浙教版七年级数学下册专题训练 选择题

合集下载

浙教版初中数学七年级下册专题50题含参考答案

浙教版初中数学七年级下册专题50题含参考答案

浙教版初中数学七年级下册专题50题含答案一、单选题1.12-的值是( ) A .2-B .2C .12-D .122.计算4322⨯的结果是( ) A .72B .82C .122D .1323.如图,不一定能推出a∥b 的条件是( )A .∥1=∥3B .∥2=∥4C .∥1=∥4D .∥2+∥3=180º4.下列运算正确的是( ) A .2333a a a += B .()3252?2a a a -=C .623422a a a ÷=D .()22238a a a --=5.如图:有a 、b 、c 三户家用电路接入电表,相邻电路的接点距离相等,相邻电表的距离相等,且相邻电路的接点距离等于相邻电表接入点的距离,电线对应平行排列,则三户所用电线( )A .a 户最长B .b 户最长C .c 户最长D .三户一样长6.一个圆柱形容器的容积为V 3m ,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x 立方米/分钟,则下列方程正确的是( )A .2V V t x x+= B .4V V t x x += C .11224V Vt x x⋅+⋅= D .24V V t x x+= 7.已知35a b =,则a b a b -+的值是( )A .﹣23B .﹣25C .﹣14D .298.下列运算正确的是( ) A .2532a a a -= B .2324236ab a b a b ⋅= C .()3339327ab a b -=-D .222(2)42a b a ab b -=-+9.2022年我市有5800名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( ) A .5800名考生是总体 B .1000名考生是总体的一个样本 C .1000名考生是样本容量D .每位考生的数学成绩是个体10.下列各式能用平方差公式计算的是( ) A .(﹣12a +1)(﹣12a ﹣1) B .(2x +y )(2y ﹣x ) C .(a +b )(a ﹣2b )D .(2x ﹣1)(﹣2x +1)11.下列调查适合抽样调查的是( ) A .对某班全体学生出生日期的调查 B .上飞机前对乘客进行的安检C .审核将发表的一篇文稿中的错别字D .对全市中小学生的睡眠情况进行调查12.下列各组值中,哪组是二元一次方程2x ﹣y=5的解( ) A .26x y =-⎧⎨=⎩B .43x y =⎧⎨=⎩C .34x y =⎧⎨=⎩D .62x y =⎧⎨=⎩13.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( ) A .0B .5C .5-D .5或5-14.对于两个非零实数a 、b ,规定11a b b a⊕=-,若()2211x ⊕+=,则x 的值为( ) A .56B .54C .32D .16-15.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b216.如图,由图形的面积关系能够直观说明的代数恒等式是( )A .22()()a b a b a b -=-+B .222()2a b a ab b -=-+C .224()()ab a b a b =+--D .222()2a b a ab b +=++17.下列计算正确的是( ) A .235a a a += B .844a a a ÷= C .222(2)4ab a b -=-D .222()a b a b +=+18.如图是某班全体学生外出时选择乘车、步行、骑车人数的条形统计图和扇形统计图(两图都不完整),则下列结论中正确的是( )A .步行人数为30人B .骑车人数占总人数的10%C .该班总人数为50人D .乘车人数是骑车人数的40%19.已知m ﹣1m 1m+m 的值为( )A.B C . D .1120.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A .1.B .2.C .3.D .4.二、填空题 21.若14-x 在实数范围内有意义,则x 的取值范围是________. 22.分解因式:my 2﹣9m =_____.23.某校共有3000名学生,为了了解学生的视力情况,抽取了100名学生进行视力检查,在这个问题中,样本容量是_____. 24.比较大小:4442____333325.关于x 、y 的方程组354522x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,则()ba -=____26.分解因式:224x y xy +=______.27.一个不透明的盒子中有若干个白球和5个黑球,从中摸出一球记下颜色后放回,重复摸球100次,其中摸到黑球的次数为25次,盒中有白球约______个. 28.分解因式:32a b b -=_______________. 29.若244(2)()x x x x n ++=++,则n =__________ 30.分解因式:2x x -=_________.31.如图,AB //CD ,∥2=135°,则∥1的度数是 ___.32.如图, 已知12180∠+∠=︒,375∠=︒,则4∠=__________.33.因式分解:2412x x +-=______.34.小玲想借助学过的几何图形设计图案,首先她将如图1的小长方形和如图2的小正方形组合成如图3的大正方形图案,已知小长方形的长为()cm a ,宽为()cm b ,则图2的小正方形的边长可用关于a 和b 的代数式表示为______;小玲随后用3个如图3的完全相同的图案和8个如图1的小长方形,组合成如图4的大长方形图案,则图4中阴影部分面积与整个图形的面积之比为______.35.分式方程1233x x x-=---解得______. 36.因式分解:516a a -= ____37.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD .若CD ∥BE ,∥1=28°,则∥2的度数是______.38.某个数的平方根是2a b +和44a --__________. 39.如图,O 是正六边形ABCDEF 的中心,下列图形:∥OCD ,∥ODE ,∥OEF ,∥OAF ,∥OAB ,其中可由∥OBC 平移得到的有_________个.三、解答题40.因式分解:2(2)(2)m a a -+-41.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别是线段AB 、BC 上的点,AE 平分BAC ∠,BED C ∠=∠,//DF AE ,交BC 于点F .求证:DF 平分BDE ∠. 证明:AE 平分BAC ∠(已知)12∴∠=∠( )BED C ∠=∠(已知) //AC DE ∴( )13∠∠∴=( ) 23∴∠=∠(等量代换) //DF AE ( )25∴∠=∠( )3=4∠∠( )45∴∠=∠( ) DF ∴平分BDE ∠( )42.解方程组(1)2123211x y x y +=⎧⎨-=⎩①②(2)24230x y x y -=⎧⎨+-=⎩①②43.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题:()1该调查的样本容量为______,a =______%,b =______%.“很少”对应扇形的圆心角为______;()2请补全条形统计图;()3若该校共有3500名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?44.先化简,再求值:()2332111x x x x ⎡⎤--÷⎢⎥---⎢⎥⎣⎦,其中x =-1. 45.先化简,再求值2211xy x y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中2x =,=2y -. 46.为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动.小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查.她在300户家庭中随机调查了50户家庭5月份的用水量,结果如图所示.把图中每组用水量的值用该组的中间值(如06~的中间值为3)来代替,估计该小区5月份的用水量.47.仔细阅读下面例题,并解答问题:例题:已知二次三项式24x x m -+有一个因式为3x +,求另一个因式以及m 的值. 解:设另一个因式为x n +, 由题意得24(3)()x x m x x n -+=++,即224(3)3x x m x n x n -+=+++,则有343n n m +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩,所以另一个因式为7x -,m 的值是21-. 问题:请仿照上述方法解答下面问题,(1)若2(1)(3)x bx c x x ++=-+,则b =__________,c =__________;(2)已知二次三项式225x x k ++有一个因式为23x -,求另一个因式以及k 的值.48.计算:(1)212sin 302-; (2)(x ―2)2―(x +3)(x ―1).49.已知多项式x 2-mx -n 与x -2的乘积中不含x 2项和x 项,求m ,n 的值.参考答案:1.D【分析】根据负整数指数幂的法则计算即可.【详解】解:1,2-=12故选D.【点睛】本题考查了负整数指数幂,掌握运算法则才能正确计算.2.A【分析】根据同底数幂的乘法运算进行计算即可.【详解】解:344732==⨯2+22故选A【点睛】本题考查了同底数幂的乘法,掌握同底数幂的乘法是解题的关键.3.C【详解】解:A、∥∥1和∥3为同位角,∥1=∥3,∥a∥b;B、∥∥2和∥4为内错角,∥2=∥4,∥a∥b;C、∥∥1=∥4,∥3+∥4=180°,∥∥3+∥1=180°,不符合同位角相等,两直线平行的条件;D、∥∥2和∥3为同位角,∥2+∥3=180°,∥a∥b.故选C.4.D【详解】解:A、不是同类项,无法进行加法计算,计算错误;B、原式=5-,计算错误;2aC、462a a a÷=,计算错误;422D、原式=222-=,计算正确.98a a a故选D.5.D【分析】可理解为将最左边一组电线向右、向上平移所得,由平移的性质即可得出结论.【详解】解:∥a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∥将a向右、向上平移即可得到b、c,∥图形的平移是全等的,即不改变图形大小和形状,∥三户一样长.故选:D.【点睛】本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键. 6.C【分析】根据题意先求出注入前一半容积水量所需的时间为12Vx ⋅,再求出后一半容积注水的时间为124Vx⋅,故可列出方程.【详解】根据题意得出前一半容积水量所需的时间为12Vx ⋅,后一半容积注水的时间为124V x⋅, 即可列出方程为11224V Vt x x⋅+⋅= , 故选C.【点睛】此题主要考查分式方程的应用,解题的关键是找到等量关系进行列方程. 7.C 【分析】由35a b =,得35a b =,代入a b a b -+,即可得到答案.【详解】解:∥35a b =, ∥35a b =,∥315345b ba b a b b b --==-++, 故选择:C.【点睛】本题考查了分式化简求值,解题的关键是掌握化简的方法,正确的进行化简. 8.C【分析】分别根据合并同类项的法则、单项式乘以单项式的法则、积的乘方运算法则、完全平方公式计算各项,进而可得答案.【详解】解:A 、25a 与3a -不是同类项,不能合并,所以本选项运算错误,不符合题意; B 、2342432366ab a b a b a b ≠⋅=,所以本选项运算错误,不符合题意; C 、()3339327ab a b -=-,所以本选项运算正确,符合题意;D 、22222(2)4442a b a ab b a ab b -=-+≠-+,所以本选项运算错误,不符合题意. 故选:C .【点睛】本题考查了合并同类项的法则、单项式乘以单项式的法则、积的乘方运算法则和完全平方公式等知识,属于基础题型,熟练掌握基本知识是解题关键.9.D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A .5800名考生的数学成绩是总体,故此选项不合题意;B .1000名考生的数学成绩是总体的一个样本,故此选项不合题意;C .1000是样本容量,故此选项不合题意;D .每位考生的数学成绩是个体,说法正确,故此选项符合题意;故选:D .【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.A【分析】运用平方差公式()()22a b a b a b +-=-时,关键要找两数的和与两数的差,字母可以代表数或代数式.【详解】解:A. (﹣12a +1)(﹣12a ﹣1)符合平方差公式,故本选项符合题意;B. (2x +y )(2y ﹣x )不符合平方差公式,故本选项不符合题意;C. (a +b )(a ﹣2b )不符合平方差公式,故本选项不符合题意;D. ()()()()()22121212121x x x x x --+=---=--中符合完全平方公式,不能用平方差公式计算,故本选项不符合题意;故选A【点睛】考查了平方差公式,运用平方差公式计算时,关键要找两数的和与两数的差,字母可以代表数或代数式.11.D【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.对某班全体学生出生日期的调查,应用全面调查方式,故此选项不合题意;B.上飞机前对乘客进行的安检,应用全面调查方式,故此选项不合题意;C.审核将发表的一篇文稿中的错别字,应用全面调查方式,故此选项不合题意;D.对全市中小学生的睡眠情况进行调查,适合选择抽样调查,故此选项符合题意.故选:D.【点睛】本题考查了抽样调查和全面调查,解题的关键是掌握由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.12.B【分析】把各项中x与y的值代入方程检验即可.【详解】A、把26xy=-⎧⎨=⎩代入方程得:左边4610=--=-,右边=5.∥左边≠右边,∥不是方程的解;B、把43xy=⎧⎨=⎩代入方程得:左边835=-=,右边=5.∥左边=右边,∥是方程的解;C、把34xy=⎧⎨=⎩代入方程得:左边642=-=,右边=5.∥左边≠右边,∥不是方程的解;D、把62xy=⎧⎨=⎩代入方程得:左边12210=-=,右边=5.∥左边≠右边,∥不是方程的解.故选:B.【点睛】此题考查了解二元一次方程的解,熟练掌握运算法则及理解方程的解即为能使方程左右两边相等的未知数的值是解本题的关键.13.C【分析】根据不含项的系数为0解答.【详解】解:∥多项式2(5)2x a x ++-中不含x 的一次项,∥5+a =0,解得a =-5,故选:C .【点睛】此题考查多项式不含项的问题,多项式中所不含的项应是合并同类项后该项的系数为零,掌握法则是解题的关键.14.D【分析】根据题中的新定义化简已知方程,求出解即可. 【详解】解:根据题中的新定义化简得:111212x +-=, 去分母得:2-2x -1=4x +2,解得:x =16-, 经检验x =16-是分式方程的解, 则x 的值为16-, 故选:D .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.解题的关键是根据新定义的运算法则列出方程.15.A【分析】根据图形,大长方形面积等于三个小正方形面积加上三个小长方形的面积和,列出等式即可.【详解】解:∥长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∥(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.16.B【分析】利用面积公式及割补法分别求出图中正方形∥的面积,即可获得答案.【详解】解:如下图,图中正方形∥,其边长为()a b -,故其面积可表示为:21()S a b =-,利用割补法,正方形∥的面积也可计算如下:1234S S S S S =---正方形长方形长方形大正方形2222()()a ab b ab b b =-----222a ab b =-+,即有222()2a b a ab b -=-+.