用AT89C51单片机为核心。AT89C51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内震荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断

系统继续工作。掉电方式保存RAM中的内容,但震荡器停止工作并禁止其他所有部件工作直到下一个硬件复位。

2.2 电路原理图

2.21 电机测速即驱动部分:

电机选用美国史普拉格公司生产的 3000 系列霍尔开关传感器 3013,它是一

种硅单片集成电路,器件的内部有稳压电路,霍尔电视发生器,放大器,施密特触发器和集成开路输出电路,具有工作电压范围宽,可靠性高,外电路简单,输出电平可与各种数字电路兼容等特点。

电动机测试部分原理图如下:

2.22电路供电系部分

电路通过 12V 电源供电,由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号送到单片机 89C51 的 P3.5 脚,作为 T1 计数器计数使用,得到的计数值。与设定的值进行比较形成偏差.根据比较结果通过 Po 端口送给DAC0832 进行数/模转换, 从而使得输出电压增大或者减少,得到模拟电压输出给功率放大电路放大,再去控制电机的转速。

2.23显示部分

采用 LM016L作为显示屏

下图为显示部分:

三、设计方案及论证之软件设计

3.1 程序设计思路

程序框图

开始

初始化

3.2源程序

void dsreset(void) ;温度采集初始化{

uint i;

DS=1;

i++;

DS=0;

i=103;

while(i>0)i--;

DS=1;

i=4;

while(i>0)i--;

DS=1;

}

void tmpwritebyte(uchar dat);控制温度传感器

{

uint i;

uchar j;

bit testb;

for(j=1;j<=8;j++)

{

testb=dat&0x01;

dat=dat>>1;

if(testb) //write 1

{

DS=0;

i++;i++;

DS=1;

i=8;while(i>0)i--;

}

else

{

DS=0;

i=8;while(i>0)i--;//write 0

DS=1;

i++;i++;

}

}

}

bit tmpreadbit(void) ;读数据赋值给dat

{

uint i;

bit dat;

DS=1;

DS=0;i++;i++;

DS=1;i++;

dat=DS;

i=8;while(i>0)i--;

return (dat);

}

uchar tmpread(void)

{

uchar i,j,dat;

dat=0;

for(i=1;i<=8;i++)

{

j=tmpreadbit();

dat=(j<<7)|(dat>>1);

}

return(dat);

}

uint tmp() ;数据处理即判断温度正负

{

float tt;

uchar a,b,b1;

dsreset();

delay(1);

tmpwritebyte(0xcc);

tmpwritebyte(0xbe);

a=tmpread();

b=tmpread();

temp=b;

b1=b;

temp<<=8;

temp=temp|a;

if(b1<8)

{

flag+=1;

tt=temp*0.0625;

temp=tt*10+0.5;

dis_buf[0]=0;

}

else

{

flag-=1;

temp=~temp;

temp=temp+1;

tt=temp*0.0625;

temp=tt*10+0.5;

dis_buf[0]=0x40;

}

return temp;

}

void display(uint temp);将采集后转化的温度对数组赋值

{

uchar A1,A2,A3;

A1=temp/100;

A2=temp%100/10;

A3=temp%10;

t=A1*10+A2;

dis_buf[3] = table[A3];

dis_buf[2] = table1[A2];

dis_buf[1] = table[A1];

}

void timer1() interrupt 3;用定时器T1调用温度采集函数进行温度采集

{

TH1=(65536-20000)/256;

TL1=(65536-20000)%256;

tmpchange();

display(tmp());

}

void timer0() interrupt 1;用定时器T0将处理后的温度用数码管显示

{

TH0 = (65536-500)/256;

TL0 = (65536-500)%256;

P2=0xff;

P0=dis_buf[dis_index];

P2=dis_digit;

dis_digit = _crol_(dis_digit,1);

dis_index++;

dis_index &= 0x07;

}

if(flag==1);判断电机旋转情况

{

flag=0;

if(t>=75)

Turn_z();

else

if(t>=45)

Turn_zj();

else

if(t>10)

Turn_t();

else

Turn_fj();

}

else

if(flag==-1)

{

flag=0;

Turn_f();

