浙教版七年级下册数学期末试卷及参考答案

合集下载

浙教版数学七年级下册期末考试试题及答案

浙教版数学七年级下册期末考试试题及答案

浙教版数学七年级下册期末考试试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列方程中,为二元一次方程的是()A .210a +=B .32x y z +=C .9xy =D .325x y -=2.下列运算正确的是()A .236m m m = B .842m m m ÷=C .325m n mn +=D .326()m m =3.分式34x x --无意义的条件是()A .4x =B .4x ≠±C .4x ≠-D .4x >4.下列统计活动中不宜用问卷调查的方式收集数据是()A .七年级同学家中电脑的数量B .星期六早晨同学们起床的时间C .各种手机在使用时所产生的辐射D .学校足球队员的年龄和身高5.下列各项变形式,是因式分解的是()A .2(2)2m m n m mn+=+B .2244(2)a a a -+=-C .211()y y y y -=-D .222438xy x y =⋅6.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A .20B .22C .24D .307.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为()A .52-B .1C .7D .118.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,130∠=︒,则2∠等于()A .135︒B .145︒C .155︒D .165︒9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是()A .60080040x x =-B .60080040x x =-C .60080040x x =+D .60080040x x=+10.设m xy =,n x y =+,22p x y =+,22q x y =-,其中20202018x t y t =+⎧⎨=+⎩,①当3n =时,6q =.②当292p =时,214m =.则下列正确的是()A .①正确②错误B .①正确②正确C .①错误②正确D .①错误②错误二.填空题(本大题共8个小题,每小题3分,共24分)11.当x 的值为时,分式4x x +的值为0.12.因式分解:24a a -=.13.对于方程238x y +=,用含x 的代数式表示y ,则可以表示为.14.若等式222(1)3x x a x -+=--成立,则a =.15.已知二元一次方程3510x y -=,请写出它的一个整数解为.16.若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一组解,则m 的值等于.17.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD ∠=︒,那么AEC ∠=.18.如图,把三张边长相等的小正方形甲、乙、丙纸片按先后顺序放在一个大正方形ABCD 内,丙纸片最后放在最上面.已知小正方形的边长为a ,如果斜线阴影部分的面积之和为b ,空白部分的面积和为4,那么2b a 的值为.三.解答题(共7小题)19.(6分)计算:(1)322(124)(2)x y x x -÷-(2)2(21)(23)(23)x x x --+-20.(6分)解方程或方程组:(1)24342x y x y +=⎧⎨-=⎩(2)33233x x x-=--21.(6分)如图,已知1BDC ∠=∠,23180∠+∠=︒.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC ∠,CE AE ⊥于点E ,180∠=︒,试求FAB ∠的度数.22.(6分)我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(7分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)1c c --=,求22(2021)(2019)c c -+-的值.24.(7分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.(8分)已知,如图①,点D,E,F,G是ABCFG AC,∆三边上的点,且//(1)若EDC FGC∠=∠,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且//∠=︒,CMN AB,连接GM,若60∠=︒,55A∠的度数.∠=∠,求GMN4FGM MGC(3)点M、N分别在射线AC、BC上,且//∠=,MN AB,连接GM.若Aα∠=,ACBβ∠的度数(用含α,β,n的代数式表示)FGM n MGC∠=∠,直接写出GMN参考答案一.选择题(共10小题)1.解:A .是一元一次方程,不是二元一次方程,故本选项不符合题意;B .是三元一次方程,不是二元一次方程,故本选项不符合题意;C .是二元二次方程,不是二元一次方程,故本选项不符合题意;D .是二元一次方程,故本选项符合题意;故选:D .2.解:23235m m m m +== ,因此选项A 不正确;84844m m m m -÷==,因此选项B 不正确;3m 与2n 不是同类项,因此选项C 不正确;32326()m m m ⨯==,因此选项D 正确;故选:D .3.解: 分式34x x --无意义,40x ∴-=,4x ∴=,故选:A .4.解:A .七年级同学家中电脑的数量,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;B .星期六早晨同学们起床的时间,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;C .各种手机在使用时所产生的辐射,利用问卷调查不能准确得到辐射情况,不适合问卷调查,故此选项错误;D .学校足球队员的年龄和身高,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确.故选:C .5.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;D .等式从左到右的变形不属于因式分解,故本选项不符合题意;故选:B .6.解: 一组数据共100个,第5组的频率为0.20,∴第5组的频数是:1000.2020⨯=,一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100201014162020-----=.故选:A .7.解:把1x =-,2y =代入方程组,得32822n m -+=⎧⎨--=⎩解得4m =-,112n =,24117m n ∴+=-+=.故选:C .8.解://AB CD ,130GEB ∴∠=∠=︒,EF 为GEB ∠的平分线,1152FEB GEB ∴∠=∠=︒,2180165FEB ∴∠=︒-∠=︒.故选:D .9.解:若设书店第一次购进该科幻小说x 套,由题意列方程正确的是60080040x x =+,故选:C .10.解:当3n =时,即3x y +=,由20202018x t y t =+⎧⎨=+⎩可得,2x y -=,因此,52x =,12y =,22251246444q x y ∴=-==-==,因此①正确;当292p =时,即22292x y +=,又2x y ∴-=,2224x xy y ∴-+=,∴29242xy -=,214m xy ∴==,因此②正确;故选:B .二.填空题(共8小题)11.解:由题意得:40x +=,且0x ≠,解得:4x =-,故答案为:4-.12.解:原式(4)a a =-.故答案为:(4)a a -.13.解:方程238x y +=,解得:823xy -=.故答案为:823xy -=.14.解:22(1)322x x x --=-- ,22222x x a x x ∴-+=--,2a ∴=-.故答案为:2-.15.解:3510x y -=,5310y x -=-,325y x =-,方程的一个整数解是51x y =⎧⎨=-⎩,故答案为:51x y =⎧⎨=-⎩.16.解:根据题意得213212x y x y -=⎧⎨+=⎩①②,∴由①得:21y x =-,代入②用x 表示y 得,32(21)12x x +-=,解得:2x =,代入①得,3y =,∴将2x =,3y =,代入511x my -=-解得,7m =.故答案为:7.17.解:12//l l ,180BAD ABC ∴∠+∠=︒,136BAD ∠=︒ ,44ABC ∴∠=︒,BD 平分ABC ∠,22DBC ∴∠=︒,BD CD ⊥ ,90BDC ∴∠=︒,68BCD ∴∠=︒,CE 平分DCB ∠,34ECB ∴∠=︒,12//l l ,180AEC ECB ∴∠+∠=︒,146AEC ∴∠=︒,故答案为:146︒.18.解:将乙正方形平移至AB 边,如图所示:设AB x =,∴乙的宽()x a =-;甲的宽()x a =-;又 斜线阴影部分的面积之和为b ,2()a x a b ∴-=,空白部分的面积和为4,2()4x a ∴-=,2x a ∴-=,即22a b ⋅=,∴22ba =.三.解答题(共7小题)19.解:(1)原式322(124)431x y x x xy =-÷=-;(2)原式2244149410x x x x =-+-+=-+.20.解:(1)24342x y x y +=⎧⎨-=⎩①②,①2⨯+②得:510x =,解得:2x =,把2x =代入①得:1y =,则方程组的解为21x y =⎧⎨=⎩;(2)分式方程整理得:33233xx x -=---,去分母得:32(3)3x x --=-,去括号得:3263x x -+=-,解得:9x =-,经检验9x =-是分式方程的解.21.(1)AD 与EC 平行,证明:1BDC ∠=∠ ,//AB CD ∴(同位角相等,两直线平行),2ADC ∴∠=∠(两直线平行,内错角相等),23180∠+∠=︒ ,3180ADC ∴∠+∠=︒(等量代换),//AD CE ∴(同旁内角互补,两直线平行);(2)解:1BDC ∠=∠ ,180∠=︒,80BDC ∴∠=︒,DA 平分BDC ∠,1402ADC BDC ∴∠=∠=︒(角平分线定义),240ADC ∴∠=∠=︒(已证),又CE AE ⊥ ,90AEC ∴∠=︒(垂直定义),//AD CE (已证),90FAD AEC ∴∠=∠=︒(两直线平行,同位角相等),2904050FAB FAD ∴∠=∠-∠=︒-︒=︒.22.解:(1)本次调查共抽取学生为:204005%=(名),∴不太了解的学生为:40012016020100---=(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120360108400⨯︒=︒;(3)1208000(40%)5600400⨯+=(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)222()2x y x y xy +=+-.(2)①由题意得:222()()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得,2610132ab -==.②由题意得:2222(2021)(2019)(20212019)2(2021)(2019)2212c c c c c c -+-=-+----=-⨯=.24.解:(1)设1辆A 型车载满脐橙一次可运送x 吨,1辆B 型车载满脐橙一次可运送y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车载满脐橙一次可运送3吨,1辆B 型车载满脐橙一次可运送4吨.(2)依题意,得:3431a b +=,a ,b 均为正整数,∴17a b =⎧⎨=⎩或54a b =⎧⎨=⎩或91a b =⎧⎨=⎩.∴一共有3种租车方案,方案一:租A 型车1辆,B 型车7辆;方案二:租A 型车5辆,B 型车4辆;方案三:租A 型车9辆,B 型车1辆.(3)方案一所需租金为10011207940⨯+⨯=(元);方案二所需租金为10051204980⨯+⨯=(元);方案三所需租金为100912011020⨯+⨯=(元).9409801020<< ,∴最省钱的租车方案是方案一,即租A 型车1辆,B 型车7辆,最少租车费为940元.25.解:(1)//DE BC ,理由如下://FG AC ,FGB C ∴∠=∠,180EDC ADE ∠+∠=︒ ,180FGC FGB ∠+∠=︒,EDC FGC ∠=∠,ADE FGB ∴∠=∠,ADE C ∴∠=∠,//DE BC ∴;(2)60A ∠=︒ ,55C ∠=︒,180180605565B A C ∴∠=︒-∠-∠=︒-︒-︒=︒,//FG AC ,55FGB C ∴∠=∠=︒,4FGM MGC ∠=∠ ,555180FGM MGC FGB MGC ∴∠+∠+∠=∠+︒=︒,25MGN ∴∠=︒,//MN AB ,65MNC B ∴∠=∠=︒,MNC MGN GMN ∠=∠+∠,652540GMN MNC MGN ∴∠=∠-∠=︒-︒=︒;(3)①如图②所示:A α∠= ,ACB β∠=,180180B A ACB αβ∴∠=︒-∠-∠=︒--,//FG AC ,FGB C β∴∠=∠=,FGM n MGC ∠=∠ ,(1)180FGM MGC FGB n MGC β∴∠+∠+∠=+∠+=︒,1801MGN n β︒-∴∠=+,//MN AB ,180MNC B αβ∴∠=∠=︒--,MNC MGN GMN ∠=∠+∠,180180(180)11nGMN MNC MGN n n βαββα︒-∴∠=∠-∠=︒---=︒--++.②如图③所示:设MGN x ∠=,则180GMN GMA NMC nx α∠=∠+∠=+︒-,(1)180n x β-+=︒ ,111801x n β︒-∴=-,18018018018011n GMN nx n n n ββααα︒--︒∴∠=+︒-=+︒-⋅=+--.。