故选:B .【点睛】本题主要考查了完全平方公式与几何图形,理解并掌握完全平方公式是解题关键.17.B【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【详解】解:A 、23a a +,无法计算,故此选项错误;B 、844a a a ÷=,故此选项正确;C 、22224ab a b (﹣)=,故此选项错误;D 、2222a b a ab b +++()=,故此选项错误;故选B .【点睛】考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.18.C 【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【详解】A 、步行的人数有:2550%×30%=15人,故本选项错误; B 、骑车人数占总人数10÷2550%=20%,故本选项错误; C 、该班总人数为2550%=50人,故本选项正确; D 、乘车人数是骑车人数的2510=2.5倍,故本选项错误; 故选C .【点睛】本题考查了频数(率)分布直方图和扇形统计图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.A【分析】根据完全平方公式即可得到结果.【详解】1m-=m 21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m ∴, 22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭, 1m+m∴= 故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.20.C【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.21.x≠4【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】当分母40x -≠,即4x ≠时,分式14x -在实数范围内有意义, 故答案为:4x ≠.【点睛】考查了分式有意义的条件,注意:分式有意义⇔分母不为零.22.(3)(3)m y y +-【分析】首先提取公因式m ,进而利用平方差公式进行分解即可.【详解】my 2﹣9m =m (y 2﹣9)=m (y +3)(y ﹣3).故答案为:m (y +3)(y ﹣3)【点睛】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.23.100【分析】利用样本容量定义可得答案.【详解】解:某校共有3000名学生,为了了解学生的视力情况,抽取了100名学生进行视力检查,在这个问题中,样本容量是100,故答案为:100.【点睛】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位. 24.<【分析】把它们化为指数相同的幂,再比较大小即可.【详解】解:∥2444=(24)111=16111,3333=(33)111=27111,而16111<27111,∥2444<3333,故答案为:<.【点睛】本题主要考查了幂的乘方以及有理数大小比较,熟记幂的运算法则是解答本题的关键.25.-8【分析】先联立仅含有字母,x y 的方程,求出方程组的解,将方程组的解代入含有字母,a b的方程组中求解即可.【详解】解:由题意联立方程组得:35,234x y x y -=⎧⎨+=-⎩①② ∥3⨯+∥得:1111x =,即1x =,把1x =代入∥得:=2y -,将x ,y 值代入45228ax by ax by +=-⎧⎨-=⎩解得:23a b =⎧⎨=⎩, 则3()(2)8b a -=-=-故答案为8-.【点睛】本题考查了解二元一次方程组,乘方运算,正确的解方程组是解题的关键. 26.()22xy x +【分析】用提公因式法分解因式即可.【详解】解:()22422x y xy xy x +=+.故答案为:()22xy x +.【点睛】本题主要考查了因式分解,解题的关键是找出公因式2xy .27.15【分析】可根据“黑球数量=黑球所占比例⨯黑白球总数”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例⨯总共摸球的次数=随机摸到的黑球次数”.【详解】解:设盒中原有白球有x 个,根据题意得:()2555100x ⨯+=⨯, 解得:x =15,答:盒中原有白球约有15个.故答案为:15.【点睛】本题主要考查用样本估计总体,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.b (a+b )(a -b )【详解】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=b (22a b -)=b (a+b )(a -b ).考点:因式分解.29.2【分析】等号的左边符合完全平方公式的形式,所以可以利用完全平方公式解题.【详解】2244(2)(2)(2)x x x x x ++=+=++所以2n =【点睛】本题主要考查完全平方公式222()2a b a ab b ±=±+ ,熟练掌握完全平方公式并灵活应用是解题的关键.30.()1x x -【分析】根据提取公因式的方法进行因式分解即可.【详解】()21x x x x -=-故答案为:()1x x -.【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.31.45°【分析】根据根据对顶角相等得到∥3=135°,再根据平行线的性质,同旁内角互补即可求解.【详解】解:如图,∥3=∥2=135°∥AB //CD ,∥3=135°,∥∥1+∥3=180°;又∥∥1=180°−∥3=180°−135°=45°.故答案为:45°【点睛】能够明确各个角之间的位置关系.熟练运用平行线的性质以及对顶角相等的性质.32.105°【分析】根据平行线的判定得出a∥b ,根据平行线的性质得出∥5=∥3=75°,再求出∥4即可.【详解】解:∥∥1+∥2=180°,∥a∥b ,∥∥3=∥5,∥∥3=75°,∥∥5=75°,∥∥4=180°−∥5=105°,故答案为:105°.【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.33.()()26x x -+【分析】直接用()()()2x a b x ab x a x b +++=++分解即可.【详解】22412(26)(2)6(2)(6)x x x x x x +-=+-++-⨯=-+【点睛】本题考查了因式分解-十字相乘法,关键是确定两个合适的数:把常数项分解成两个数的积,其和恰好等于一次项系数.34. a −b 16【分析】根据图形所表示的长度,列代数式即可;根据图形列出阴影部分与整个矩形的面积,然后求比值即可.【详解】解:根据题意小正方形的边长为:a −b ;∥图3中阴影部分的面积为:()2a b -,小长方形的长为a ,宽为b ,∥图4中阴影部分的面积为:()23a b -,整个图形的面积为:4a (a +3b ),∥图4中阴影部分面积与整个图形的面积之比为:()()2343a b a a b -+, 又由图4得:3a +3b =4a ,∥a =3b ,∥()()()()2222333121434333726a b b b b a a b b b b b --===+⨯+, 故答案为:a −b ;16. 【点睛】本题考查了列代数式,整式的混合运算,分式的化简,关键是用代数式正确表示阴影部分的面积、大矩形的面积.35.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 36.a(2a +4)(a+2)(a -2)【详解】试题分析:本题首先提取公因式a ,然后连续利用两次平方差公式进行因式分解. 考点:因式分解.37.56°【分析】由折叠的性质可得∥3=∥1=28°,从而求得∥4=56°,再根据平行线的性质定理求出∥EBD =180°﹣∥4=124°,最后再根据平行线性质定理求出∥2=56°.【详解】解:如图,由折叠的性质,可得∥3=∥1=28°,∥纸带对边互相平行∥∥4=∥1+∥3=56°,∥CD∥BE,AC∥BD,∥∥EBD=180°﹣∥4=124°,又∥CD∥BE,∥∥2=180°﹣∥CBD=180°﹣124°=56°.故答案为:56°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.38.36【分析】根据一个数的两个平方根互为相反数以及平方的非负数的性质,求得a、b的值,然后再求这个数即可.【详解】解:∥一个数的平方根是a2+b与4-4a∥a2+b+4-4a,即(a2-4a+4)+(b,则(a-2)21)2=0,∥a-2=01=0,解得a=2,b=2,∥a2+b=6,这个数是62=36.故答案为:36.【点睛】本题主要考查了平方根的性质,非负数的性质,完全平方公式的应用,利用平方根的性质得到(a-2)21)2=0是解题的关键.39.2【分析】根据平移的性质,结合图形,对题中给出的三角形进行分析,排除错误答案,求得正确选项.【详解】解∥∥OCD 方向发生了变化,不是平移得到;∥ODE 符合平移的性质,是平移得到;∥OEF 方向发生了变化,不是平移得到;∥OAF 符合平移的性质,是平移得到;∥OAB 方向发生了变化,不是平移得到.故答案为∥2.【点睛】此题考查平移的性质,准确把握平移的性质,平移变换不改变图形的形状、大小和方向是解题的关键.40.(2)(1)(1)a m m -+-【分析】根据代数式的特点先变形,再提取公因式法,最后用平方差公式进行因式分解.【详解】2(2)(2)m a a -+-=2(2)(2)m a a ---=2(2)(1)a m --=(2)(1)(1)a m m -+-【点睛】此题主要考查因式分解,解题的关键是根据代数式的特点进行变形再因式分解. 41.见解析【分析】根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:AE 平分BAC ∠(已知)12∴∠=∠(角平分线的定义)BED C ∠=∠(已知)//AC DE ∴(同位角相等,两直线平行)13∠∠∴=(两直线平行,内错角相等)23∴∠=∠(等量代换)//DF AE (已知)25∴∠=∠(两直线平行,同位角相等)3=4∠∠(两直线平行,内错角相等)45∴∠=∠(等量代换)DF ∴平分BDE ∠(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.42.(1)1214x y ⎧=⎪⎪⎨⎪=⎪⎩(2)21x y =⎧⎨=-⎩【分析】(1)利用加法消元法即可解方程组;(2)由第一个方程得到24x y =+,然后利用代入消元法即可解方程组.【详解】(1)解:2123211x y x y +=⎧⎨-=⎩①②, 由∥+∥得:2412x =,解得:12x =, 把12x =代入∥得:14y =, 即方程组的解为:1214x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)解:24230x y x y -=⎧⎨+-=⎩①②, 由∥得:24x y =+∥,将∥代入∥得:()22430y y ++-=,解得:1y =-,把1y =-代入∥得:()2142x =⨯-+=,即方程组的解为:21x y =⎧⎨=-⎩. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法和代入消元法求解二元一次方程组是解题关键.43.(1)200、12、36、43.2;(2)见解析(3)“总是”对错题进行整理、分析、改正的学生有1260名【详解】分析:(1)根据扇形统计图和条形统计图中的信息进行计算解答即可;(2)根据(1)中所得样本容量结合扇形统计图中的信息计算出“常常”这一组的人数,由此即可补充完整条形统计图;(3)先由(1)中所得样本容量计算出样本中“总是”这一组占总数的百分比,然后乘以3500即可求得所求结果了.详解:(1)由所给两幅统计图中的信息可知:属于“有时”这一组的有44人,占总数的22%, ∥样本容量为:44÷22%=200 ,∥ 24÷200×100%=12%,72÷200×100%=36%,∥ a=12% ,b=36%,∥很少部分对应的圆心角的度数为:360°×12%=43.2°.(2)∥样本容量为200,“常常”这一组的人数占总数的30%,∥被抽查的同学中,属于“常常”这一组的人数为:200×30%=60人,∥将条形统计图补充完整如下图所示:(3)由题意可得:3500×(72÷200×100%)=1260(人),答:估计其中“总是”对错题进行整理、分析、改正的学生有1260多少名点睛:这样一道通过从扇形统计图和条形统计图中获取信息来解题的统计类的题目,解题的关键是:熟悉相关“基本概念”、清楚条形统计图和扇形统计图中的相关统计数据间的关系.44.33,12x -- 【分析】先计算括号内的代数式,然后化除法为乘法进行化简,然后代入求值. 【详解】解:()2332111x x x x ⎡⎤--÷⎢⎥---⎢⎥⎣⎦=223(1)3[](1)(1)x x x ----·12x x -- =236(1)x x --·12x x -- =23(2)(1)x x --·12x x -- =31x -. 当x =-1时,原式=311--=-32. 【点睛】本题考查了分式的化简求值.这道求代数式值的题目,不应考虑把x 的值直接代入,通常做法是先把代数式化简,然后再代入求值.45.2y,-1 【详解】解析:先根据分式混合运算的法则把原式进行化简,再把x 、y 的值代入计算即可.解:原式=()()()()x y x y x y x y x y x y xy ++-+-=⋅+-2()()2()()x x y x y x y x y xy y +-=⋅=+-,当=2y -时,原式212==--. 易错:解:原式()()()()x y x y x y x y x y x y xy ++-+-=⋅+-2()()2()()x x y x y x y x y xy y +-=⋅=+-,当=2y -时,原式212==. 错因:代入数值时丢了负号.满分备考:本例题是分式除法与加减混合运算题,运算顺序是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意分子、分母能因式分解的先因式分解,然后约分.46.估计该小区5月份的用水量是3960吨【分析】用该组的中间值乘以户数,求出总的用水量,再除以抽查的户数求出每户的平均用水量,最后乘以该小区总的户数即可得出答案.【详解】解:根据题意得:()300369201512217275503960⨯⨯+⨯+⨯+⨯+⨯÷=吨, ∥估计该小区5月份的用水量是3960吨,答:估计该小区5月份的用水量是3960吨.【点睛】本题主要考查了平均数的实际应用,正确理解题意求出样本中每户居民的平均用水量是解题的关键.47.(1)2,3-;(2)另一个因式为4x +,k 的值是12-【分析】(1)由题意利用多项式乘多项式进行运算分析即可求出答案;(2)根据题意设另一个因式为x p +,利用整式的运算以及待定系数法求出另一个因式以及k 的值.【详解】解:(1)∥223(1)(32)x bx c x x x x ++=+-+-=,∥2b =,3c =-,故答案为:2b =,3c =-.(2)设另一个因式为x p +,由题意得:225()(23)x x k x p x ++=+-,即22252(23)3x x k x p p ++=+--,则有2353p p k -=⎧⎨-=⎩,解得124k p =-⎧⎨=⎩ 所以另一个因式为4x +,k 的值是12-.【点睛】本题考查因式分解的实际运用,正确读懂例题,理解如何利用待定系数法求解是解答本题的关键.48.(1)(2)-6x +7【详解】分析:(1)先进行负整数指数幂、二次根式的化简、特殊角的三角函数值的计算,然后合并.(2)先去括号,再合并同类项即可得出答案.详解:(1)解:原式=14+14=(2)解:原式= x 2―4x +4 -( x 2+2x -3)=-6x +7点睛: 本题考查了实数的运算和整式的化简求值,涉及了二次根式的化简、特殊角的三角函数值,完全平方公式,去括号,合并同类项等知识,属于基础题.49.m =-2,n =-4【详解】试题分析:根据多项式与多项式的乘法法则展开,再利用不含的项系数等于0列。