}

四、器件清单

温度控制直流电机转速所需元器件清单

五、器件识别与检测

根据单片机的C语言程序设计与应用,我们知道了C51单片机,所用的一般元器件有电阻、电容、开关、排阻,而对于晶振和数码管是我们所必须学习和掌握的,晶振是一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的运行速度也就越快。数码管根据公共端的连接情况有共阳极共阴极两种,对共阴极LED显示器的发光二极管的公共端的com接地,当某发二极管的阳极为高电平时,相应的发光二极管点亮。

六、仿真结果:

d0d0d1d1d2d2d3d3d4d4d5d5d6d6d7d7

d 0d 1d 2d 3d 4d 5d 6d 7E

R S RS R W E

R W XTAL218

XTAL1

19

ALE 30EA

31

PSEN 29RST

9

P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78

P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD

17

P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U1

AT89C51

C1

22PF

C2

22PF

C3

10uF

X1

12M

R1

10k

D 7

14

D 613D 512D 411D 310D 29D 18D 07

E 6R W 5R S 4V S S 1V D D 2V E E

3

LCD1

LM016L

23456789

1RP1

470

R2

4.7k

60.6

DQ 2VCC 3GND 1

U2

DS18B20

PWM1

IN15IN27ENA 6OUT12OUT23ENB

11OUT313OUT4

14

IN310IN412SENSA 1SENSB

15

GND 8

VS

4VCC

9U4

L298

C4

100nf

+203

D1

D2

D3

D4

C5

100nf

+12V

A B PWM1

A B

七、软件简述 7.1 keil 简介

Keil C51是美国Keil Software 公司出品的51系列兼容单片机C 语言软件开发系统,与汇编相比,C 语言在功能上、结构性、可读性、可维护性上有明显的优势。因而易学易用。Keil 提供了包括C 编译器、宏汇编、连接器、库管理

和一个功能强大的仿真调试等在内的完整开发方案,通过一个集成开发环境uVision将这些部分组合在一起。运行Keil软件需要WIN98、NT、WIN2000、WINXP 等操作系统。

7.2 keil与proteus联调与仿真实现

双击图标进入keil uVision2编程环境,输入程序。返回桌面双击图标进入Proteus仿真环境。点击左上角选项P后根据设计的电路图调出所需元件画好硬件原理图如图所示。然后按照4.1节所写步骤设置keil和proteus的工作环境。实现keil和proteus的联调。

八、总结

在课程设计的过程中,用到了Keilc和Proteus两大软件,上课老师都有讲过这些专业知识,通过对这些专业知识的学习,提高了自己的知识水平,而在课程设计过程中,我加强了自己的动手能力,并且将专业知识用到实践上,让我对这两个软件更加熟悉。我知道,课程设计是培养学生综合运用所学知识,发现实际为题、提出实际问题、分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际学习能力、动手能力的具体训练和考察过程。

在此次设计过程中,在学习新知识的同时,把在课程中学到的理论知识运用到实际作品设计,操作中更进一步地熟悉了单片机芯片的结构及掌握了其工作原理和具体的使用方法与相关元器件的参数计算方法、使用方法了解了电路的开发和制作及课程设计报告的编写。加深了对相关理论知识及专业知识的掌握度,增强自身的动手能力,锻炼及提高了理解问题、分析问题、解决问题的能力,更深刻体会到了理论联系实际的重要性。此次课程设计将我们一学期在keilc课程上的所学很好的应用到了实际设计中,非常感谢老师对我的帮助。我会尽自己一切努力来好好学习这些课程,丰富自己的知识。

九、参考文献

1、单片机的C语言程序设计与应用。

2、微机原理接口与技术。

3.单片机原理与应用技术。

4.电动机调速的原理及系统。

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

基于光电传感器的直流电机转速测量系统设计-课设报告

北京信息科技大学 测控综合实践 课程设计报告 题目:基于光电传感器的直流电机转速测量系统设计学院:仪器科学与光电工程学院 专业:测控技术与仪器 学生姓名:

摘要 摘要 基于单片机的转速测量方法较多,本次设计主要针对于光电传感器测量直流电机转速的原理进行简单介绍,并说明它是如何对电机转速进行测量的。通过实验得到结果并进行了数据分析。 本次设计应用了STC89C52RC单片机,采用光电传感器测量电机转速的方法,其中硬件系统包括脉冲信号的产生模块、脉冲信号的处理模块和转速的显示模块三个模块,采用C语言编程,结果表明该方法具有简单、精度高、稳定性好的优点。 关键词:直流电机;单片机;PWM调节;光电传感器

Abstract

目录 摘要................................................................................................I 第一章概述 (1) 1.1 课设目标 (1) 1.2 内容 (1) 第二章系统设计原理 (2) 2.1 STC89C52单片机介绍 (2) 2.2 STC89C52定时计数器 (4) 2.3 STC89C52中断控制 (6) 2.4 光电传感器 (6) 2.5 数码管介绍 (7) 第三章硬件系统设计 (10) 3.1测速信号采集及其处理 (10) 3.2 单片机处理电路设计 (11) 3.3 显示电路 (12) 3.4 PWM驱动电路 (13) 第四章软件设计 (14) 4.1语言选用 (14) 4.2程序设计流程图 (14) 4.3原程序代码 (15) 第五章数据分析 (19) 总结 (20) 附件 (21) 参考文献 (23)

数字温度计课程设计报告

课程设计报告书 课程名称:电工电子课程设计 题目:数字温度计 学院:信息工程学院 系:电气工程及其自动化 专业班级:电力系统及其自动化113 学号:6100311096 学生姓名:李超红 起讫日期:6月19日——7月2日 指导教师:郑朝丹职称:讲师 学院审核(签名): 审核日期:

内容摘要: 目前,单片机已经在测控领域中获得了广泛的应用,它除了可以测量电信以外,还可以用于温度、湿度等非电信号的测量,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。 单片机是一种特殊的计算机,它是在一块半导体的芯片上集成了CPU,存储器,RAM,ROM,及输入与输出接口电路,这种芯片称为:单片机。由于单片机的集成度高,功能强,通用性好,特别是它具有体积小,重量轻,能耗低,价格便宜,可靠性高,抗干扰能力强和使用方便的优点,使它迅速的得到了推广应用,目前已成为测量控制系统中的优选机种和新电子产品中的关键部件。单片机已不仅仅局限于小系统的概念,现已广泛应用于家用电器,机电产品,办公自动化用品,机器人,儿童玩具,航天器等领域。 本次课程设计,就是用单片机实现温度控制,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计。 本文介绍了一个基于STC89C52单片机和数字温度传感器DS18B20的测温 系统,并用LED数码管显示温度值,易于读数。系统电路简单、操作简便,能 任意设定报警温度并可查询最近的10个温度值,系统具有可靠性高、成本低、功耗小等优点。 关键词:单片机数字温度传感器数字温度计

温度控制直流电动机转速系统设计报告

实训题目: 温度控制直流电动机转速 学生姓名:崔敬通 学号: 201223160126 专业:电子信息工程 2013年11月27日

1 引言 直流电机具有良好的线性调速特性和控制性能,使其调速控制占主流地位。尽管交流变频电机、步进电机等在控制调速领域的应用比较广泛,但直流电机调速仍是大多数调速控制电机的最佳选择。89C55单片机支持C语言编程,可移植性好,速度快,已被广泛应用于机电一体化、工业控制、智能仪器仪表等领域。现应用89C51单片机对直流电机速度进行有效测试和控制,通过对直流电机转速脉冲和中断次数的计数,可实现根据输入值控制直流电机的转速。 2 设计任务与要求 根据设计需要,通过测量原件把检测到的直流电机转速读入到89C55单片机中,再通过编程使读入的数值在显示器上显示出来。若检测到的电机转速等于设定值,则对直流电机的转速进行记录;若检测到的电机转速没有达到设定值,则通过加大数值或模数转换芯片使电机速度提升至设定值;若检测到电机转速超过设定值则通过模数转换芯片把电机速度降至设定值。通过这种实时检测和在线控制的方式使单片机能够对直流电机 2.1系统的设计要求及主要技术指标 本论文要求使用单片机进行电路设计,同时单片机部分应带有显示功能。单片机对某个位置进行温度监控,当外部温度≥45℃时,电动机加速正转,当温度≥75℃时,电动机全速正转;当外部温度≤10℃时,电动机加速反转,当温度≤0℃时,电动机全速反转;当温度回到10℃~45℃之间时电动机逐渐停止转动。 2.2系统总体方案 系统总体方案设计,如下图2.1