浙教版数学七年级下册期末考试试卷及答案

浙教版数学七年级下册期末考试试卷及答案

浙教版数学七年级下册期末考试试题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.下列实数中,为无理数的是()A.B.C.5 D.π2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与34.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.68.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300 9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是,依据是.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为.三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.18.解不等式<,并把它的解集在数轴上表示出来.19.小明同学解方程组的过程如下:解:①×2,得2x﹣6y=2③③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE==90°().∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴∥().∴∠2=∠EDF().又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)参考答案一、选择题(本大题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项)1.下列实数中,为无理数的是()A.B.C.5 D.π解:A.是有理数,不是无理数,故本选项不符合题意;B.=3,是有理数,不是无理数,故本选项不符合题意;C.5是有理数,不是无理数,故本选项不符合题意;D.π是无理数,故本选项符合题意;故选:D.2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查解:A.了解永安溪的水质,无法普查,适合采用抽样调查,此选项不符合题意;B.检测神州十二号飞船的零部件质量,事关安全,需要普查,此选项符合题意;C.了解我县中学生视力情况,工作量大,适合采用抽样调查,此选项不符合题意;D.了解某班同学的数学成绩,工作量不大,而且普查能得到准确数据,适合采用全面调查,此选项不符合题意;故选:B.3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与3解:∵4<5<9,∴,∴2<<3,∴1<﹣1<2,故选:C.4.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 解:∵4x+5y=5,∴5y=5﹣4x.∴y=.∴y=1﹣.即y=.故选:A.5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 解:A、根据不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,故本选项不成立;B、∵a>b,∴2a>2b,故本选项不成立;C、∵a>b,∴a﹣1>b﹣1,故本选项成立;D、∵a>b,∴﹣4a<﹣4b,故本选项不成立.故选:C.6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°解:∵∠AOC=∠BOD,∠BOD=42°,∴∠AOC=42°,∵OA平分∠EOC,∴∠AOE=∠AOC=42°,∴∠EOD=180°﹣(∠AOE+∠BOD)=180°﹣(42°+42°)=96°.故选:A.7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.6解:,①﹣②,得x+3y=3.故选:A.8.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300解:依题意得:,∴260<x<300.故选:B.9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°解:如图,延长CD交AB于点M.∵∠CDE+∠EDM=180°,∠CDE=70°,∴∠EDM=180°﹣∠CDE=110°.∵AB∥DE,∴∠AMD=∠EDM=110°.又∵∠ABC=∠BMC+∠BCD,∴∠BCD=∠ABC﹣∠BMC=126°﹣110°=16°.故选:B.10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3解:∵输入3时输出的运算结果是5,输入4时输出的运算结果是7.∴3a+b=5,4a+b=7,∴a=2,b=﹣1,∴P=2x﹣1,Q=6x﹣1,∴(Q+1):(P+1)=(6x):(2x)=3,故选:D.二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是±3.解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是AC<AB,依据是垂线段最短.解:∵AC⊥BC,∴边AC与边AB的大小关系是AC<AB,依据为垂线段最短.故答案为:AC<AB,垂线段最短.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是m<﹣3.解:∵A(m﹣2,m+3)在第三象限,∴,解得m<﹣3.故答案为:m<﹣3.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.解:设购买篮球x个,购买足球y个,根据题意可列方程组:,故答案为:.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为5.解:解不等式3x﹣a<2,得:x<,解不等式x+2b>1,得:x>1﹣2b,∵不等式组的解集为﹣1<x<2,∴1﹣2b=﹣1,=2,解得a=4,b=1,∴a+b=5,故答案为:5.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为(﹣19,8).解:观察图形可知:A3(﹣2,1),A6(﹣5.2),A9(﹣8,3),•••,∵﹣5=﹣2﹣3,﹣8=﹣2+2×(﹣3),∴﹣2+6×(﹣3)=﹣19,∴A18(﹣17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(﹣19,8).故答案为:(﹣19,8)三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.解:原式=﹣3+2=﹣1.18.解不等式<,并把它的解集在数轴上表示出来.解:去分母得:2(x﹣1)<3x+1,去括号得:2x﹣2<3x+1,移项得:2x﹣3x<1+2,合并得:﹣x<3,解得:x>﹣3.19.小明同学解方程组的过程如下:③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.解:错误;理由如下:①×2,得2x﹣6y=2③,③﹣②,得﹣6y+y=2﹣7,∴﹣5y=﹣5,∴y=1,把y=1代入①得x﹣3×1=1,x=4,∴这个方程组的解为.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.解:(1)如图所示,三角形A1B1C1即为所求;点B1、C1的坐标分别为(3,1),(1,﹣1).(2)点F的对应点F1的坐标为(a+6,b﹣3).21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).【解答】证明:∵AC⊥BC(已知),∴∠ACB=90°(垂线的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂线的定义).∴∠AFE=∠DEF(等量代换).∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).故答案为:∠ACB;两直线平行,同位角相等;DE;AC;内错角相等,两直线平行;两直线平行,内错角相等,22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为100;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.解:(1)27÷27%=100(人);故答案为:100;(2)100﹣27﹣8﹣30=35(人),补全频数分布直方图如下:(3)1600×=480(人),答:估计该校1600名学生中睡眠时间达标人数约为480人,睡眠达标人数占总人数的30%,该校学生睡眠时间不足.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.【解答】证明:(1)如图1,∵AB∥DE,∴∠D=∠BFO.∵DF∥AC,∴∠FOB=∠ACB.又∵∠A+∠B+∠ACB=180°,∠BFO+∠B+∠FOB=180°,∴∠BFO=∠A.∴∠A=∠D.(2)DF∥AC,理由如下:如图2,延长AC交DE于点M.∵AB∥DE,∴∠A=∠AMD.又∵∠A=∠D,∴∠AMD=∠D.∴AM∥DF,即AC∥DF.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是2500元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)解:(1)110×150+(500﹣150﹣500×10%)×30﹣6×500﹣40×500=2500;(2)设售出“特优”杨梅x千克,“普通”杨梅y千克,则解得;答:售出“特优”杨梅250千克,“普通”杨梅470千克.(3)设收购总量为m千克,“特优”杨梅占收购总量的百分比为a,则≥35%,解得a≥43.875%,即a≥44%.答:他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到44%.。

浙教版数学七年级下册期末考试(附答案)

浙教版数学七年级下册期末考试(附答案)