2023年浙教版数学七年级下册全方位训练卷1

2023年浙教版数学七年级下册全方位训练卷1

2023年浙教版数学七年级下册全方位训练卷1.4平行线的性质一、单选题(每题3分,共30分)1.(2022七下·梧州期末)下列说法中,错误的是()A.两直线平行,同位角相等B.对顶角相等C.同旁内角互补,两直线平行D.两条直线被第三条直线所截,内错角相等【答案】D【知识点】平行线的判定与性质;对顶角及其性质【解析】【解答】解:A、两直线平行,同位角相等,故该选项正确,不符合题意;B、对顶角相等,故该选项正确,不符合题意;C、同旁内角互补,两直线平行,故该选项正确,不符合题意;D、两条平行的直线被第三条直线所截,内错角相等,故该选项不正确,符合题意.故答案为:D.【分析】根据平行线的性质可判断A、D;根据对顶角的性质可判断B;根据平行线的判定定理可判断C.2.(2022七下·巴彦期末)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.30°B.40°C.50°D.45°【答案】C【知识点】垂线;平行线的性质;对顶角及其性质【解析】【解答】解:∵AB∥CD,∴∠2+∠ABD=180°,∵DB⊥BC,∴∠CBD=90°,∵∠ABC=∠1=40°,∴∠ABD=∠ABC+∠CBD=130°,∴∠2=50°.故答案为:C【分析】由平行线的性质可得∠2+∠ABD=180°,由垂直的定义可得∠CBD=90°,由对顶角相等可得∠ABC=∠1=40°,从而求出∠ABD=∠ABC+∠CBD=130°,继而求解.3.(2022七下·无为期末)如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.82°B.80°C.85°D.83 °【答案】C【知识点】角的运算;平行线的性质【解析】【解答】解:∵∠3=10°,∴∠BEC=180°−10°=170°,∵EN平分∠CEB,∴∠2=85°,∵FM∥AB,∴∠F=∠2=85°,故答案为:C.【分析】根据题意先求出∠BEC=170°,再求出∠2=85°,最后计算求解即可。