图2.1 系统总体方案图 2.3总体方案论述 该系统采用AT89C55单片机为核心,通过DS18B20进行温度采集,送入单片机,经过软件编程进行温度的比较和范围划定,然后通过程序控制由单片机产生不同的PWM(脉冲宽度调制)信号,送给电机驱动芯片L298的使能端口,通过L298驱动芯片来控制直流电机的启动、速度、方向的变化;单片机将温度数据传送给LM016L显示温度。整个电路设计包括温度采集模块,单片机控制模块,温度显示模块,和电机及电机驱动模块。 3硬件电路设计 MCS-51系列单片机 Intel公司推出的8位单片机: 1976年推出的MCS-48系列:8039,8048等。

直流电机地PWM电流速度双闭环调速系统课程设计

电力拖动课程设计 题目:直流电机的PWM电流速度双闭环调速系统 姓名:强 学号:U201311856 班级:电气1303 指导老师:徐伟 课程评分:

日期:2016-07-10 目录 一、设计目标与技术参数 二、设计基本原理 (一)调速系统的总体设计 (二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图 (五)双闭环调速系统的硬件电路 (六)泵升电压限制 (七)主电路参数计算和元件选择 (八)调节器参数计算

三、仿真 (一)仿真原理(含建模及参数) (二)重要仿真结果(目的为验证设计参数的正确性) 四、结论 参考文献 附录1:调速系统总图 附录2:调速系统仿真图 一、设计目标与技术参数 直流电机的PWM电流速度双闭环调速系统的设计目标如下: 额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min; 电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s; 电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r; 允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;

电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ; 晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。 PWM变换器的放大系数:K S=20。 二、设计基本原理 (一)调速系统的总体设计 在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。如图2-1所示。 图2-1 直流调速系统启动过程的电流和转速波形 用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。 直流双闭环调速系统的结构图如图2-2所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。 直流PWM控制系统是直流脉宽调制式调速控制系统的简称,与晶闸管直流调速系统的区

基于51单片机的转速表系统设计

目录 1.前言 (1) 2 智能转速表的系统设计 (1) 2.1 系统硬件设计 (1) 2.1.1方案选择 (1) 2.1.2仪器各部分组成 (2) 2.2 系统软件设计 (3) 3 设计原理 (5) 3.1转速计算及误差分析 (5) 3.2转速测量 (6) 3.2.1门控方式计数 (6) 3.2.2中断方式计数 (7) 3.3串行显示接口 (7) 4 软件程序的设计 (8) 4.1 1s定时 (8) 4.2 T1计数程序 (8) 4.3 频率数据采集 (9) 4.4 进制转换 (10) 4.5 数码显示 (13) 5 软件设计总体程序 (15) 6 总程序调试 (21) 7 心得体会 (21) 参考文献 (22)