浙教版七年级下册数学期末考试试题一、选择题1.如图,下列四个角中,与构成一对同位角的是A.B.C.D.2.如图,点在的延长线上,下列条件中,不能判断的是A. B.C. D.3.我国古代数学名著孙子算经中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?如果设木条长尺,绳子长尺,那么可列方程组为A. B. C. D.4.用加减法解方程组时,方程得A. B. C. D.5.已知某新型感冒病毒的直径约为米,将用科学记数法表示为A. B. C. D.6.下列计算正确的是A. B.C. D.7.下列各式从左到右的变形是因式分解的是A. B.C. D.8.将分解因式,结果正确的是A. B. C. D.9.已知分式,,其中,则与的关系是A. B. C. D.10.解分式方程时,去分母后得到的方程正确的是A. B.C. D.11.如图所示为某国产品牌手机专卖店去年月高清大屏手机销售额折线统计图.根据图中提供的信息,可以判断相邻两个月高清大屏手机销售额变化最大的是A. 月B. 月C. 月D. 月12.某市有个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是A. 测试该市某一所中学初中生的体重B. 测试该市某个区所有初中生的体重C. 测试全市所有初中生的体重D. 每区随机抽取所初中,测试所抽学校初中生的体重二、填空题13.如图,,直线分别交,于,两点,将一块含有角的直角三角尺按如图所示的方式摆放若,则.14.如图,块同样大小的长方形复合地板刚好拼成一个宽为的大长方形,则这个大长方形的长是______.15.设,,若,,则______.16.已知可因式分解为,其中,均为整数,则.17.对于实数,定义运算“”如下:,如,,若,则______.18.为了解小学生的体能情况,抽取了某小学同年级名学生进行分钟跳绳测试,将所得数据整理后,画出如图所示的频数直方图各组只含最小值,不含最大值已知图中从左到右各组的频率分别为,,,,设跳绳次数不低于次的学生有人,则,的值分别是___________.三、计算题19.如果关于、的二元一次方程组的解是,求关于,的方程组的解.20.计算:..21.分解因式:;;;.四、解答题22.阅读下面的解题过程:已知:,求的值.解:由知,所以,即.所以故的值为.该题的解法叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知:,求的值.23.某校举办“迎亚运”学生书画展览,现要在长方形展厅中划出个形状、大小完全一样的小长方形图中阴影部分区域摆放作品.如图,若大长方形的长和宽分别为和,求小长方形的长和宽;如图,若大长方形的长和宽分别为和.直接写出个小长方形周长与大长方形周长之比;若作品展览区域阴影部分面积占展厅面积的,试求的值.24.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯转动的速度是每秒度,灯转动的速度是每秒度.假定主道路是平行的,即,且::.填空:____;若灯射线先转动秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?如图,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.答案和解析1.【答案】【解析】解:由图可得,与构成同位角的是,故选:.两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线截线的同旁,则这样一对角叫做同位角.本题主要考查了同位角的概念,同位角的边构成““形,内错角的边构成““形,同旁内角的边构成“”形.2.【答案】【解析】【分析】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.A、利用内错角相等两直线平行即可得到与平行;B、利用内错角相等两直线平行即可得到与平行;C、利用内错角相等两直线平行即可得到与平行;D、利用同旁内角互补两直线平行即可得到与平行,【解答】解:、,,故A选项不合题意;B、,,不能得到,故B选项符合题意;C、,,故C选项不合题意;D、,,故D选项不符合题意.故选:.3.【答案】【解析】解:设木条长尺,绳子长尺,那么可列方程组为:.故选:.直接利用“绳长木条长;绳长木条长”分别得出等式求出答案.此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.4.【答案】【解析】【分析】此题考查了解二元一次方程组加减消元法,方程组两方程相加消去得到结果,即可作出判断.【解答】解:用加减法解方程组时,方程得:.5.【答案】【解析】【分析】本题考查用科学记数法表示较小的数,绝对值小于的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的的个数所决定.据此解答即可.【解答】解:.故选B.6.【答案】【解析】解:、,原计算错误,故此选项不合题意;B、,原计算错误,故此选项不合题意;C、,原计算正确,故此选项合题意;D、,原计算错误,故此选项不合题意.故选:.根据同底数幂的乘法和除法法则,积的乘方法则以及完全平方公式逐一计算判断即可.本题主要考查了同底数幂的乘法和除法,幂的乘方与积的乘方的法则以及完全平方公式,熟记运算法则和公式是解答本题的关键.7.【答案】【解析】解:、,因式分解错误,故本选项不符合题意;B、,因式分解错误,故本选项不符合题意;C、是整式的乘法,不是因式分解,故本选项不符合题意;D、是正确的因式分解,故本选项符合题意;故选:.根据因式分解的定义:把一个多项式写成几个整式的积的形式,即可作出判断.本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解与整式的乘法互为逆运算,是中考中的常见题型.8.【答案】【分析】此题主要考查了公式法分解因式,关键是掌握平方差公式:利用平方差公式进行分解即可.【解得】解:,故选:.9.【答案】【解析】解:,和互为相反数,即.故选:.先把式进行化简,再判断出和的关系即可.本题考查的是分式的加减法,先根据题意判断出和互为相反数是解答此题的关键.10.【答案】【解析】解:分式方程,去分母得:,即,故选:.11.【答案】【解析】【分析】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,根据图中信息求出相邻两个月的高清大屏手机销售额变化量是解题的关键.根据折线图的数据,分别求出相邻两个月的高清大屏手机销售额的变化值,比较即可得解.【解答】解:月,万元,月,万元,月,万元,月,万元,所以,相邻两个月中,高清大屏手机销售额变化最大的是月.故选C.12.【答案】【解析】解:某市有个区,为了解该市初中生的体重情况,设计了四种调查方案.比较合理的是:每区随机抽取所初中,测试所抽学校初中生的体重,利用抽样调查中的样本的代表性即可作出判断.此题考查了抽样调查的可靠性,抽样调查抽取的样本要具有代表性,即全体被调查对象都有相等的机会被抽到.13.【答案】【解析】【分析】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.根据平行线的性质得到,由等腰直角三角形的性质得到,再由进行求解即可.【解答】解:,,,,故答案为.14.【答案】【解析】解:设每个小长方形的长为,宽为,依题意,得:,解得:,.故答案为:.设每个小长方形的长为,宽为,根据长方形的对边相等已经宽为,即可得出关于,的二元一次方程组,解之即可得出,的值,再将其代入中即可求出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15.【答案】【解析】解:,,两式相减得,解得,则.故答案为:.根据完全平方公式得到,,两式相减即可求解.本题考查了完全平方公式,完全平方公式:.16.【答案】【解析】解:,,,则,,故,故答案为:.首先提取公因式,再合并同类项即可得到、的值,进而可算出的值.此题主要考查了提公因式法分解因式,关键是找准公因式.17.【答案】【解析】解:根据题意得,方程两边同乘,得:,解这个方程,得:.故答案为:.利用新定义得到,再解这个分式方程即可.本题考查了解分式方程,熟练掌握解分式方程的步骤是解答本题的关键.18.【答案】;【解析】略19.【答案】解:由题意得,,.解得,,代入第二个方程组得,整理得:,得,,解得,把代入得,,方程组的解为.【解析】由第一个方程组的解可求出,的值,代入第二个方程组,解方程组即可.本题考查了解二元一次方程组的解和解二元一次方程组,能求出、的值是解此题的关键.20.【答案】解..【解析】见答案21.【答案】解:原式.原式...【解析】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.先提取公因式,再用平方差公式进行因式分解;先提取公因式,再用完全平方公式进行因式分解;先提取公因式,再用完全平方公式进行因式分解;先提公因式,然后利用平方差公式进行因式分解.22.【答案】解:,且,,,.,.【解析】本题考查分式的运算,完全平方式,解题的关键正确理解题目给出的解答思路,本题属于基础题型.根据题意给出的解题思路即可求出答案.23.【答案】解:设小长方形的长和宽分别为米、米,,得,答:小长方形的长和宽分别为米、米;:;作品展览区域阴影部分面积占展厅面积的,,,,化简,得,,,.【解析】根据题意和图形可以列出相应的方程组,从而可以求得小长方形的长和宽;根据图形可以列出相应的方程组,然后两个方程相加变形即可求得个小长方形周长与大长方形周长之比;,,得,,个小长方形周长与大长方形周长之比是:,即个小长方形周长与大长方形周长之比是根据题意和图形可知,,,从而可以求得的值.本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.24.【答案】解:;设灯转动秒,两灯的光束互相平行,当时,如图,,,,,,解得;当时,如图,,,,,解得,综上所述,当秒或秒时,两灯的光束互相平行;和关系不会变化.理由:设灯射线转动时间为秒,,,又,,而,,::,即,和关系不会变化.【解析】【分析】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.根据,::,即可得到的度数;设灯转动秒,两灯的光束互相平行,分两种情况进行讨论:当时,根据,可得;当时,根据,可得;设灯射线转动时间为秒,根据,,即可得出::,据此可得和关系不会变化.【解答】解:,::,,故答案为:;。