浙教版数学七年级下册2.4《二元一次方程组的应用》同步练习(含答案)

浙教版数学七年级下册2.4《二元一次方程组的应用》同步练习(含答案)

浙教版数学七年级下册2.4《二元一次方程组的应用》同步练习一、选择题1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹,若设小马有x匹,大马有y匹,则下列方程组中正确的是( )A. B. C. D.2.我校举行春季运动会系列赛中,九年级(1)班.(2)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(2)班的得分为6:5;乙同学说:(1)班的得分比(2)班的得分的2倍少40分;若设(1)班的得分为x分,(2)班的得分为y分,根据题意所列方程组应为( )A. B. C. D.3.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是( )A. B. C. D.4.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个“二果问价”问题,原题如下:“九百九十九文钱,甜果.苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?”其大意为:用999文钱,可以买甜果和苦果共1000个,买9个甜果需要11文钱,买7个苦果需要4文钱,问买甜果和苦果的数量各多少个?设买甜果.苦果的数量分别为x个.y个,则可列方程组为( )A. B. C. D.5.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金.银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金.白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A. B.C. D.6.已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江.黄河的长分别是x千米,y千米,则下列方程组中正确的是 ( )A. B. C. D.7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A. B. C. D.8.我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲.乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲.乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是( )A. B.C. D.9.某校七年级(2)班40名同学为“希望工程”捐款,共捐款100元。

浙教版七年级数学下册期中选填压轴题专项训练(30道)(学生版)

浙教版七年级数学下册期中选填压轴题专项训练(30道)(学生版)

专题7.2 期中选填压轴题专项训练(30道)【浙教版】一.选择题(共16小题)1.(2021春•余杭区期中)在关于x ,y 的二元一次方程组{x −2y =a +63x +y =2a的下列说法中,正确的是( ) ①当a =3时,方程的两根互为相反数;②当且仅当a =﹣4时,解得x 与y 相等;③x ,y 满足关系式x +5y =﹣12;④若9x •27y =81,则a =10.A .①③B .①②C .①②③D .①②③④2.(2021•宁波校级期中)如图①,现有边长为b 和a +b 的正方形纸片各一张,长和宽分别为b ,a 的长方形纸片一张,其中a <b .把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知图②中阴影部分的面积满足S 1=6S 2,则a ,b 满足的关系式为( )A .3b =4aB .2b =3aC .3b =5aD .b =2a3.(2021春•下城区期中)如图,长为12,宽为m 的长方形,被7个大小相同的边长分别为a ,b 的小长方形分割成对称的图案(图中每个小于平角的角都为直角),则下列选项正确的是( )①{4a +3b =12,2a +2b =m; ②{b =2m −12,a =12−32m ; ③若m =8,则{b =4,a =0; ④若m 为正整数,则a ,b 不可能同时为正整数.A .①②④B .②③④C .①②③D .①③④ 4.(2021春•拱墅区校级期中)已知a =2﹣55,b =3﹣44,c =4﹣33,d =5﹣22,则这四个数从小到大排列顺序是( ) A .a <b <c <d B .d <a <c <b C .a <d <c <b D .b <c <a <d5.(2021春•奉化区校级期中)如图,已知长方形纸片ABCD,点E,H在AD边上,点F,G在BC边上,分别沿EF,GH折叠,使点B和点C都落在点P处,若∠FEH+∠EHG=118°,则∠FPG的度数为()A.54°B.55°C.56°D.57°6.(2021秋•南昌县期中)已知a,b,c为自然数,且满足2a×3b×4c=192,则a+b+c的取值不可能是()A.5B.6C.7D.87.(2021春•下城区校级期中)如图a∥b,c与a相交,d与b相交,下列说法:①若∠1=∠2,则∠3=∠4;②若∠1+∠4=180°,则c∥d;③∠4﹣∠2=∠3﹣∠1;④∠1+∠2+∠3+∠4=360°,正确的有()A.①③④B.①②③C.①②④D.②③8.(2021•遵义期中)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2cm2B.2acm2C.4acm2D.(a2﹣1)cm29.(2021春•济南期中)如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形AB纸片均无重叠部分)则图3阴影部分面积()A.22B.24C.42D.4410.(2021春•饶平县校级期中)如图,已知AB∥EG,BC∥DE,CD∥EF,则x、y、z三者之间的关系是()A .x +y +z =180°B .x ﹣z =yC .y ﹣x =zD .y ﹣x =x ﹣z11.(2021秋•牡丹区期中)如图,长为y (cm ),宽为x (cm )的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm ,下列说法中正确的是( )①小长方形的较长边为y ﹣12;②阴影A 的较短边和阴影B 的较短边之和为x ﹣y +4;③若x 为定值,则阴影A 和阴影B 的周长和为定值;④当x =20时,阴影A 和阴影B 的面积和为定值.A .①③B .②④C .①③④D .①④12.(2021春•拱墅区期中)用若干个形状,大小完全相同的长方形纸片围成正方形,4个长方形纸片围成如图1所示的正方形,其阴影部分的面积为81;8个长方形纸片围成如图2所示的正方形,其阴影部分的面积为64;12个长方形纸片围成如图3所示的正方形,其阴影部分的面积为( )A .22B .24C .32D .4913.(2021春•奉化区校级期中)已知关于x ,y 的方程组{x +2y =5−2a x −y =4a −1给出下列结论: ①当a =1时,方程组的解也是x +y =2a +1的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 都为自然数的解有4对;④若2x +y =8,则a =2.正确的有几个( )A .1B .2C .3D .414.(2021春•李沧区期中)如图,直线AB ∥CD ,直线AB ,EG 交于点F ,直线CD ,PM 交于点N ,∠FGH =90°,∠CNP =30°,∠EF A =α,∠GHM =β,∠HMN =γ,则下列结论正确的是( )A .β=α+γB .α+β+γ=120°C .α+β﹣γ=60°D .β+γ﹣α=60°15.(2021春•西湖区校级期中)已知关于x ,y 的方程组{x +2y =k 2x +3y =3k −1以下结论:①当k =0时,方程组的解也是方程x ﹣2y =﹣4的解;②存在实数k ,使得x +y =0;③不论k 取什么实数,x +3y 的值始终不变;④若3x +2y =6则k =1.其中正确的是( )A .①②③B .①②④C .①③④D .①④16.(2021春•福山区期中)用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m +n 的值可能是( )A .200B .201C .202D .203二.填空题(共14小题)17.(2021春•奉化区校级期中)将一条两边互相平行的纸带沿EF 折叠,如图(1),AD ∥BC ,ED '∥FC ',设∠AED '=x °(1)∠EFB = .(用含x 的代数式表示)(2)若将图1继续沿BF 折叠成图(2),∠EFC ″= .(用含x 的代数式表示).18.(2021春•龙岗区期中)观察下列图形:已知a ∥b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律,∠1+∠2+∠P 1+…+∠P n = 度.19.(2021春•奉化区校级期中)已知D 是△ABC 的边BC 所在直线上的一点,与B ,C 不重合,过D 分别作DF ∥AC 交AB 所在直线于F ,DE ∥AB 交AC 所在直线于E .若∠B +∠C =105°,则∠FDE 的度数是 .20.(2021春•拱墅区校级期中)我国南宋时期杰出的数学家杨辉是钱塘人,如下是他在《详解九章算术》中记载的“杨辉三角”,此图揭示了(a +b )n (n 为非负整数)的展开式的项数及各项系数的有关规律.由此规律可解决如下问题:假如今天是星期三,再过7天还是星期三,那么再过82021天是星期 .(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 421.(2021春•鹿城区校级期中)在“妙折生平﹣﹣折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC ,∠B =30°,∠C =50°,点D 是AB 边上的固定点(BD <12AB ),请在BC 上找一点E ,将纸片沿DE 折叠(DE 为折痕),点B 落在点F 处,使EF 与三角形ABC 的一边平行,则∠BDE 为 度.22.(2021秋•东西湖区期中)如图,把五个长为b 、宽为a 的小长方形,按图1和图2两种方式放在一个宽为m 的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C 1,图2中阴影部分的周长为C 2,若大长方形的长比宽大(6﹣a ),则C 2﹣C 1的值为 .23.(2020•拱墅区期中)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 . 24.(2021春•宁波期中)如果a ﹣3b ﹣2=0,那么:3a 2+27b 2﹣5a +15b ﹣18ab = .25.(2021春•扶沟县期中)已知关于x ,y 的方程组{ax −by =13cx +dy =30.9的解为{x =8.3y =1.2,则关于x ,y 的方程组{a(x +2)−by +b =13c(x +2)+dy −d =30.9的解为: . 26.(2021春•崇川区校级期中)已知关于x ,y 的二元一次方程(m +1)x +(2m ﹣1)y +2﹣m =0,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是 .27.(2021春•西湖区校级期中)已知关于x ,y 的方程组{x +2y =k 2x +3y =3k −1,给出下列结论:①当k =2时,{x =4y =−1是方程组的解;②当k =12时,x ,y 的值互为相反数;③若2x •8y =2z ,则z =1;④若方程组的解也是方程x +y =2﹣k 的解,则k =1.其中正确的是 (填写正确结论的序号).28.(2021春•奉化区校级期中)如图,直线l 1⊥直线l 2,垂足为O ,Rt △ABC 如图放置,过点B 作BD ∥AC 交直线l 2于点D ,在△ABC 内取一点E ,连接AE ,DE .(1)若∠CAE =15°,∠EDB =25°,则∠AED = .(2)若∠EAC =1n ∠CAB ,∠EDB =1n∠ODB ,则∠AED = °.(用含n 的代数式表示)29.(2021春•奉化区校级期中)定义一种新的运算:a ☆b =2a ﹣b ,例如:3☆(﹣1)=2×3﹣(﹣1)=7,那么(1)若(﹣2)☆b =﹣16,那么b = ;(2)若a ☆b =0,且关于x ,y 的二元一次方程(a ﹣1)x +by +5﹣2a =0,当a ,b 取不同值时,方程都有一个公共解,那么这个公共解为 .30.(2021春•奉化区校级期中)关于x ,y 的方程组{a 2x +b 2y =1+2ab b 2x +a 2y =1−2ab的解为{x =2y =1,则①a 2+b 2= . ②关于x ,y 的方程组{a 2(x −1)+b 2(y −1)=12+ab b 2(x −1)+a 2(y −1)=12−ab 的解为 .。