1.前言 单片微型计算机简称单片机,又称为微控制器(MCU)是20世纪70年代中期发展起来的一种面向控制的大规模集成电路模块,具有功能强、体积小、可靠性高、价格低廉等特点,在工业控制、数据采集、智能仪表、机电一体化、家用电器等领域得到了广泛的应用,极大的提高了这些领域的技术水平和自动化程度。单片机在我国大规模的应用已有十余年历史,单片机技术的研究和推广正方兴未艾。 MSC-51系列单片机是国内目前应用最广泛的一种8位单片机之一。经过20多年的推广与发展,51系列单片机形成了一个规模庞大、功能齐全、资源丰富的产品群。随着嵌入式系统、片上系统等概念的提出和普遍应用,MCS-51系列单片机的发展又进入了一个新的阶段。 我们使用的89C51单片机是目前各大高校及市场上应用最广泛的单片机型.其内部包含: 一个8位的CPU;4K的程序存储空间ROM;128字节的RAM数据存储器;两个16位的定时/计数器;可寻址64KB外部数据存储器和64KB外部程序存储器空间的控制电路;32条可编程的I/O线;具有两个优先级嵌套的中断结构的5个中断源。 本次课程设计便是设计一个基于89C51单片机转速表系统。要求进行电路硬件设计和系统软件编程,硬件电路要求动手制作并能够完成系统硬件和软件调试。 2 智能转速表的系统设计 2.1 系统硬件设计 2.1.1方案选择 由于单片机所具有的特性,它特别适用于各种智能仪器仪表,家电等领域中,可以减少硬件以减轻仪表的重量,便于携带和使用,同时也可能低存本,提高性能价格之比。 该转速表选用MCS-51系列单片机的8031芯片,外部扩展4KB EPROM和8155作为显示器的接口。该系统的整体结构框图见下图2.1所示:

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

keilc温度控制直流电机转速课程设计报告

目录 一、设计目的及要求 (2) 1.1 设计目的 (2) 1.2 设计要求 (3) 二、设计方案及论证之硬件电路设计 (3) 2.1芯片简介 (3) 2.2 电路原理图 (4) 2.21 电机测速即驱动部分: (4) 2.22电路供电系部分 (5) 2.23显示部分 (5) 三、设计方案及论证之软件设计 (6) 3.1 程序设计思路 (6) 四、器件清单 (13) 五、器件识别与检测 (14) 六、仿真结果: (15) 七、软件简述 (15) 7.1 keil 简介 (15) 7.2 keil与proteus联调与仿真实现 (16) 九、参考文献 (17) 课程设计任务书

一、设计目的及要求 1.1 设计目的 本设计主要是应用proteus软件和嵌入式C语言编程工具,结合单片机原理及应用。危机原理与接口技术等专业课程,强化和巩固专业理论基础,掌握

Proteus仿真的技巧和嵌入式C语言编程工具,提高单片机开发能力,并为嵌入式开发打下基础。 1.2 设计要求 (1) 使用 AT89C51单片机为核心,使用 4 位集成式数码管显示当前温度,温度传感器使用 DS18B20,使用 L298 驱动直流电动机。 (2)用 4 位集成式数码管显示当前温度, , 当温度在≥ 45 C 时, 直流电动机在 L298 0 0 驱动下加速正转,温度在≥ 75 C 全速正转;当温度≤ 10 C 时,直流电动机加速反转,温度≤ 0 C 时,直流电动机全速反转;温度 10 C ~ 45 C 之间时,直流电动机停止转动。 (3)控制程序在 Keil 软件中编写,编译,整个控制电路在 Proteus 仿真软件中连接调示。 二、设计方案及论证之硬件电路设计 2.1芯片简介 本设计选择采用AT89C51单片机为核心。AT89C51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内震荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但震荡器停止工作并禁止其他所有部件工作直到下一个硬件复位。

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

课程设计报告直流电机调速系统(单片机)

专业课程设计 题目三 直流电动机测速系统设计 院系: 专业班级: 小组成员: 指导教师: 日期:

前言 1.题目要求 设计题目:直流电动机测速系统设计 描述:利用单片机设计直流电机测速系统 具体要求:8051单片机作为主控制器、利用红外光传感器设计转速测量、检测直流电机速度,并显示。 元件:STC89C52、晶振(12MHz )、小按键、ST151、数码管以及电阻电容等 2.组内分工 (1)负责软件及仿真调试:主要由完成 (2)负责电路焊接: 主要由完成 (3)撰写报告:主要由完成 3.总体设计方案 总体设计方案的硬件部分详细框图如图一所示: 单片机 PWM 电机驱动 数码管显示 按键控制