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.(3分)下列各组数中,是二元一次方程2x﹣3y=1的解的是()A.B.C.D.2.(3分)下列计算正确的是()A.a4﹣a2=a2B.a4÷a2=a2C.a4+a2=a6D.a4•a2=a8 3.(3分)为了解本校学生课外使用网络情况,学校采用抽样问卷调查,下面的抽样方法最恰当的是()A.随机抽取七年级5位同学B.随机抽取七年级每班各5位同学C.随机抽取全校5位同学D.随机抽取全校每班各5位同学4.(3分)已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A.160°B.140°C.40°D.无法确定5.(3分)1纳米=0.000000001米,则2纳米用科学记数法表示为()A.2×10﹣9B.﹣2×109C.2×10﹣8D.﹣2×108 6.(3分)如图是某手机店今年1﹣5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月7.(3分)下列等式不正确的是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)(﹣a﹣b)=﹣(a+b)2C.(a﹣b)(﹣a+b)=﹣(a﹣b)2D.(a﹣b)(﹣a﹣b)=﹣a2﹣b28.(3分)已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c9.(3分)分式有意义时,x的取值范围是()A.x≠0 B.x≠1 C.x≠0或x≠1 D.x≠0且x≠1 10.(3分)若(x+2y)2=(x﹣2y)2+A,则A等于()A.8xy B.﹣8xy C.8y2D.4xy11.(3分)多项式4a2+1再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有()A.2种B.3种C.4种D.多于4种12.(3分)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:(﹣2)0﹣2﹣1=.14.(3分)分式与的最简公分母为.15.(3分)如图,将一条两边沿互相平行的纸带折叠,若∠1=30°,则∠α=°.16.(3分)因式分解:3a3﹣12a=.17.(3分)已知关于x,y的方程组的解是,则a2﹣b2的值为.18.(3分)如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为.三、解答题(第19题6分,第20题8分,第21题6分,第22、23、24题各8分,第25题10分,第26题12分,共66分)19.(6分)计算:(1)(2a2)3÷a3(2)(2m+1)(m﹣2)﹣2m(m﹣2)20.(8分)解方程(组):(1)(2)21.(6分)先化简,再求值:,其中x=.22.(8分)如图,点D在△ABC的边AC上,过点D作DE∥BC交AB于E,作DF∥AB 交BC于F.(1)请按题意补全图形;(2)请判断∠EDF与∠B的大小关系,并说明理由.23.(8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行调查.已知抽取的样本中男生和女生的人数相同,利用所得数绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)求样本中男生的人数;(2)求样本中女生身高在E组的人数;(3)已知该校共有男生380人,女生320人,请估计全校身高在160≤x<170之间的学生总人数.24.(8分)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)作侧面和底面,加工成如图2所示的竖式和横式两种无盖的长方体纸箱.(加工时接缝材料不计)(1)若该厂仓库里有1000张正方形纸板和2000张长方形纸板.问竖式和横式纸箱各加工多少个,恰好将库存的两种纸板全部用完?(2)该工厂原计划用若干天加工纸箱2400个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天完成了任务,问原计划每天加工纸箱多少个?25.(10分)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.26.(12分)阅读下列材料:对于多项式x2+x﹣2,如果我们把x=1代入此多项式,发现x2+x﹣2的值为0,这时可以确定多项式中有因式(x﹣1);同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x﹣2=(x﹣1)(x+2).又如:对于多项式2x2﹣3x﹣2,发现当x=2时,2x2﹣3x﹣2的值为0,则多项式2x2﹣3x﹣2有一个因式(x﹣2),我们可以设2x2﹣3x﹣2=(x﹣2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2﹣3x﹣2=(x﹣2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=时,多项式6x2﹣x﹣5的值为0,所以多项式6x2﹣x﹣5有因式,从而因式分解6x2﹣x﹣5=;(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式,请你尝试用试根法分解多项式:①2x2+5x+3;②x3﹣7x+6;(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3有因式,,,所以分解因式(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=.参考答案一、选择题(本题有12小题,每小题3分,共36分)1.B 2.B 3.D 4.D 5.A 6.C 7.D 8.C 9.D 10.A 11.B 12.C 二、填空题(共6小题,每小题3分,满分18分)13.14.2xy215.75°16.3a(a+2)(a﹣2).17.﹣15 18.45°,75°,165°.三、解答题(第19题6分,第20题8分,第21题6分,第22、23、24题各8分,第25题10分,第26题12分,共66分)19.解:(1)原式=8a6÷a3=8a3;(2)原式=2m2﹣4m+m﹣2﹣2m2+4m=m﹣2.20.解:(1)去分母得:2﹣x=﹣1﹣2x+6,解得:x=3,经检验x=3是增根,分式方程无解;(2),①×3+②×2得:13x=65,解得:x=5,把x=5代入①得:y=2,则方程组的解为.21.解:原式=•﹣•=﹣1﹣=﹣﹣=﹣,当x=时,原式=﹣=﹣3.22.解:(1)如图,(2)∠EDF=∠B.理由如下:∵DE∥BC,∴∠B=∠AED,∵DF∥AB,∴∠AED=∠EDF,∴∠EDF=∠B.23.解:(1)(1)抽取的总人数是:10÷25%=40(人),样本中男生的人数40×=20(人)答:样本中男生的人数为20人;(2)40×(1﹣17.5%﹣37.5%﹣25%﹣15%)=2(人),答:样本中女生身高在E组的人数为2人;(3)=299(人),答:全校身高在160≤x<170之间的学生总人数299人.24.解:(1)设加工竖式纸箱x个,横式纸箱y个,依题意,得:,解得:.答:加工竖式纸箱200个,横式纸箱400个.(2)设原计划每天加工纸箱a个,则实际每天加工纸箱1.5a个,依题意,得:﹣=2,解得:a=400,经检验,a=400是所列分式方程的解,且符合题意.答:原计划每天加工纸箱400个.25.解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)①∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣(2ab+2ac+2bc)=112﹣2×38=45;②∵2x×4y÷8z=,∴2x×22y÷23z=,∴2x+2y﹣3z=2﹣2,∴x+2y﹣3z=﹣2,∵(x+2y﹣3z)2=x2+4y2+9z2+2(2xy﹣3xz﹣6yz),x2+4y2+9z2=44,∴(﹣2)2=44+2(2xy﹣3xz﹣6yz),∴2xy﹣3xz﹣6yz=﹣20.26.解:(1)当x=1时,6x2﹣x﹣5=0,设6x2﹣x﹣5=(x﹣1)(mx+n),解得m=6,n=5,∴因式分解6x2﹣x﹣5=(x﹣1)(6x+5),故答案为1,x﹣1,(x﹣1)(6x+5);(2)①当x=﹣1时,2x2+5x+3=0,∴2x2+5x+3=(x+1)(2x+3);②当x=1时,x3﹣7x+6=0,∴x3﹣7x+6=(x﹣1)(x﹣2)(x+3);(3)当x=y=2时,(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=0,∴(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=3(x﹣2)(y﹣2)(x﹣y),故答案为(x﹣2),(y﹣2),(x﹣y),3(x﹣2)(y﹣2)(x﹣y).。

浙教版七年级(下)期末数学试卷附答案

浙教版七年级(下)期末数学试卷附答案

浙教版初中数学七年级下册期末试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列现象属于平移的是()A.足球在草地上沿一条直线向前滚动B.钟摆的摆动C.投影仪将图片投影转换到屏幕上D.水平运输带上砖块的运动2.计算(﹣3x3)2的结果正确的是()A.﹣6x5B.9x6C.9x5D.﹣6x63.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠54.下列多项式中,能用公式法分解因式的是()A.a2﹣a B.a2+b2C.﹣a2+9b2D.a2+4ab﹣4b25.下列分式中是最简分式的是()A.B.C.D.6.一组数据的最大值是44,最小值是9,制作频数分布表时取组距为5,为了使数据不落在边界上,应将这组数据分成()A.6组B.7组C.8组D.9组7.方程3x+2y=18的正整数解的个数是()A.1B.2C.3D.48.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°9.某校举行少先队“一日捐”活动,七、八年级学生各捐款3000元,八年级学生比七年级学生人均多捐2元,“…”,求七年级学生人数?解:设七年级学生有x人,则可得方程=2,题中用“…”表示缺失的条件,根据题意,缺失的条件是()A.七年级学生的人数比八年级学生的人数少20%B.七年级学生的人数比八年级学生的人数多20%C.八年级学生的人数比七年级学生的人数多20%D.八年级学生的人数比七年级学生的人数少20%10.已知(2018+m)(2016+m)=n,则代数式(2018+m)2+(2016+m)2的值为()A.2B.2n C.2n+2D.2n+4二、填空题(本题有6小题,每小题2分,共12分)11.当x=﹣2时,代数式的值是.12.某校为开展“每天运动一小时”活动,对80名学生各自最喜爱的一项体育活动进行调查,制成了如图所示的扇形统计图,则在被调查的学生中,最喜爱打羽毛球的学生人数是人.13.若关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,则常数m的值为.14.如图,∠AOB的一边OA为平面镜,∠AOB=α,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是.(用含α的代数式表示)15.若关于x的分式方程=2﹣有增根,则常数a的值是.16.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是.三、解答题(共8小题,满分58分)17.(6分)因式分解:(1)1﹣x2(2)3x3﹣6x2y+3xy218.(6分)先化简,再求值:x(x﹣1)﹣(x﹣2)2,其中x=﹣119.(6分)(1)解方程组(2)解分式方程:=﹣120.(6分)阅读材料并回答问题:我们可以用平面几何图形的面积来表示一些代数恒等式,如(a+b)(a+2b)=a2+3ab+2b2,就可以用图1的几何图形的面积表示.(1)请写出图2的几何图形的面积所表示的代数恒等式;(2)试画一个几何图形,使它的面积所表示的代数恒等式为(2a+b)(a+2b)=2a2+5ab+2b2.21.(6分)如图,直线a∥b∥c,直线AC与直线a交于点C,与直线b交于点A,过点A作直线AB交直线c于点B,若AP平分∠CAB,且∠1=30°,∠2=70°,求∠3的度数.22.(8分)人工智能(ArtificialIntelligence),英文缩写为AI.它是研究、开发用于模拟、延伸和扩展人的智能的理沦、方法、技术及应用系统的一门新的技术科学.某科学小组抽取了本校50名学生进行问卷调查:您是否了解人工智能(AI)的发展状况?A.非常了解B.了解C.基本了解D.不了解将调查结果制成了如图1所示的条形统计图.(1)回答“基本了解”的学生有名.请补全条形统计图;(请画在答题卷相对应的图上)(2)若该校共有600名学生,则估计该校全体学生中回答“非常了解”和“了解”的一共有多少人?(3)为进一步提高大家对人工智能的认识,科学小组举办了一次关于人工智能的宣传活动,活动结束后按同样的方式抽取了与第一次样本容量相等的学生数进行第二次问卷调查,将调查结果制成了如图2所示的扇形统计图,求前后两次调查中回答“非常了解”的学生人数的增长率.23.(10分)2018年,浙江省开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某环保公司接到A型垃圾桶和B型垃圾桶各1600只的订单,已知一只A型垃圾桶的成本比一只B型垃圾桶的成本多10元,这份订单总成本为176000元.(1)问该份订单中A型垃圾桶和B型垃圾桶的单只成本各是多少元?(2)该公司有甲、乙两个车间,甲车间生产A型垃圾桶,乙车间生产B型垃圾桶,已知乙车间每天生产的垃圾桶数是甲车间每天生产的垃圾桶数的2倍,这样乙车间比甲车间提前2天完成订单任务.问甲乙两个车间每天各生产多少只垃圾桶?24.(10分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=50°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.D 2.B 3.A 4.C 5.A 6.C 7 .B 8.B 9.D 10.D 二、填空题(本题有6小题,每小题2分,共12分)11.12.28 13.±2 14.2α.15.5 16.27°三、解答题(共8小题,满分58分)17.解:(1)原式=(1+x)(1﹣x);(2)原式=3x(x2﹣2xy+y2)=3x(x﹣y)2.18.解:原式=x2﹣x﹣x2+4x﹣4=3x﹣4,当x=﹣1时,原式=﹣3﹣4=﹣7.19.解:(1),①×2﹣②得:3x=12,解得:x=4,把x=4代入②得:y=﹣1,则方程组的解为;(2)去分母得:2=﹣x﹣x+1,解得:x=﹣,经检验x=﹣是分式方程的解.20.解:(1)由图可得:(a+b)(3a+b)=3a2+4ab+b2;(2)根据题意得:.21.解:如图,∵a∥b,∠1=30°,∴∠DAC=∠1=30°,∵b∥c,∠2=70°,∴∠DAB=∠2=70°,∴∠CAB=∠CAD+∠DAB=30°+70°=100°,∵AP平分∠CAB,∴∠CAP=∠BAP=∠CAB=50°,∴∠3=∠CAP﹣∠CAD=50°﹣30°=20°.22.解:(1)回答“基本了解”的学生有50﹣(5+15+10)=20人,补全图形如下:(2)估计该校全体学生中回答“非常了解”和“了解”的一共有600×=240人;(3)第二次“非常了解”的人数为50×(1﹣56%﹣12%﹣8%)=12人,则前后两次调查中回答“非常了解”的学生人数的增长率×100%=14%.23.解:(1)设B型垃圾桶的成本为x元/只,则A型垃圾桶的成本为(x+10)元/只,根据题意得:1600x+1600(x+10)=176000,解得:x=50,则x+10=50+10=60,答:该份订单中A型垃圾桶单只成本是60元,B型垃圾桶单只成本是50元,(2)设甲车间每天生产y只垃圾桶,则乙车间每天生产2y只垃圾桶,根据题意得:﹣=2,解得:y=400,经检验:y=400是原方程的解且符合题意,则2y=800,答:甲车间每天生产400只垃圾桶,则乙车间每天生产800只垃圾桶.24.解:(1)∵EM平分∠AEF∴∠AEF=∠FME,又∵∠FEM=∠FME,∴∠AEF=∠FEM,∴AB∥CD;(2)①如图2,∵AB∥CD,β=50°∴∠AEG=130°,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=65°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣65°=25°,即α=25°;②分两种情况讨论:如图2,当点G在点F的右侧时,α=.证明:∵AB∥CD,∴∠AEG=180°﹣β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=(180°﹣β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(180°﹣β)=,即α=;如图3,当点G在点F的左侧时,α=90°﹣.证明:∵AB∥CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠MEF﹣∠HEF=(∠AEF﹣∠FEG)=∠AEG=β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH,即α=90°﹣.。