七年级数学下册《第五章分式》练习题-附答案(浙教版)

七年级数学下册《第五章分式》练习题-附答案(浙教版)

七年级数学下册《第五章分式》练习题-附答案(浙教版)一、选择题1.若分式x +12-x有意义,则x 满足的条件是( ) A.x ≠-1 B.x ≠-2 C.x ≠2 D.x ≠-1且x ≠22.若分式2x +63x -9的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-33.与分式﹣11-x的值相等的是( ) A.﹣1x -1 B.﹣11+x C.11+x D.1x -14.下列约分正确的是( ) A.B. =﹣1C. =D. =5.下列分式中,最简分式是( )A.x 2-1x 2+1B.x +1x 2-1C.x 2-2xy +y 2x 2-xyD.x 2-362x +126.下列运算结果为x -1的是( )A.1-1xB.x 2-1x ·x x +1C.x +1x ÷1x -1D.x 2+2x +1x +17.化简a 2a -1-1-2a 1-a的结果为( ) A.a +1a -1B.a -1C.aD.1 8.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-39.施工队要铺设1 000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务,设原计划每天施工x 米,所列方程正确的是( )A.1 000x -1 000x +30=2B.1 000x +30-1 000x =2C.1 000x -1 000x -30=2D.1 000x -30-1 000x=2 10.若﹣2<a ≤2,且使关于y 的方程y +a y -1+2a 1-y =2的解为非负数,则符合条件的所有整数a 的和为( )A.﹣3B.﹣2C.1D.2二、填空题11.要使分式1x -1有意义,x 的取值应满足 . 12.当x =1时,分式x x +2的值是________. 13.把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________. 14.方程2x +13-x =32的解是 . 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如,=. 类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么 (B +1)﹣(A +1)= .三、解答题17.化简:x -2x -1·x 2-1x 2-4x +4-1x -2.18.化简:(1-2x -1)·x 2-xx 2-6x +9.19.解分式方程:xx -1﹣2x =1;20.解分式方程:32x -4﹣xx -2=12.21.化简(xx -1 - 1 x 2-1 )÷x 2+2x +1x 2 ,并从-1,0,1,2中选择一个合适的数求代数式的值。