一、转速测量方法 转速是指作圆周运动的物体在单位时间内所转过的圈数,其大小及变化往往意味着机器设备运转的正常与否,因此,转速测量一直是工业领域的一个重要问题。按照不同的理论方法,先后产生过模拟测速法(如离心式转速表) 、同步测速法(如机械式或闪光式频闪测速仪) 以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。本文介绍的采用单片机和光电传感器组成的高精度转速测量系统,其转速测量方法采用的就是电子式定时计数法。 对转速的测量实际上是对转子旋转引起的周期脉冲信号的频率进行测量。在频率的工程测量中,电子式定时计数测量频率的方法一般有三种: ①测频率法:在一定时间间隔t 内,计数被测信号的重复变化次数N ,则被测信号的频率fx 可表示为 f x =Nt(1) ②测周期法:在被测信号的一个周期内,计数时钟脉冲数m0 ,则被测信号频率fx = fc/ m0 ,其中, fc 为时钟脉冲信号频率。 ③多周期测频法:在被测信号m1 个周期内, 计数时钟脉冲数m2 ,从而得到被测信号频率fx ,则fx 可以表示为fx =m1 fcm2, m1 由测量准确度确定。 电子式定时计数法测量频率时, 其测量准确度主要由两项误差来决定: 一项是时基误差; 另一项是量化±1 误差。当时基误差小于量化±1 误差一个或两个数量级时,这时测量准确度主要由量化±1 误差来确定。对于测频率法,测量相对误差为: Er1 =测量误差值实际测量值×100 % =1N×100 % (2) 由此可见,被测信号频率越高, N 越大, Er1 就越小,所以测频率法适用于高频信号( 高转速信号) 的测量。对于测周期法,测量相对误差为: Er2 =测量误差值实际测量值×100 % =1m0×100 % (3) 对于给定的时钟脉冲fc , 当被测信号频率越低时,m0 越大, Er2 就越小,所以测周期法适用于低频信号( 低转速信号) 的测量。对于多周期测频法,测量相对误差为: Er3 =测量误差值实际测量值100%=1m2×100 % (4) 从上式可知,被测脉冲信号周期数m1 越大, m2 就越大,则测量精度就越高。

单片机课程设计报告——温度报警器

单片机原理与应用 课程设计报告 { 课程设计名称:温度报警器设计 专业班级: 13计转本 | 学生姓名:张朝柱肖娜 学号: 140 113 指导教师:高玉芹 设计时间: 2016-11—2017-12 成绩: 信电工程学院

摘要 2009年6月14日随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。 本文主要介绍了一个基于AT89C52单片机的测温系统,详细描述了利用液晶显示器件传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机AT89C51;DS18B20温度传感器;液晶显示LCD1602。

目录 1绪论 (1) 温度报警器简介 (1) 温度报警器的背景与研究意义 (1) 温度报警器的现状及发展趋势 (1) 2 系统整体方案设计 (2) 设计目标 (2) 系统的基本方案 (2) 系统方案选择 (2) 各模块方案选择 (3) 主要元器件介绍 (3) STC89C52的简介 (3) DS18B20的简介 (4) 3 系统的硬件设计与实现 (5) 系统硬件概述 (5) 主要单元电路的设计 (5) 键盘扫描模块电路的设计 (5) 单片机控制模块电路的设计 (5) 报警模块电路的设计 (6) LCD1602显示模块电路的设计 (7) 4 系统的软件设计与实现 (8) KEIL软件介绍 (8) 系统程序设计流程图 (8) 主程序软件设计 (8) 按键软件设计 (9) 密码设置软件设计 (9) 开锁软件设计 (10) 5 系统仿真设计 (12) Proteus 软件介绍 (12) Proteus 仿真图 (12) 硬件调试 (13) 调试结果 (13) 6 结论 (14)

温度控制直流电动机转速

温度控制直流电机转速 设计报告 院系:物电学院 专业:电子信息工程 学号:201000920146 姓名:赵婧

摘要 本文是对直流电机PWM调速器设计的研究,主要实现对电机的控制。本课程设计主要是实现PWM调速器的正转、反转、加速、减速、停止等操作。并实现电路的仿真。为实现系统的微机控制,在设计中,采用了AT89C51单片机作为整个控制系统的控制电路的核心部分,配以各种显示、驱动模块,实现对电动机转速参数的显示。单片机在程序控制下,H型驱动电路完成电机正反转控制.在设计中,采用PWM 调速方式,通过改变PWM的占空比从而改变电动机的电枢电压,进而实现对电动机的调速。设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。 关键词:AT89C51单片机;PWM调速;正反转控制;仿真。