浙教版七年级下册期末数学试卷(含答案)

浙教版七年级下册期末数学试卷(含答案)

七年级下册期末数学试卷一、选择题(每小题3分,共30分)1.下列各图案中,是由一个基本图形通过平移得到的是()A.B.C.D.2.已知空气的单位体积质量为1.24×10-3克/厘米3,1.24×10-3用小数表示为()A.0.000124B.0.0124C.-0.00124D.0.00124 3.下列四个多项式中,能因式分解的是()A.a2+1B.a2-6a+9C.x2+5y D.x2-5y 4.若3x=4,9y=7,则3x-2y的值为()A.47B.74C.-3D.275.下列统计中,适合用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率6.下列分式中不管x取何值,一定有意义的是()A.2xxB.211xx--C.231xx++D.1+1xx-7.能使分式4723xx+-值为整数的整数x有()个.A..1B.2C.3D..4 8.22018-22019的值是()A.12B.-12C.-22018D.-29.如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()A.∠D+∠B B.∠B-∠D C.180°+∠D-∠B D.180°+∠B-∠D 10.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2B.135mm2C.108mm2D.96mm2二、填空题(每小题3分,共24分11.当x= 时,分式21(3)(1)xx x-+-的值是0.12.当x2+kx+25是一个完全平方式,则k的值是.13.若关于x的方程3111axx x=+--无解,则a的值是.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是.15.3x+2y=20的正整数解有.16.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离为3,则阴影部分的面积为.17.已知m=x yx-把公式变形成己知m,y,求x的等式.18.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22-12=3,3就是智慧数,从0开始,不大于2019的智慧数共有个.三、解答题(共46分)19.化简(1)(-a2)3+3a2a4(2)211aaa---20.计算(1)2(2)422x x yx y++=⎧⎨+=⎩(2)2131xx-= +21.化简22212(1)441x x xxx x x-+÷+⨯++-,并在-2≤x≤2中选择适当的值代入求值.22.师生对话,师:我像你这么大的时候,你才1岁,你到我这样大的时候,我已经40岁了,问老师和学生现在各几岁?23.中华文明,源远流长:中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表请根据所给信息,解答下列问题①图1条形统计图中D组人数有多少?②在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的四心角的度数为度;•③规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?24.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=(a+b)(a2+2ab+b2)=a3+3a2b+3ab2+b3(a+b)4=(a+b)(a3+3a2b+3ab2+b3)=a4+4a3b+6a2b2+4ab3+b4“杨辉三角”里面蕴藏了许多的规律(1)找出其中各项字母之间的规律以及各项系数之间的规律各一条;(2)直接写出(a+b)6展开后的多项式;(3)运用:若今天是星期四,经过84天后是星期,经过8100天后是星期.25.如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,(1)当∠EDC=∠DCB=120°时,求∠CBA;(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.参考答案1.【分析】利用平移的性质和旋转的性质分别分析得出即可.【解答】解:A、利用旋转可以得到,故此选项错误;B、利用旋转可以得到,故此选项错误;C、利用位似结合旋转可得到,故此选项错误;D、是由一个基本图形通过平移得到的,故此选项正确.故选:D.【点评】此题主要考查了利用平移设计图案,正确把握平移的定义是解题关键.2.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10-3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10-3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10-n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.【点评】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.4.【分析】由3x=4,9y=7与3x-2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x-2y=3x÷32y=3x÷(32)y=4÷7=47.故选:A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x-2y变形为3x÷(32)y是解此题的关键.5.【分析】根据抽样调查和全面调查的特点即可作出判断.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解某厂生产的电灯使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解全国初中生的视力情况,因工作量较大,只能采取抽样调查的方式;C、要了解某校七年级学生的身高情况,要求精确、难度相对不大,实验无破坏性,应选择全面调查方式;D、要了解“娃哈哈”产品的合格率,具有破坏性,应选择抽样调查.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】根据分式有意义的条件即可求出答案.【解答】解:(A)由分式有意义的条件可知:x≠0,故A不选;(B)由分式有意义的条件可知:x≠±1,故B不选;(D)由分式有意义的条件可知:x≠-1,故D不选;故选:C.【点评】本题考查分式有意义的条件,解题的关键是熟练运用分式的运算法则,本题属于基础题型.7.【分析】首先把分式转化为13223x+-,则原式的值是整数,即可转化为讨论1323x-的整数值有几个的问题.【解答】解:474613132 23232323x xx x x x+-=+=+----,当2x-3=±1或±13时,4723xx+-是整数,即原式是整数.解得:x=2或1或8或-5;4个,故选:D.【点评】此题主要考查了分式的值,正确化简分式是解题关键.8.【分析】直接利用提取公因式法分解因式得出答案.【解答】解:22018-22019=22018×(1-2)=-22018.故选:C.【点评】此题主要考查了提取公因式法分解音质,正确找出公因式是解题关键.9.【分析】根据三角形外角的性质可得∠BCD=∠D+∠E,再由平行线的性质表示出∠E,即可得出答案.【解答】解:∵AB∥DE,∴∠E=180°-∠B,∴∠BCD=∠D+∠E=180°-∠B+∠D.故选:C.【点评】本题考查了平行线的性质,解答本题的关键是掌握三角形外角的性质及平行线的性质.10.【分析】设每个小长方形的长为xmm,宽为ymm,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个宽-一个长=3,于是得方程组,解出即可.【解答】解:设每个长方形的长为xmm,宽为ymm,由题意,得3523 x yy x=⎧⎨-=⎩,解得:159xy=⎧⎨=⎩.9×15=135(mm2).故选:B.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.二、填空题(每小题3分,共24分11.【分析】直接利用分式的值为零的条件以及分式的定义分析得出答案.【解答】解:∵分式21(3)(1)xx x-+-的值是0,∴x2-1=0且(x+3)(x-1)≠0,解得:x=-1.故答案为:-1.【点评】此题主要考查了分式的值为零的条件以及分式的定义,正确把握相关定义是解题关键.12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵x2+kx+25=x2+kx+52,∴kx=±2•x•5,解得k=±10.故答案为:±10.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.13.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.据此解答可得.【解答】解:去分母,得:ax=3+x-1,整理,得:(a-1)x=2,当x=1时,分式方程无解,则a-1=2,解得:a=3;当整式方程无解时,a=1,故答案为:3或1.【点评】本题考查了分式方程的解,分式方程无解的条件,最简公分母为0,或者得到的整式方程无解.14.【分析】首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【解答】解:第五组的频数是40×0.2=8,则第六组的频数是40-5-10-6-7-8=4.故答案是:4.【点评】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.15.【分析】用x表示出y,即可确定出正整数解.【解答】解:方程3x+2y=20,解得:2032xy-=,当x=2时,y=7;x=4时,y=4;x=6时,y=1,则方程的正整数解为246,741x x xy y y⎧=⎧==⎧⎪⎨⎨⎨===⎩⎪⎩⎩,,故答案为:246,741 x x xy y y⎧=⎧==⎧⎪⎨⎨⎨===⎩⎪⎩⎩,.【点评】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=3,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵△ABC沿着点B到点C的方向平移到△DEF的位置∴△ABC≌△DEF,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=3,∵AB=6,DH=2,∴HE=DE-DH=6-2=4,∴阴影部分的面积=12×(6+4)×3=15.故答案为:15.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.17. 【分析】把y 与m 看做已知数表示出x 即可.【解答】解:方程去分母得:mx=x -y ,移项合并得:(m -1)x=-y , 解得:1y x m=-, 故答案为:1y x m =- 【点评】此题考查了分式的基本性质,熟练掌握运算法则是解本题的关键.18. 【分析】根据“智慧数”的定义得出智慧数的分布规律,进而得出答案.【解答】解:∵(n+1)2-n 2=2n+1,∴所有的奇数都是智慧数,∵2019÷2=1009…1,∴不大于2019的智慧数共有:1009+1=1010.故答案为:1010.【点评】此题考查了新定义,平方差公式,理解“智慧数”的定义是解题关键.三、解答题(共46分)19. 【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,即可得到结果.【解答】解:(1)原式=-a 6+3a 6=2a 6;(2)原式=()2221(1)(1)11111a a a a a a a a a --+--==----. 【点评】此题考查了分式的加减法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.20. 【分析】(1)方程组利用代入消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)()22422x x y x y ⎩++⎧⎨+=①=②,把②代入①得:x+4=4,即x=0,把x=0代入②得:y=1,则方程组的解为01x y ⎧⎨⎩==;(2)去分母得:2x -1=3x+3,解得:x=-4,经检验x=-4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21. 【分析】直接利用分式的混合运算法则化简得出答案.【解答】解:原式=2(1)(1)1(2)(2)11x x x x x x x +-+⨯⨯++- =2x x +, ∵-2≤x≤2,当x=-2,-1,1时都不合题意,∴当x=0时,原式=0.【点评】此题主要考查了分式的化简求值,正确分解因式是解题关键.22. 【分析】设老师的年龄是 x 岁,学生的年龄是y 岁,根据老师和学生年龄差不变来列方程组解答.【解答】解:设老师的年龄是x 岁,学生的年龄是y 岁,由题意得:根据题意列方程组得: 140x y y x x y ⎨--⎩-+⎧==, 解得2714x y ⎧⎨⎩==.答:老师和学生现在的年龄分别为27岁和14岁.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目的关键,老师和学生年龄差不变.23. 【分析】(1)从调查人数减去A 、B 、C 、E 组人数,剩下的就是E 组人数,(2)B 组人数除以调查人数即可,360°乘以C 组人数所占调查人数的百分比即可求出,(3)用样本估计总体,实际总人数乘以样本中优秀人数所在调查人数的百分比.【解答】解:(1)条形统计图中的D 组人数:200-10-30-40-70=50人,答:图1条形统计图中D 组人数有50人.(2)30÷200=15%,360°×40200=72°,故答案为:15,72.(3)2000×70200=700人,答:这次海选比赛的2000名学生中成绩“优等”的大约有700人.【点评】考查条形统计图、扇形统计图的制作方法及两个统计图所反映数据的特点,掌握用样本估计总体的统计思想方法.24.【分析】(1)字母的规律a降幂排列,b升幂排列;系数符合斐波那契数列;(2)展开后得a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(3)分别展开84和8100后看最后一项即可.【解答】解:(1)字母的规律a降幂排列,b升幂排列;系数符合斐波那契数列;(2)(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(3)84=(7+1)4的最后一项是1,∴经过84天后是星期是星期五;8100=(7+1)100的最后一项是1,∴经过84天后是星期是星期五;故答案为星期五,星期五.【点评】本题考查多项式的展开;能够根据定义,通过观察找到规律,再结合多项式乘以多项式的特点求解即可.25.【分析】(1)过C作CP∥DE,延长CB交FG于H,依据平行线的性质,即可得到∠CHA=∠PCH=60°,依据三角形外角性质,即可得到∠CBA的度数;(2)过C作CP∥DE,延长CB交FG于H,依据平行线的性质,即可得到∠D+∠DCH+∠FHC=360°,再根据三角形外角性质,即可得到α,β,γ之间的数量关系.【解答】解:(1)如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠PCD=180°-∠D=60°,∠PCH=120°-∠PCD=60°,∴∠CHA=∠PCH=60°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠CBA=60°+90°=150°,(2)如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠D+∠PCD=180°,∠FHC+∠PCH=180°,∴∠D+∠DCH+∠FHC=360°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠AHB=∠ABC-90°,∴∠FHC=180°-(∠ABC-90°)=270°-∠ABC,∴∠D+∠DCH+270°-∠ABC=360°,即∠D+∠DCB-∠ABC=90°.即α+β-γ=90°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.。