浙教版初中数学七年级下册专题50题含答案

浙教版初中数学七年级下册专题50题含答案

浙教版初中数学七年级下册专题50题含答案一、单选题1.下列运算正确的是( ) A .428a a a ⋅= B .426a a a +=C .()248a a =D .22(2)2a a =2.计算:x 11x x+-=( ) A .1B .2C .1+2xD .x 2x- 3.环境监测中PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.数据0.0000025用科学记数法可以表示为( ) A .62.510⨯B .52.510-⨯C .62.510-⨯D .72.510-⨯4.分解因式x 2-5x -14,正确的结果是( ) A .(x -5)(x -14) B .(x -2)(x -7) C .(x -2)(x +7) D .(x +2)(x -7)5.下列因式分解正确的是( ) A .x 2y 2﹣z 2=x 2(y +z )(y ﹣z ) B .﹣x 2y ﹣4xy +5y =﹣y (x 2+4x +5) C .(x +2)2﹣9=(x +5)(x ﹣1) D .9﹣12a +4a 2=﹣(3﹣2a )2 6.有下列命题,其中假命题有( ) ①对顶角相等:①垂直于同一条直线的两直线平行; ①平行于同一条直线的两直线平行; ①内错角相等. A .①① B .①① C .①① D .①①7.计算()100101122⎛⎫-⨯- ⎪⎝⎭的结果是( ) A .1B .2-C .1-D .28.某批发商在外地购买了同一型号的a 把椅子,需要托运回本市,这批椅子的总价为18300元,每把椅子的运费是5元,如果少买一把椅子,那么剩下的椅子的运费总和恰好等于一把椅子的价钱,则a 的值是( )9.下列各数,绝对值最大的是( ) A .﹣5B .3C .21()2-D .010.自新冠疫情爆发以来,新型冠状病毒经历了多次变异,形成了多个变种,其中一个变种直径约为107nm ,已知91nm 10m -=,则数据“107nm ”用科学记数法可表示为( ) A .111.0710m -⨯B .71.0710m -⨯C .60.10710m -⨯D .910710m -⨯11.在下列命题中,真命题是( ) A .相等的角是对顶角 B .同位角相等C .三角形的外角和是360︒D .角平分线上的点到角的两边相等12.已知2240x x +-=,则3x 的值等于( ) A .8B .2C .-3D .-813.小李以两种形式储蓄300元,一种储蓄的年利率为10%,另一种为11%,一年后的本息和为331.5元,则两种储蓄的存款分别为( ) A .100元,200元B .150元,150元C .200元,100元D .50元,250元14.为了防止疫情扩散,确保人民健康,某区计划开展全员核酸检测,甲、乙两个检测队分别负责A 、B 两个生活区的核酸检测,已知A 生活区参与核酸检测的共有3000人,且B 生活区参与核酸检测的共有2800人,乙检测队因工作原因比甲检测队开始晚检测10分钟.已如乙检测队的检测速度是甲检测队的1.2倍,结果两个检测队同时完成检测,设甲检测队每分钟检测x 人,根据题意,可以得到的方程是( ) A .28003000101.2x x =+ B .3000280011.26x x =+ C .30002800101.2xx =- D .30002800101.2x x=+ 15.化简2442x xx x ---的结果是( ) A .22x x -+ B .26x x -+ C .2x x -+ D .2x x - 16.下列等式正确的是( )①40.000126 1.2610-=⨯;②43.101031000⨯=; ③51.1100.000011-⨯=;④612600000 1.2610=⨯. A .①②B .②④C .①②③D .①③④17.下列计算正确的是( ) A .a 2+a 2=a 4 B .(a +b )2=a 2+b 2 C .(a 3)3=a 9D .a 3•a 2=a 618.下列运算正确的是( ) A .(-3mn )2=-6m 2n 2 B .4x 4+2x 4+x 4=6x 4 C .(xy )2÷(-xy )=-xyD .(a-b )(-a-b )=a 2-b 2二、填空题19.如图,在平行线a b 、之间放置一块直角三角板,三角板的顶点A B 、分别在直线a b 、上,则12∠+∠的度数为_________.20.用科学记数法表示:-0.0000506=________________.21.如图,直线a 与直线b 、c 分别相交于点A 、B ,将直线b 绕点A 转动,当①1=①________时,c b22.写出二元一次方程x+y =6的一组整数解为_____.23.一个样本有10个数据:52,51,49,50,47,48,50,51,48,53,则如果组距为1.5,则应分成____组. 24.分式232a b 与2a bab c+的最简公分母是_________. 25.计算:(﹣p )2•(﹣p )=_______. 26.计算126x x ÷的结果为______.27.与单项式3a 的积是321263a a a -+的多项式是__________. 28.计算:23(2)x x x ⋅-=_______________.29.一个样本共有50个数据,最大的数据是172,最小的数据是147,若组距为3,则第八组数据的范围是_____. 30.化简分式()233a ba b --的结果是______.31.若6,3,m n a a ==则2m n a -=________ .若=3n x ,则1(2)()2n n x x ⋅=_______.32.计算:_____________;33.若方程组312323x y ax y a +=+⎧⎨+=--⎩的解满足1x y -=-,则a 的值为_______.34.如图,//a b ,若146∠=︒,则2∠=__︒.35.计算:(x+2+52x-)·243x x --=_____.36.如图,直线12//,,150l l αβ︒∠=∠∠=,2∠=______.37.已知(2018)(2021)5a a --=-,求22(2018)(2021)a a -+-=________.三、解答题38.某商店订购了A ,B 两种商品,A 商品18元/千克,B 商品20元/千克,若B 商品的数量比A 商品的2倍少10千克,购进两种商品共用了1540元,求两种商品各多少千克.39.当a=2014时,求÷(a+)的值.40.已知:如图,AB CD ∥,12∠=∠.试说明:BE CF ∥.请按照下列说明过程填空.解:AB CD ∥,根据________________________________ABC ________.12∠=∠,1ABC ∴∠-∠=________2-∠,即EBC ∠=________.根据________________________________BE CF ∴∥.41.计算:;(2)解方程: .42.分解因式: (1)2m n n -. (2)2242x y xy y ++.43.解方程组:448x y x y +=⎧⎨+=-⎩.44.计算:2(2)(31)(2)--+a a a .45.已知化简()()2283x px x x q ++-+的结果中不含2x 项和3x 项.(1)求p ,q 的值;(2)若()()()()24x q x x p x a -+-++是一个完全平方式,求a 的值. 46.计算: (1)()32242ab a b -÷-(2)02111232--⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭ (3) 211a a a ---(4)()2221(2)4y x x x y y x y x +--÷⋅ 47.(1)已知456a b c ==,求分式222ab ac bca b c+-+-的值; (2)小丽在课下自主学习时,通过查阅资料发现()()1111212x x x x =-++++,请你根据这一规律,化简()()()()()()111122320192020x x x x x x ++⋯+++++++.参考答案:1.C【分析】根据幂的乘方与积的乘方分别计算判断即可.【详解】解:A、a4•a2=a6,故错误;B、a4+a2不是同类项,不能合并,故错误;C、(a4)2=a8,正确;D、(2a)2=4a2,故错误.故选:C.【点睛】此题考查的是幂的乘方及积的乘方运算,掌握其运算法则是解决此题关键.2.A【分析】按同分母分式的减法法则计算即可.【详解】解:x11x x+-=11xx+-,=xx,=1.故选A.【点睛】本题考查了分式的减法.掌握同分母分式的减法法则是解决本题的关键.3.C【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数决定.【详解】解:0.0000025=2.5×10-6.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.解题的关键是确定a与n的值.4.D【分析】根据-14=-7×2,-5=-7+2,进行分解即可.【详解】解:x2-5x-14=(x-7)(x+2),故选:D.【点睛】本题考查了因式分解-十字相乘法,熟练掌握因式分解-十字相乘法是解题的关键. 5.C【分析】利用平方差、完全平方公式先判断、利用提公因式与完全平方公式判断对选项进行判断.【详解】解:A 、()()()()2222x y z xy z xy z x y z y z -=+-≠+-,故选项不符合题意; B 、()()()22454551x y xy y y x x y y x --+=-+-=-+-,分解不彻底,故选项不符合题意;C 、2(2)9(5)(1)x x x +-=+-,故选项符合题意;D 、2229124(32)(32)a a a a -+=-≠--,故选项不符合题意. 故选:C .【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,解题的关键是掌握如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解,分解要彻底. 6.C【分析】根据对顶角、平行线的性质可直接进行判断. 【详解】解:①对顶角相等,是真命题,不合题意.①垂直于同一条直线的两直线平行,缺少在同一平面内,故原命题是假命题,符合题意; ①平行于同一条直线的两直线平行,故原命题是真命题,不符合题意; ①内错角相等,缺少两直线平行,故原命题是假命题,符合题意. 故选:C .【点睛】本题主要考查平行线的性质定理及对顶角,熟记知识点是解题的关键. 7.B【分析】根据积的乘方公式的逆运用,即可求出答案. 【详解】解:()100101122⎛⎫-⨯- ⎪⎝⎭()()1001001222⎛⎫=-⨯-⨯- ⎪⎝⎭()()1001222⎡⎤⎛⎫=-⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦()10021=-⨯()21=-⨯2=-,故选:B .【点睛】本题考查了积的乘方,解题的关键是乘方公式的逆运用. 8.C【分析】一把椅子的价钱为18300a元,剩下椅子的运费()51a -元,根据“剩下的椅子的运费总和恰好等于一把椅子的价钱”即可列出方程,解答即可. 【详解】解:一把椅子的价钱为18300a元,剩下椅子的运费()51a -元, 根据题意得()1830051a a=-, 整理得236600a a --=,解得161a =,260a =-(不符合题意,舍去), ①a 的值为61, 故选:C .【点睛】本题主要考查了分式方程的应用,找准等量关系“剩下的椅子的运费总和恰好等于一把椅子的价钱”是解决问题的关键. 9.A【分析】直接利用绝对值的性质以及负整数指数幂的性质分别化简、判断即可.【详解】解:①|-5|=5,|3|=3,|(1)2-2|=4,|0|=0,①5>4>3>0, ①-5的绝对值最大. 故选:A .【点睛】本题主要考查了负整数指数幂的性质以及绝对值的性质,正确掌握绝对值的性质是解题关键. 10.B【分析】用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:297107nm 1.071010m 1.0710m --=⨯⨯=⨯. 故选B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键. 11.C【分析】根据对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质逐项判断即可.【详解】A 、由对顶角的定义“如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角”可得,对顶角必相等,但相等的角未必是对顶角,此项不是真命题B 、只有当两直线平行,同位角必相等,此项不是真命题C 、根据内角和定理可知,任意多边形的外角和都为360︒,此项是真命题D 、由角平分线的性质可知,角平分线上的点到角的两边距离相等,此项不是真命题 故选:C.【点睛】本题考查了对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质,熟记各定义和性质是解题关键. 12.D【分析】等式两边同乘以x ,再进行变形、代入求解即可得解. 【详解】解:①2240x x +-=,两边同乘以x 得,()2240x x x +-=,即,3224x x x =-+,()3228428228x x x x x x x -=--=-+=-,故选:D .【点睛】本题主要考查了单项式乘以多项式,整体代入以及等式变形等知识,将原等式乘以x 出现3x 是解答本题的关键. 13.B【分析】设第一种储蓄存了x 元,第二种存了y 元,根据储蓄了300元钱可以列出方程x+y=300,根据一年后共得利息31.5元可以列出方程10%x+11%y=31.5,联立两个方程组成方程组,解方程组即可求出结果.【详解】若设第一种储蓄存了x元,第二种存了y元,则根据题意可列方程组为30010%11%331.5300x yx y+⎧⎨+-⎩==,①150150 xy=⎧⎨=⎩故选B【点睛】此题主要考查了二元一次方程组的应用:储蓄的年利率问题,其中本金+利息=本息,年利率=利息本金×100%,根据这些关系式即可列出方程解决问题.14.D【分析】由题可知甲队检测A生活区需要3000x分钟,知乙队检测B生活区需要28001.2x分钟,由乙检测队因工作原因比甲检测队晚开始检测10分钟,结果两个检测队同时完成检测,可得等量关系3000280010.1.2x x=+【详解】解:甲检测队每分钟检测x人,已知乙检测队的检测速度是甲检测队的1.2倍,则A生活区参与核酸检测的共有3000人共需要3000x分钟,B生活区参与核酸检测的共有2880人需要28001.2x分钟.①乙检测队因工作原因比甲检测队晚开始检测10分钟,结果两个检测队同时完成检测,3000280010.1.2x x∴=+故选:D.