The Design of Direct Current Motor speed Regulation System Based on SCM Chenli School of Information and Engineering Abstract This article mainly introduces the method to generate the PWM signal by using MCS-51 single-chip computer to control the speed of a D.C. motor. It also clarifies the principles of PWM and the way to adjust the duty cycle of PWM signal. In addition, IR2110 has been used as an actuating device of the power amplifier circuit which controls the speed of rotation of D.C. motor. What’s more, tachogenerator is used in this system to measure the speed of D.C. motor. The result of the measurement is sent to A/D converter after passing the filtering circuit, and finally the feedback single is stored in the single-chip computer and participates in a PI calculation. As for the software, this article introduces in detail the idea of the programming and how to make it. Key words:PWM signal,tachogenerator,PI calculation

4kw以下直流电动机的不可逆调速系统课程设计要点

设计任务书 一.题目: 4kw 以下直流电动机不可逆调速系统设计 二.基本参数: 三.设计性能要求: 调速范围D=10静差率s < 10%制动迅速平稳 四.设计任务: 五.参考资料: 1. 设计合适的控制方案。 2. 画出电路原理图,最好用计算机画图(号图纸) 3. 计算各主要元件的参数,并正确选择元器件。 4. 写出设计说明书,要求字迹工整,原理叙述正确。 5. 列出元件明细表附在说明书的后面。 直流电动机:额定功率 Pn=1.1kW 额定电压 Un=110V 额定电流 In=13A 转速 Nn=1500r/min 电枢电阻 Ra=1Q 极数 2p=2 励磁电压 Uex=110V 电流 Iex=0.8A

电动机作为一种有利工具,在日常生活中得到了广泛的应用。而直流电动机具有很好的启动,制动性能,所以在一些可控电力拖动场所大部分都米用直流电动机。 而在直流电动机中,带电压截止负反馈直流调速系统应用也最为广泛, 其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。 他通常采用三相全桥整流电路对电机进行供电,从而控制电动机的转速, 传统的控制系统采用模拟元件,比如:晶闸管、各种线性运算电路的等。 虽在一定程度上满足了生产要求,但是元件容易老化和在使用中易受外界干扰影响,并且线路复杂,通用性差,控制效果受到器件性能、温度等因素的影响,从而致使系统的运行特征也随着变化,所以系统的可靠性及准确性得不到保证,甚至出现事故。直流调速系统是由功率晶闸管、移相控制电路、转速电路、双闭环调速系统电路、积分电路、电流反馈电路、以及缺相和过流保护电路。通常指人为的或自动的改变电动机的转速,以满足工作机械的要求。机械特性上通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机的机械特性和工作特性的机械特性的交点,使电动机的稳定运转速度发生变化 由于本人和能力有限,错误或不当之处再所难免,期望批评和指正

自动检测课程——转速检测试验报告

实验一霍尔测速和光电测速实验 一、实验目的: 了解霍尔组件的应用——测量转速。 二、实验仪器: 光电传感器、霍尔传感器、+5V、+4、±6、±8、±10V直流电源、转动源、频率/转速表。 三、实验原理; 如图1,霍尔传感器和光电传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。光电传感器正对着测速圆盘的通孔。 a霍尔测速 b 光电测速 图1 霍尔测速原理:利用霍尔效应表达式:U H=K H IB,当被测圆盘上装上N只磁性体时,转盘每转一周磁场变化N次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。 光电测速原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型的,传感器端部有发光管和光电池,发光管发出的光源通过转盘上的孔透射到光电管上,并转换成电信号,由于转盘上有等间距的6个透射孔,转动时将获得与转速及透射孔数有关的脉冲,将电脉计数处理即可得到转速值。转盘每转一周输出N个脉冲信号,计数器可以测出脉冲信号的频率(Hz),可按n=f*60/N计算转速。 四、实验内容与步骤 霍尔测速步骤 1.将+5V电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到直流电压表。用手转动测速圆盘,观测输出电压与霍尔传感器相对测速圆盘位置的关系。 2.将“霍尔”输出接到频率/转速表(切换到测转速位置)。 3.打开实验台电源,选择不同电源+4V、+6V、+8V、+10V、12V(±6)、16V(±8)、20V(±10)、24V驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值和频率值 4用示波器观测霍尔元件输出的脉冲波形,记录其频率,根据测速圆盘的结构,换算转速;将示波器测得的转速作为实际转速与转速表测得的转速对比,计算误差。