浙教版七年级下册数学期末测试卷及含答案

浙教版七年级下册数学期末测试卷及含答案

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.2、当分式的值为0时,字母x的取值应为()A.﹣1B.1C.﹣2D.23、如图所示,AD⊥BC,DE∥AB,则∠ADE与∠B的关系是()A.相等B.互补C.互余D.不能确定4、在矩形ABCD中(AB<BC),四边形ABFE为正方形,G,H分别是DE,CF的中点,将矩形DGHC移至FB右侧得到矩形FBKL,延长GH与KL交于点M,以K为圆心,KM为半径作圆弧与BH交于点P,古代印度利用这个方法,可以得到与矩形ABCD面积相等的正方形的边长。

若矩形ABCD的面积为16,HP:PF=1:4,则CH的值为( )A. B.1 C. D.25、下列是分式方程的是()A. +1=0B. =0C.D.6x 2+4x+1=06、为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()A. B. C. D.7、下列运算正确的是()A.a 2•a 3=a 6B.(﹣2ab 3)2=﹣4a 2b 6C.(﹣a 2)3=﹣a6 D.2a+3b=5ab8、下列运算正确的是()A.(a3)2=a6B.a2•a4=a8C.a6÷a2=a3D.3a2-a2=39、如图,可以判定AD//BC的是( )A. B. C. D.10、已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是A. -2 mB. 2 mC. 2 m-8D.611、太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辐射能功率为()千瓦.(用科学记数法表示,保留2个有效数字)A.1.9×10 14B.2×10 14C.76×10 15D.7.6×10 1412、下列计算中正确的是( )A.a 6÷a 2=a 3B.(a 4)2=a6C.3a 2-a 2=2D.a 2·a 3=a 513、一元一次方程组的解的情况是()A. B. C. D.14、下列关于x的方程中,是分式方程的是( ).A. B. C. D.3x-2y=115、为了保护生态环境,某地将一部分耕地改为林地,改变后,林地的面积和耕地的面积和共有180万公顷,耕地面积是林地面积的25%,已知改变后耕地面积为x万公顷,林地面积为y公顷,以下关于x、y的四个方程组,其中符合题意的是()A. B. C. D.二、填空题(共10题,共计30分)16、一个长、宽分别为m、n的长方形的周长为14,面积为8,则m2n+mn2的值为________.17、因式分解:=________.18、如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=________.19、已知方程x m-3+y2-n=6是二元一次方程,则m-n=________20、分解因式:m2+2m=________.21、计算:x(x﹣2)=________22、如图,在一块边长为a的正方形花圃中,两纵两横的4条宽度为的人行道把花圃分成9块,下面是四个计算花圃内种花土地总面积的代数式:① ;② ;③ ;④ .其中正确的有________.23、化简:= ________ 。