【点睛】本题主要考查了列分式方程解决实际问题,找到等量关系是解决此题的关键.15.C【详解】原式=4(2)(2)(2)(2)(2)x x xx x x x+-+-+-=242(2)(2)x x xx x--+-=2xx-+,故选C.16.C【分析】直接利用科学记数法表示方法以及科学记数法与原数的关系得出答案.【详解】解:①0.000126=1.26×10-4,正确;①3.10×104=31000,正确;①1.1×10-5=0.000011,正确;①12600000=1.26×107,错误;故选C .【点睛】此题主要考查了科学记数法表示方法以及科学记数法与原数的关系,正确掌握科学记数法的表示方法是解题关键.17.C【分析】按照合并同类项的法则、幂的运算法则以及完全平方公式进行计算即可判断.【详解】解:A 、a 2+a 2=2a 2,故选项A 不合题意;B .(a +b )2=a 2+2ab +b 2,故选项B 不合题意;C .(a 3)3=a 9,故选项C 符合题意;D .a 3•a 2=a 5,故选项D 不合题意.故选:C .【点睛】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.18.C【分析】根据积的乘方、合并同类项、整式的乘法、除法,即可解答.【详解】A 、(-3mn )2=9m 2n 2,故错误;B 、4x 4+2x 4+x 4=7x 4,故错误;C 、正确;D 、(a-b )(-a-b )=-(a 2-b 2)=b 2-a 2,故错误;故选C .【点睛】本题考查了积的乘方、合并同类项、整式的乘法、除法,解决本题的关键是熟记相关法则.19.90︒##90度【分析】过点C 作CD a ∥,再由平行线的性质即可得出结论.【详解】解:过点C 作CD a ∥,则1=ACD ∠∠.①a b①CD b ∥①2DCB =∠∠①90ACD DCB ∠+∠=︒,①1290∠+∠=︒故答案为:90︒【点睛】本题考查平行线的性质,根据题意作出辅助线,构造出平行线是解题的关键. 20.-5.06×10-5【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:-0.0000506=-5.06×10-5,故答案为-5.06×10-5.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.21.3【分析】根据同位角相等,两直线平行进行判断即可.【详解】解:根据同位角相等,两直线平行可知:当①1=①3时,c b .故答案为:3【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行.22.15x y =⎧⎨=⎩【分析】先移项得到y =﹣x+6,假设x =1时,得到y ,即可得到答案.【详解】解:方程x+y =6,解得:y =﹣x+6,当x =1时,y =5,则二元一次方程的一组整数解为15x y =⎧⎨=⎩, 故答案为15x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程的解,解题的关键是掌握求二元一次方程的解的方法.23.5【分析】因为包含两个端点,直接利用组数=(最大值-最小值)÷组距+1求解即可.【详解】组数=5347151.5-+=, 故答案为:5.【点睛】本题注意考查组数的求法,注意包含端点.24.2a 2b 2c【分析】根据最简公分母的定义求解. 【详解】解:分式232a b 与2a b ab c +的最简公分母是2a 2b 2c . 故答案为2a 2b 2c .【点睛】本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.25.﹣p 3.【详解】试题分析:直接利用同底数幂的乘法运算法则进行计算,原式=(﹣p )3=﹣p 3. 故答案为﹣p 3.考点:幂的乘方与积的乘方;同底数幂的乘法.26.6x【分析】根据同底数幂的除法公式即可求解.【详解】126x x ÷=6x故答案为:6x .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的除法公式.27.2421a a -+【分析】根据题意求32(1263)3a a a a -+÷即可得出答案.【详解】32(1263)3a a a a -+÷ 321236333a a a a a a =÷-÷+÷2421a a =-+故答案为:2421a a -+.【点睛】本题考查整式的除法,掌握除法法则是解题的关键.28.3263x x -【分析】直接利用单项式与多项式相乘的运算法则计算即可.【详解】2323(2)63x x x x x ⋅-=-.故答案为:3263x x -.【点睛】本题考查了单项式乘多项式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.29.167.5~170.5【详解】试题分析:方法一:根据最大值与最小值求出极差,再根据组距求出组数,然后求解即可;方法二:根据最小值以及组距列式求出第八组的最小的值,然后确定出范围即可. 解:方法一:极差为:172﹣147=25,①25÷3=8,①组数为9,①147+7×3=147+21=168,①第八组数据的范围是167.5~170.5;方法二:第八组最小的数为:147+7×3=147+21=168,所以,第八组数据的范围是167.5~170.5.故答案为167.5~170.5.30.3a b- 【分析】此题涉及的知识点是整式的化简,根据约分要求进行计算可得结果【详解】()233a ba b --=()()3a b a b a b ---()=3a b -【点睛】此题重点考查学生对整式化简的理解,约分至最简形式是解题的关键 31. 239 【分析】根据同底数幂的除法的逆用及积的乘方可直接进行求解.【详解】解:①6,3m n a a ==,①()2226293m n m n m n a a a a a -=÷=÷==, ①=3n x ,①()()22111222139222n n n n n n n nx x x x x ⎛⎫⎛⎫⎛⎫⋅=⋅⋅⋅=⨯⋅=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故答案为23,9.【点睛】本题主要考查同底数幂的除法及积的乘方,熟练掌握同底数幂的除法及积的乘方是解题的关键. 32.13-. 【详解】根据积的乘方运算简化该式即可计算. 试题分析:20052006200520052005111111(3)()(3)()[(3)]333333-⋅=-⋅⋅=-⋅⋅=-. 考点:积的乘方运算.33.32- 【分析】根据题意可得三元一次方程组,解方程组即可得出答案.【详解】根据题意得三元一次方程组,如下:3123231x y a x y a x y +=+⎧⎪+=--⎨⎪-=-⎩①②③, 解得341432x y a ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩, 即32a =-, 故答案为:32-. 【点睛】本题考查了二元一次方程组以及三元一次方程组的知识,掌握求解三元一次方程组的方法是解答本题的关键.34.46.【分析】根据平行线的性质,得到①1=①2即可.【详解】①a①b ,①1=46°,①①2=①1=46°,故答案为46.【点睛】本题考查的知识点是平行线的性质的运用,解题关键是注意:两直线平行,同位角相等.35.2x+6【分析】根据分式的运算法则即可求出答案.【详解】原式=()2229•23x x x x ---- =2(x+3)=2x+6故答案为2x+6【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则.36.130°【分析】延长AE 交2l 与点B ,根据平行线的性质求解即可.【详解】解:如下图,延长AE 交2l 与点B ,①12//l l ,①1350∠=∠=︒,①αβ∠=∠,①AB//CD ,①23180∠+∠=︒,①2130∠=︒.故答案为:130︒.【点睛】本题考查的知识点是平行线的判定及性质,熟记判定定理以及性质内容是解此题的关键.37.19【分析】设2021a m -=,则20183a m -=+;根据题意,得235m m +=;再将235m m +=代入到代数式中计算,即可得到答案.【详解】①(2018)(2021)5a a --=-①(2018)(2021)5a a --=设2021a m -=,则20183a m -=+①()35m m +=,即235m m +=①22(2018)(2021)a a -+-()223m m =++ 2269m m =++()2239m m =++259=⨯+19=故答案为:19.【点睛】本题考查了整式运算和代数式的知识;解题的关键是熟练掌握整式乘法、完全平方公式的性质,从而完成求解.38.A 商品30千克,B 商品50千克【分析】设A 商品x 千克,B 商品y 千克,根据数量关系列出二元一次方程组21018201540y x x y =-⎧⎨+=⎩ 求解即可. 【详解】解:设A 商品x 千克,B 商品y 千克.由题意得21018201540y x x y =-⎧⎨+=⎩解得3050x y =⎧⎨=⎩ 答:A 商品30千克,B 商品50千克.【点睛】本题主要考查二元一次方程组的实际应用,分析题意,找等量关系,列出方程是方程解决实际问题的关键.39.【详解】试题分析:根据分式混合运算的法则对原式进行化简,然后把a 的值代入进行计算即可.试题解析:原式===,当a=2014时,原式=考点:分式化简求值40.见解析 【分析】根据平行线的性质与判定求解即可.【详解】解:AB CD ∥,根据两直线平行,内错角相等 ABC BCD ∠12∠=∠,1ABC ∴∠-∠=BCD ∠2-∠,即EBC ∠=FCB ∠.根据内错角相等,两直线平行BE CF ∴∥.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解答本题的关键.41.(1)4(2).【分析】(1)利用算术平方根和零指数幂来求解;(2)观察方程可得最简公分母是:x (x-1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【详解】(1)解:原式=2+1+1 =4(2)解:. 经检验:是原方程的解.所以原方程的解是.42.(1)()()11n m m +-(2)()221y x +【分析】(1)先提取公因式n ,再用平方差公式分解;(2)先提取公因式2y ,再用完全平方公式分解.(1)解:原式=()()()2111n m n m m -=+-;(2)解:原式=()2221y x x ++=()221y x +.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;①公式法;①十字相乘法;①分组分解法. 因式分解必须分解到每个因式都不能再分解为止.43.48x y =-⎧⎨=⎩ 【分析】根据加减消元法求解二元一次方程即可得到解答.【详解】解:448x y x y +=⎧⎨+=-⎩①② 由①-①得:3x =-12,解得x =-4,把x =-4代入x +y =4得y =8,①方程组的解为48x y =-⎧⎨=⎩. 【点睛】本题考查了二元一次方程,解决本题的关键是运用加减消元法进行求解. 44.7a 2﹣7a +2【分析】根据多项式乘多项式法则以及积的乘方法则去括号,再合并同类项即可.【详解】解:原式=3a 2﹣a ﹣6a +2+4a 2=7a 2﹣7a +2.【点睛】本题考查了整式乘法的混合运算,熟练掌握多项式乘多项式法则以及积的乘方法则是解决本题的关键.45.(1)3,1p q ==(2)25【分析】(1)先将原式化简,再根据结果中不含2x 项和3x 项可得30,380p q p -=-+= ,即可求解;(2)先将原式化简,再根据原式是一个完全平方式,把化简后的结果中()2x x + 作为一个整体,再变形为完全平方形式,即可求解.【详解】(1)解:()()2283x px x x q ++-+432322338248x x qx px px pqx x x q -++--=+++()()()432338248x p x q p x pq x q +-+-++-+= ,①化简()()2283x px x x q ++-+的结果中不含2x 项和3x 项,①30,380p q p -=-+= ,解得:3,1p q ==;(2)解:()()()()24x q x x p x a -+-++()()()()1234x x x x a =-+-++()()()()1234x x x x a =-+-++⎡⎤⎡⎤⎣⎦⎣⎦()()22212x x x x a =+-+-+()()2221424x x x x a =+-+++ ①()()()()24x q x x p x a -+-++是一个完全平方式,①()()()()()22222222142471449x x x x a x x x x x x +-+++=+-=+-++, ①2449a += ,解得:25a = .【点睛】本题主要考查了整式乘法运算中的无关项题,完全平方公式的应用,熟练掌握完全平方公式,不含某一项就是化简后该项的系数等于0是解题的关键.46.(1)72a b- (2)92(3)11a - (4)y -【分析】(1)根据积的乘方运算以及整式的除法运算即可求出答案.(2)根据零指数幂的意义、负整数指数幂的意义即可求出答案.(3)根据分式的加减运算法则即可求出答案.(4)根据分式的加减运算法则以及乘除运算法则即可求出答案.【详解】(1)解:原式()26348ab a b -=÷-7112a b -=- 72a b=-. (2)解:原式1142=-+ 152=- 92=. (3)解:原式()()2111a a a a -+-=- 2211a a a -+=- 11a =-. (4)解:原式()()()12222xy x y x y x y x y x =+-⋅⋅+- y =-.【点睛】本题考查积的乘方运算、整式的除法运算、零指数幂的意义、负整数指数幂的意义、以及分式的加减运算与乘除运算法则,本题属于基础题型.47.(1)145;(2)2201920212020x x ++. 【分析】(1)设4561a b c k===,则4a k =,5b k =,6c k =,然后代入分式中化简即可; (2)根据题意,将分式变形计算即可.【详解】(1)设4561a b c k===(0k ≠),则4a k =,5b k =,6c k =, 把4a k =,5b k =,6c k =代入,原式()()()222454656456k k k k k kk k k ⋅+⋅-⋅=+-222222202430162536k k k k k k +-=+- 22145k k= 145=. (2)原式111111122320192020x x x x x x =-+-+⋯+-++++++ 1112020x x =-++ ()()2020112020x x x x +--=++ 2201920212020x x =++. 【点睛】此题考查的是分式的化简和求值题,掌握设参法和裂项相消的运算规律是解决此题的关键.。