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业: 09级测控技术与仪器 姓名:武帆 学号: P6******* 任课教师:谢芳 电阻炉温度控制系统设计 0.前言 随着电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,特别是微型计算机的出现使现代的科学研究得到了质的飞跃,利用单片机来改造落后的设备具有性价比高、提高设备的使用寿命、提高设备的自动化程度的特点。温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通

过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 温度控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。采用单片机进行温度控制,具有电路设计简单、精度高、控制效果好等优点,对提高生产效率、促进科技进步等方面具有重要的现实意义随着单片机技术的迅速兴起与蓬勃发展,其稳定、安全、高效、经济等优点十分突出,所以其应用也十分广泛。单片机已经无处不在、与我们生活息息相关,并且渗透到生活的方方面面。 1.课程设计任务 项目设计:电阻炉温度控制系统设计 以在工业领域中应用较为广泛的电阻炉为被控对象,采用MCS—52单片机实现电阻炉温度计算机控制系统的设计,介绍电阻炉温度计算机控制系统的组成,并完成系统总体控制方案和达林算法控制器的设计,给出系统硬件原理框图和软件设计流程图等。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加热方法也不同;由于工艺不同,

温度控制直流电动机转速的课程设计

目录 1 1引言 (1) 2设计任务及要求 (2) 2.1设计目的 (2) 2.2设计要求 (2) 3 本课程设计的意义 (2) 4使用软件介绍 (3) 4.1Proteus仿软真件的介绍 (3) 4.2 Keil软件 (3) 5电路使用元件的介绍 (4) 5.1关于AT89C51单片机的简介 (4) 5.2关于DS18B20温度传感器的简介 (4) 5.3关于L298电机驱动芯片的简介 (4) 5.4关于LM016液晶模块的简介 (5) 6部分硬件的工作原理 (5) 6.1直流电动机的工作原理 (5) 6.2转速的测量原理 (6) 6.3直流电动机的转速控制系统的工作原理 (6) 7直流电动机的转速控制系统软件设计 (7) 7.1编程思路 (7) 7.2系统流程图 (7) 8仿真程序(C语言) (10) 9结束语 (16) 1 1引言 在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。据资料统计,现在有的90%以上的动力源自于电动机,电动机和人们的生活

息息相关,密不可分。随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。 近年来由于微型机的快速发展,国外交直流系统数字化已经达到实用阶段由于以微处理器为核心的数字控制系统硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响,且单片机具有功能强、体积小、可靠性好和价格便宜等优点,现已逐渐成为工厂自动化和各控制领域的支柱之一。其控制软件能够进行逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律。所以微机数字控制系统在各个方而的性能都远远优于模拟控制系统且使用越来越广泛。 现在市场上通用的电机控制器大多采用单片机和DSP。但是以前单片机的处理能力有限,对采用复杂的反馈控制的系统,由于需要处理的数据量大,实时性和精度要求高,往往不能满足设计要求。近年来出现了各种单片机,其性能得到了很大提高,价格却比DSP低很多。其相关的软件和开发工具越来越多,功能也越来越强,但价格却在不断降低。现在,越来越多的厂家开始采用单片机来提高产品性价比。 2设计任务及要求 2.1设计目的 设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD上显示当前的温度值。 2.2设计要求 一、设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C 时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD 上显示当前的温度值。 二、画出基于温度的电动机转速控制电路的电路图; 三、所设计的电路需要在仿真软件Protues v7.5上能够运行,课程设计报告的最后必须附有在仿真软件Protues v7.5下设计的电路图和控制程序清单。 3 本课程设计的意义 直流电动机作为一种高效率速度控制电动机引人注目、但市场的知名度还小

相关文档
最新文档