浙教版数学七年级下册期末考试试题含答案

浙教版数学七年级下册期末考试试题含答案

浙教版数学七年级下册期末考试试卷一、选择题(共10小题,每题3分,共30分)1.下列各式是二元一次方程的是()A.2x2+y=0B.C.x﹣y D.2.“潮涌”是2022年杭州亚运会会徽,钱塘江和钱江潮头是会徽的形象核心,如图是会徽的一部分,在以下四个选项中,能由该图经过平移得到的是()A.B.C.D.3.使分式有意义的x的取值范围是()A.x=2B.x≠2C.x=﹣2D.x≠﹣24.如图,直线EF与直线AB,CD相交.图中所示的各个角中,能看作∠1的内错角的是()A.∠2B.∠3C.∠4D.∠55.计算42×2021+48×2021+62×2021的结果为()A.2021B.20210C.202100D.20210006.如图为某服装品牌公司2016~2020年销售额年增长率的统计图,则这5年中,该公司销售额最大的是()年.A.2020B.2019C.2018D.20177.一个长方形的面积是15x3y5﹣10x4y4+20x3y2,一边长是5x3y2,则它的另一边长是()A.2y3﹣3xy2+4B.3y3﹣2xy2+4C.3y3+2xy2+4D.2xy2﹣3y3+4 8.如图,∠B+∠DCB=180°,AC平分∠DAB,且∠D:∠DAC=5:2,则∠D的度数是()A.100°B.105°C.110°D.120°9.甲瓶糖水含糖量为,乙瓶糖水含糖量为,从甲、乙两瓶中各取质量相等的糖水混合制成新糖水的含糖量为()A.B.C.D.由所取糖水质量而定10.已知方程组,下列说法正确的是()①a2+b2=12;②(a﹣b)2=8;③;④.A.1B.2C.3D.4二、填空题(本大题有6个小题,每小题4分,共24分)11.已知一组数据的频数为24,频率为0.8,则样本容量为.12.计算(﹣s+t)(﹣s﹣t)=.13.已知是方程x+3y=1的一个解,请再写出这个方程的一个解.14.若mn=3,m﹣n=7,则m2n﹣mn2=.15.2020年某企业生产医用口罩,为扩大产量,添置了甲、乙两条生产线.甲生产线每天生产口罩的数量是乙生产线每天生产口罩数量的2倍,两生产线各加工6000箱口罩,甲生产线比乙生产线少用5天.则甲、乙两生产线每天共生产的口罩箱数为.16.如果两个多项式有公因式,则称这两个多项式为关联多项式,若x2﹣25与(x+b)2为关联多形式,则b=;若(x+1)(x+2)与A为关联多项式,且A为一次多项式,当A+x2﹣6x+2不含常数项时,则A为.三、解答题(本大题有7个小题,共66分.应写出文字说明、证明过程或演算.)17.分解因式(1)a2﹣6ab+9b2;(2)a2b﹣16b.18.静静同学解分式方程的过程如下:去分母得:﹣6x﹣2(3﹣x)=5(x﹣1)去括号得:﹣6x﹣6﹣2x=5x﹣5移项得:﹣6x﹣2x﹣5x=﹣5﹣6合并同类项得:﹣13x=﹣11两边同除以13得:x=经检验x=是方程的解.静静的解答过程是否有错误?如果有错误,请写出正确的解答过程.19.为了普及新冠病毒的有关知识,某校举办了一场关于新冠病毒的知识竞赛.为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,得到频数分布直方图(每组含前一个边界值,不含后一个边界值).请根据该直方图,回答下列问题.(1)数据分组时的组距为分.(2)自左至右分别为第1,2,3,4组,频数最大的是哪一组?并说出该组的组中值.(3)学校决定为成绩在80分以上(包括80分)的学生颁发优秀证书,若该校共有800名学生,请估计能拿到优秀证书的学生人数.20.如图,政府规划由西向东修一条公路.从A修至B后为了绕开村庄,改为沿南偏东25°方向修建BC段,在C处又改变方向修建CD段,测得∠BCD=70°,在D处继续改变方向,朝与出发时相同的方向修至E.(1)补全施工路线示意图,求∠CDE的度数;(2)原计划在AB的延长线上依次修建两个公交站M,N(均在CD右侧),连结DM 和MN,求∠CDM与∠DMN的数量关系.21.亮亮计算一道整式乘法的题(3x﹣m)(2x﹣5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“﹣”写成了“+”,得到的结果为6x2﹣5x﹣25.(1)求m的值;(2)计算这道整式乘法的正确结果.22.如图,在长方形ABCD中,放入8个完全相同的小长方形.(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分面积为多少平方厘米?23.光线反射是一种常见的物理现象,在生活中有广泛地应用.例如提词器可以帮助演讲者在看演讲词的同时也能面对摄像机,自行车尾部的反光镜等就是应用了光的反射原理.(1)提词器的原理如图①,AB表示平面镜,CP表示入射光线,PD表示反射光线,∠CPD=90°,求∠APC的度数;(2)自行车尾部的反光镜在车灯照射下,能把光线按原来的方向返回(如图②),a表示入射光线,b表示反射光线,a∥b.平面镜AB与BC的夹角∠ABC=α,求α.(3)如图③,若α=108°,设平面镜CD与BC的夹角∠BCD=β(90°<β<180°),入射光线a与平面镜AB的夹角为x(0°<x<90°),已知入射光线a从平面镜AB开(可始反射,经过2或3次反射,当反射光线b与入射光线a平行时,请直接写出β的度数.用含x的代数式表示).参考答案一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式是二元一次方程的是()A.2x2+y=0B.C.x﹣y D.解:A.该方程是二元二次方程,不符合二元一次方程的定义,不是二元一次方程,即A 选项不合题意;B.是分式方程,不符合二元一次方程的定义,不是二元一次方程,即B选项不合题意;C.不符合二元一次方程的定义,不是二元一次方程,即C选项不合题意;D.符合二元一次方程的定义,是二元一次方程,即D选项符合题意.故选:D.2.“潮涌”是2022年杭州亚运会会徽,钱塘江和钱江潮头是会徽的形象核心,如图是会徽的一部分,在以下四个选项中,能由该图经过平移得到的是()A.B.C.D.解:根据平移的性质可知:能由该图经过平移得到的是C,故选:C.3.使分式有意义的x的取值范围是()A.x=2B.x≠2C.x=﹣2D.x≠﹣2解:当分母2x﹣4≠0,即x≠2时,分式有意义.故选:B.4.如图,直线EF与直线AB,CD相交.图中所示的各个角中,能看作∠1的内错角的是()A.∠2B.∠3C.∠4D.∠5解:由图可知:能看作∠1的内错角的是∠3,故选:B.5.计算42×2021+48×2021+62×2021的结果为()A.2021B.20210C.202100D.2021000解:原式=2021×(42+2×4×6+62)=2021×(4+6)2=2021×102=2021×100=202100,故选:C.6.如图为某服装品牌公司2016~2020年销售额年增长率的统计图,则这5年中,该公司销售额最大的是()年.A.2020B.2019C.2018D.2017解:根据折线统计图,增长率在减小,但销售额在增大,所以这5年中,该商场销售额最大的是2020年,故选:A.7.一个长方形的面积是15x3y5﹣10x4y4+20x3y2,一边长是5x3y2,则它的另一边长是()A.2y3﹣3xy2+4B.3y3﹣2xy2+4C.3y3+2xy2+4D.2xy2﹣3y3+4解:(15x3y5﹣10x4y4+20x3y2)÷(5x3y2)=15x3y5÷(5x3y2)﹣10x4y4÷(5x3y2)+20x3y2÷(5x3y2)=3y3﹣2xy2+4.故选:B.8.如图,∠B+∠DCB=180°,AC平分∠DAB,且∠D:∠DAC=5:2,则∠D的度数是()A.100°B.105°C.110°D.120°解:∵∠B+∠DCB=180°,∴AB∥CD.∴∠D+∠DAB=180°.设∠D=5x,则∠DAC=2x.∵AC平分∠DAB,∴∠DAB=2∠DAC=2•2x=4x.∵AB∥CD,∴∠D+∠DAB=180°.∴5x+4x=180°.∴x=20°.∴∠D=5x=5×20=100°.故选:A.9.甲瓶糖水含糖量为,乙瓶糖水含糖量为,从甲、乙两瓶中各取质量相等的糖水混合制成新糖水的含糖量为()A.B.C.D.由所取糖水质量而定解:设从甲乙两瓶中各取重量相等的糖水x,则混合制成新糖水的含糖量为:,故选:C.10.已知方程组,下列说法正确的是()①a2+b2=12;②(a﹣b)2=8;③;④.A.1B.2C.3D.4解:因为方程组,①a2+b2=(a+b)2﹣2ab=42﹣4=12,故①正确;②(a﹣b)2=(a+b)2﹣4ab=42﹣8=8,故②正确;③+===2,故③正确;④+===6,故④正确.故选:D.二、填空题(本大题有6个小题,每小题4分,共24分)11.已知一组数据的频数为24,频率为0.8,则样本容量为30.解:24÷0.8=30,故答案为:30.12.计算(﹣s+t)(﹣s﹣t)=s2﹣t2.解:(﹣s+t)(﹣s﹣t)=(﹣s)2﹣t2=s2﹣t2.故答案为:s2﹣t2.13.已知是方程x+3y=1的一个解,请再写出这个方程的一个解.解:将方程x+3y=1变形为x=1﹣3y,令y=0,则x=1.则解为,故答案为:.14.若mn=3,m﹣n=7,则m2n﹣mn2=21.解:∵mn=3,m﹣n=7,∴m2n﹣mn2=mn(m﹣n)=3×7=21.故答案为:21.15.2020年某企业生产医用口罩,为扩大产量,添置了甲、乙两条生产线.甲生产线每天生产口罩的数量是乙生产线每天生产口罩数量的2倍,两生产线各加工6000箱口罩,甲生产线比乙生产线少用5天.则甲、乙两生产线每天共生产的口罩箱数为1800.解:设乙生产线每天生产x箱口罩,则甲生产线每天生产2x箱口罩,依题意,得:﹣=5,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.600+1200=1800(箱),答:甲、乙两生产线每天共生产的口罩箱数为1800,故答案为:1800.16.如果两个多项式有公因式,则称这两个多项式为关联多项式,若x2﹣25与(x+b)2为关联多形式,则b=±5;若(x+1)(x+2)与A为关联多项式,且A为一次多项式,当A+x2﹣6x+2不含常数项时,则A为﹣2x﹣2或﹣x﹣2.解:①∵x2﹣25=(x+5)(x﹣5),∴x2﹣25的公因式为x+5、x﹣5.∴若x2﹣25与(x+b)2为关联多形式,则x+b=x+5或x+b=x﹣5.当x+b=x+5时,b=5.当x+b=x﹣5时,b=﹣5.综上:b=±5.②∵(x+1)(x+2)与A为关联多项式,且A为一次多项式,∴A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2﹣6x+2不含常数项,则k=﹣2.∴A=﹣2(x+10=﹣2x﹣2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2﹣6x+2不含常数项,则2k=﹣2.∴k=﹣1.∴A=﹣x﹣2.综上,A=﹣2x﹣2或A=﹣x﹣2.故答案为:±5,﹣2x﹣2或﹣x﹣2.三、解答题(本大题有7个小题,共66分.应写出文字说明、证明过程或演算.)17.分解因式(1)a2﹣6ab+9b2;(2)a2b﹣16b.解:(1)原式=a2﹣6ab+(3b)2=(a﹣3b)2;(2)原式=b(a2﹣16)=b(a+4)(a﹣4).18.静静同学解分式方程的过程如下:去分母得:﹣6x﹣2(3﹣x)=5(x﹣1)去括号得:﹣6x﹣6﹣2x=5x﹣5移项得:﹣6x﹣2x﹣5x=﹣5﹣6合并同类项得:﹣13x=﹣11两边同除以13得:x=经检验x=是方程的解.静静的解答过程是否有错误?如果有错误,请写出正确的解答过程.解:静静的解答过程有错误,正确的解答过程为:去分母得:6x﹣2(3﹣x)=5(x﹣1)去括号得:6x﹣6+2x=5x﹣5移项得:6x+2x﹣5x=﹣5+6合并同类项得:3x=1两边同除以3得:x=,经检验x=是方程的解.所以原方程的解为:x=.19.为了普及新冠病毒的有关知识,某校举办了一场关于新冠病毒的知识竞赛.为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,得到频数分布直方图(每组含前一个边界值,不含后一个边界值).请根据该直方图,回答下列问题.(1)数据分组时的组距为10分.(2)自左至右分别为第1,2,3,4组,频数最大的是哪一组?并说出该组的组中值.(3)学校决定为成绩在80分以上(包括80分)的学生颁发优秀证书,若该校共有800名学生,请估计能拿到优秀证书的学生人数.解:(1)根据题意得:6人组的组边界值分别为70与80,则组距为80﹣70=10(分),故答案为:10;(2)频数最大的是15人组,该组的组中值为85;(3)抽取的部分参赛学生的成绩在80分以上(包括80分)的有15+14=29(人),800×=580(人),答:估计能拿到优秀证书的学生人数有580人.20.如图,政府规划由西向东修一条公路.从A修至B后为了绕开村庄,改为沿南偏东25°方向修建BC段,在C处又改变方向修建CD段,测得∠BCD=70°,在D处继续改变方向,朝与出发时相同的方向修至E.(1)补全施工路线示意图,求∠CDE的度数;(2)原计划在AB的延长线上依次修建两个公交站M,N(均在CD右侧),连结DM 和MN,求∠CDM与∠DMN的数量关系.解:(1)补全施工路线如图1所示.过C作l⊥AB的延长线于G,过D作直线m⊥AB 的延长线于H,则l∥m,根据平行线的性质可得:∠BCG=25°,∠CDH=∠GCD=70°﹣∠BCG=70°﹣25°=45°,又∠HDE=90°,∴∠CDE=∠CDH+∠HDE=45°+90°=135°.(2)如图1所示,设∠DMN=x,∠CDM=y,由于DE∥FN,∴∠EDM=180°﹣∠DMN=180°﹣x,又∠CDM=y=∠CDE﹣∠EDM=135°﹣(180°﹣x)=x﹣45°,则x﹣y=45°,即∠DMN﹣∠CDM=45°.21.亮亮计算一道整式乘法的题(3x﹣m)(2x﹣5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“﹣”写成了“+”,得到的结果为6x2﹣5x﹣25.(1)求m的值;(2)计算这道整式乘法的正确结果.解:(1)根据题意可得,(3x+m)(2x﹣5)=6x2﹣15x+2mx﹣5m=6x2﹣(15﹣2m)x﹣5m,即﹣5m=﹣25,解得m=5;(2)(3x﹣5)(2x﹣5)=6x2﹣15x﹣10x+25=6x2﹣25x+25.22.如图,在长方形ABCD中,放入8个完全相同的小长方形.(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分面积为多少平方厘米?解:(1)设小长方形的长为x厘米,宽为y厘米,依题意,得:,解得:,答:每个小长方形的长和宽分别是10厘米,2厘米;(2)∵每个小长方形的长和宽分别是10厘米,2厘米,∴图中阴影部分面积为18×(12+2)﹣8×2×10=92(平方厘米).答:图中阴影部分面积为92平方厘米.23.光线反射是一种常见的物理现象,在生活中有广泛地应用.例如提词器可以帮助演讲者在看演讲词的同时也能面对摄像机,自行车尾部的反光镜等就是应用了光的反射原理.(1)提词器的原理如图①,AB表示平面镜,CP表示入射光线,PD表示反射光线,∠CPD=90°,求∠APC的度数;(2)自行车尾部的反光镜在车灯照射下,能把光线按原来的方向返回(如图②),a表示入射光线,b表示反射光线,a∥b.平面镜AB与BC的夹角∠ABC=α,求α.(3)如图③,若α=108°,设平面镜CD与BC的夹角∠BCD=β(90°<β<180°),入射光线a与平面镜AB的夹角为x(0°<x<90°),已知入射光线a从平面镜AB开(可始反射,经过2或3次反射,当反射光线b与入射光线a平行时,请直接写出β的度数.用含x的代数式表示).解:(1)∵平面镜成像原理入射角等于反射角,∴∠APC=∠BPD,∵∠CPD=90°,∴∠APC+∠BPD=90°,∴∠APC=45°;(2)如图②:过点P作PG⊥AB,QG⊥BC,相交于点G,∵平面镜成像原理入射角等于反射角,∴∠EPG=∠QPG,∠PQG=∠FQG,∵a∥b,∴∠EPQ+∠PQF=180°,∴2(∠GPQ+∠PQG)=180°,∴∠GPQ+∠PQG=90°,∵∠GPQ+∠PQG+∠PGQ=180°,∴∠PGQ=90°,∵PG⊥AB,QG⊥BC,∴∠PBQ+∠BQG+∠QGP+∠GPB=360°,∴∠PBQ=360°﹣90°﹣90°﹣90°=90°,即α=90°.(3)若经过两次反射,如图③所示,延长AB、DC交于点E,由(2)知,∠E=90°,∵α=108°,∴∠BCE=α﹣∠E=108°﹣90°=18°,∴β=180°﹣∠BCE=180°﹣18°=162°;若经过三次反射标记各反射点,如图③﹣2所示,作FM∥a∥b,∵∠BHF=∠AHa=x,∴∠BFH=∠CFG=180°﹣α﹣x=180°﹣108°﹣x=72°﹣x,∴∠aHF=180°﹣2x,∠HFG=180°﹣2∠BFH=180°﹣2(72°﹣x)=36°+2x,∵a∥b,∴∠aHF+∠HFG+∠FGb=360°,∴∠FGb=360°﹣(36°+2x)﹣(180°﹣2x)=144°,则∠CGF=180°﹣∠FGb=36°,由∠CGF+∠CFG+β=180°,得β=180°﹣∠CFG﹣∠CGF=180°﹣(72°﹣x)﹣36°=72°+x,综上,β角的度数为162°或72°+x.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C D $一、填空题。

(每空2分,共34分。


1、 三角形任何两边的和_____________第三边。

2、 用抽签的方法,从A 、B 、C 、D 四个人中任选一人去打扫公共场所,选中A 的概率是_____________。

3、 二元一次方程3x+2y=10,用关于x 的代数式表示y ,则y=_____________;用关于y 的代数式表示x ,则x=_____________。

4、 原子的直径一般是0.0000001厘米。

用科学记数法表示这个数是_____________厘米。

5、 方程2
2)51()23(x x -=-的解是:_______________。

6、 如图,AD 是△ABC 的一条中线,若△ABC 的面积是28cm 。

则△ABD 的面积是_____________2cm 。

7、 要使分式121+-x x 有意义,x 的取值满足______________;若分式1
21+-x x 的值为0,则x 的值是_________________。

8、 如图,在△ABC 中,高BD 、CE 相交于点H ,若∠BHE=060,则∠A=__________。

9、 当22=-=b a ,时,分式
a b b a -+32的值是_________________。

10、因式分解:_____________92=-x xy 。

11、举出一个现实生活中应用三角形稳定性的例子:____________________________。

12、当_______=x 时,分式
26-x 无意义;当________x 时,分式x x 2121-+有意义;当______=x 时,分式33+-x x 的值为零。

3、在代数式:① x y 15;② b a -31;③ b y 12+;④ 3
1-s 中,属于分式的有_____________。

(只需填写序号) 二、选择题。

(每题2分,共20分。


14、抛掷一枚硬币,正面向上的概率为( )。

A 、1
B 、21
C 、31
D 、4
1 15、下列各式可以用完全平方公式分解因式的是( )。

A 、22b a - B 、142-m C 、962+-y y D 、222y xy x --
16、下列计算中,正确的是( )。

A 、1243a a a =⨯
B 、()532a a =
C 、326a a a =÷
D 、()333
b a ab -=- 17、有长为4㎝和9㎝的两条线段,现需要一条线段,使这三条线段首尾相接围成一个三角形,则下列线段长度中,符合要求的
是( )。

A 、3㎝
B 、4㎝
C 、5㎝
D 、6㎝
18、下列图形中,不是轴对称图形的是( )。

19、已知2
x y
m =⎧⎨=⎩是二元一次方程135=+y x 的一组解,则m 的值是( )。

A 、3
B 、—3
C 、311
D 、311
-
20、下列方程中,是二元一次方程的是( )。

A 、632=-x
B 、y x =-32
C 、1=++z y x
D 、4=xy
21、下列各组数中,是二元一次方程组⎩⎨⎧=-=+419
27y x
y x 的解是( )。

A 、⎩⎨⎧==61
y x B 、⎩⎨⎧-==13
y x C 、⎩⎨⎧==04
y x D 、⎩⎨⎧-=-=51
y x
22、下列各式:()x -151,34-πx ,22
2y x -,x x 1
52+ ,其中分式共有(
)。

A 、1个
B 、2个
C 、3个
D 、4个
23、下列事件中,属于不确定事件的是( )。

A 、在空气中,汽油遇上火就燃烧
B 、向上用力抛石头,石头落地
C 、下星期六是下雨天
D 、任何数和零相乘,积为零
三、计算题。

(共23分。


24、解方程和方程组。

(每题3分)
(1) 11223=+-x x (2) ⎩⎨⎧
=-=+125
y x y x
25、计算。

(每题3分)
(1) ()()313+-x x (2) ()27-y
(3)
26、分解因式。

(每题3分)
(1) 1162-a (2) ()()y x a y x -+-2
27、计算:22221
21
x x x x x x --+--,并求当3=x 时,原式的值。

(5分)
四、解决问题。

(每题5分,共15分。


28、地球可以近似地看做球体,如果用S ,r 分别表示球的表面积和半径,那么24r S π=已知地球的半径约为3
106⨯千米,
算一算地球的表面积大约是多少?(π取3.14,结果保留3个有效数字)
29、某校教师举行茶话会,若每桌坐12人,则空出一张桌子;若每桌坐10人,还有10人不能就坐。

问该校有多少名教师?
共准备了多少张桌子?
30、甲、乙两人每时能共做35个电器零件。

甲、乙两人同时开始工作,当甲做了90个零件时,乙做了120个。

问甲、乙每
时各做多少个电器零件?
七年级数学期末试卷参考答案
本张试卷满分100分,其中试题部分97分,卷面整洁3分。

一、选择题。

(34分)
1、大于
2、4
1 3、x y 235-
=,y x 32310-= 4、7101-⨯
5、211-
=x ,832=x 6、 4
7、21-
≠x ,1=x
8、060
9、2
1 10、()()33-+y y x
11、答案不唯一
12、2;2
1≠x ;3 13、① ③ ④
二、选择题。

(20分)
14——18、 B C D D D
19——23、 B B B A C
三、计算题。

(23分)
24、(1) 解:方程两边同乘()12+x ,得 1223+=-x x 化简,得 3=x
把3=x 代入原方程检验:
左边==+⨯-⨯=11
32233右边 所以3=x 是原方程的根。

(2) 解:②①+,得63=x ,∴2=x
把2=x 代入①,得52=+y ,
∴3=y
∴方程组的解是⎩
⎨⎧==32y x 25、(1) 解:()()313+-x x (2) 解:()27-y
3
833
9322-+=--+=x x x x x 4914772222+-=+••-=y y y y 26、(1)解:1162-a (2)解:()()y x a y x -+-2
()()()()1414142
2-+=-=a a a ()()a y x +-=2
27、解: 2222121x x x x x x --+-- ()
()()()21
212211*********--=--=
--=
-+--=
----=
x x x x x x x x x x x x x x x x x x 当3=x 时,原式22
31321=--=--=
x x
四、作图题。

(5分)
28、
五、解决问题。

(15分)
29、解:由题意,得
24r S π=
()
(
)2866
23
1052.41016.452103656.1210614.34千米⨯≈⨯=⨯⨯=⨯⨯⨯= 答:地球的表面积大约是81052.4⨯平方千米。

30、解:设该校有教师x 人,共准备y 张桌子,根据题意,得 ()⎩⎨⎧=--=y
x y x 1010112 解得 ⎩⎨
⎧==11120y x 经检验,这个解是方程组的解,且符合题意。

答:该校有教师120人,一共准备11张桌子。

31、解:设甲每小时做x 个电器零件,由题意,得 x
x -=3512090 解得 15=x
经检验,15=x 是原方程的根,且符合题意, ∴乙每小时做 20153535=-=-x (个)。

答:甲每小时做15个电器零件,乙每小时做20个电器零件。

相关文档
最新文档