浙教版七年级下数学试卷

浙教版七年级下数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 3.1415926D. 无理数2. 如果a > b,那么下列不等式中一定成立的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a × 2 > b × 2D. a ÷ 2 > b ÷ 23. 下列代数式中,最简整式是()A. 3x^2 - 2x + 1B. 2x^2 - 5x + 3C. x^2 - 4x + 4D. 4x^2 - 2x - 14. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = √x5. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. A(2,-3)B. A(-2,3)C. A(2,-3)D. A(-2,-3)6. 下列图形中,是轴对称图形的是()A. 等边三角形B. 矩形C. 正方形D. 梯形7. 若一个数的平方根是±3,那么这个数是()A. 9B. 27C. 81D. 2438. 下列各数中,不是整数的是()A. 2.5B. -3C. 0D. 1/29. 下列各数中,是立方根的是()A. √27B. √64C. √81D. √25610. 若a^2 = 16,那么a的值是()A. ±4B. ±2C. ±8D. ±16二、填空题(每题3分,共30分)11. 2^3 × 3^2 = _______12. 4 - 2√5 + 3 = _______13. a^2 - 5a + 6 = (a - 2)(a + 3) 中,a的值为 _______14. y = 2x - 3 的函数图像是一条 _______线。

15. 若一个数是偶数,那么它的平方根是 _______。

浙教版七年级数学下册试题试卷

浙教版七年级数学下册试题试卷

1 第4题 21七年级数学试卷 温馨提示:请仔细审题,细心答题,相信你一定会有出色 一、选择题(每小题3分,共30分,请选出各题中唯一正确的选项,不选、多选、错选均不给分)1. 在下列图案中,不能用平移得到的图案是( )A .B .C .D .2. 下列方程是二元一次方程的是( )A. 2x + y = 3zB. 2x -y 1=2 C. 2xy -3y = 0 D. 3x -5y=2 3. 下列运算正确的是( )A.954a a a =+B.33333a a a a =⋅⋅C.954632a a a =⨯D.()743a a =-4. 如图,梯子的各条横档互相平行,若∠1=70o ,则∠2的度数是( )A .80oB .110oC .120oD .140o5. 某种生物细胞的直径是0.000000012cm ,用科学计数法表示这个数,正确的是( )A .12 ×10-7 cmB .1.2 ×10-7 cmC .12 ×10-8 cmD .1.2 ×10-8 cm6. 若⎩⎨⎧x =-1y =2是方程3x +ay =1的一个解,则a 的值是( ) A .1 B .-1 C .2 D .-27. 下列算式能用平方差公式计算的是( )A.(2a +b )(2b -a )B. (a +1)(-a -1)C.(3x -y )(-3x +y )D.(-m -n )(-m +n )8. 若2,3==yx a a ,则y x a -2等于( ) A.18 B.11 C.29 D.7 9. 两个角的两边分别平行,其中一个角是60°,则另一个角是 ( )A. 60°B. 120°C. 60°或120°D. 无法确定10.右图是琳琳装好糖果6个的礼包盒,每盒上面的数字代表这盒礼包实际装有的糖果数量。

她把其中的5盒送给好朋友小芬和小红,自己留下1盒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下数学专题练习----选择题班级 学号 姓名1.下列计算正确的是( )A .246x x x +=B .235x y xy +=C .632x x x ÷=D .326()x x =2.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2等于( )A .32°B .58°C .68°D .60°3.下列四个多项式,能因式分解的是( )A .a -1B .2a +1C .2x -4yD .2x -6x +9 4.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为 ( )A .20°B .25°C .30°D .35° 5.已知m 6x =,3n x =,则2m n x -的值为:( )A .9B .43 C .34D .12 6.计算22193m m m --+的结果为: ( ) A .13m + B .-13m - C .-13m + D .13m - l 12AmCB7.若分式21+-x x 的值为0,则x 的值为( ) A .1 B .0 C .-2 D .1或-28.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是A .a 2-b 2=(a +b )(a -b )B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a -b )2 9.下列各式运算正确的是( ) A .33mn n n -= B .33y y y ÷=C .326()x x = D .236a a a ⋅=10.如图,AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD 且与EF 交于点O ,那么与∠AOE 相等的角有( )A .5个B .4 个C .3个D .2个11.如图,下列判断正确的是 ( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2.则AB ∥CDC .若∠A=∠3,则 AD ∥BCD .若∠A+∠ADC=180°,则AD ∥BC12.若2n x =,则3nx 的值为 ( )A .6B .8C .9D .1213.不论x 取何值,下列分式中一定有意义的是 ( )A .21x x - B .11x x +- C .11x x +- D .11x x -+ 14.在代数式22212,,,,,313222x x x a b a a y x a a π+---++中,分式的个数是 ( ) A .1个 B .2个 C .3个 D .4个15.已知某项工程由甲、乙两队合做12天可以完成,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天.甲、乙两队单独完成这项工程分别需要多少天设甲队单独完成需x 天,根据题意列出的方程正确的是( )A .11121012x x B .11121012x x C .11121012xx D .11121012x x 16.某班对全体同学上学的方式作一个调查,画出乘车、步行、骑车人数分布的条形统计图和扇形统计图(两图均不完整),如下图,则下列结论中错误的是( )A .该班总人数为50人B .骑车人数占总人数的20%C .乘车人数是骑车人数的2.5倍D .步行人数为30人17.如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E .若∠1=25°,则BAF ∠的度数为A .15°B .50°C .12.5°D .25° 18.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( ) .A .50°B .60°C .75°D .85° 19.如图,若AB ∥CD ,则可得出( ).A .∠1=∠4B .∠3=∠5C .∠4=∠5D .∠3=∠4 20.下列调查适合作普查的是 ( ). A .了解在校大学生的主要娱乐方式 B .了解某市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H7N9流感患者的同一车厢的乘客进行医学检查21.甲地到乙地的铁路长210千米,动车运行后的平均速度是原来火车的倍,这样由甲地到乙地的行驶时间缩短了小时.设原来火车的平均速度为x 千米/时,则下列方程正确的是 ( )A .+=B .﹣=C .+=D .﹣=22.若分式()2239+-x x 的值为0,则x 的值是( )A 0=xB 3-=xC 3±=xD 3=x 23.下列运算正确的是( )A. 01a =B.3412a a a ⋅=C. 1234aa a ÷= D. =3412a a ()24.已知:如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB .若∠CEF=100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30°25.将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()A .(a+b )2=a 2+2ab+b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .a 2﹣b 2=(a+b )(a ﹣b )D .(a+2b )(a ﹣b )=a 2+ab ﹣2b 2 26.计算323a a ÷的结果是()A .2aB .23a C .3a D .327.今年我市有近8万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( ) A .这1000名考生是总体的一个样本 B .近8万多名考生是总体 C .每位考生的数学成绩是个体 D .1000名考生是样本容量28.若分式242x x -+的值为零,则x 的值为( )A .0B .2C .-2D .±2 29.从左到右的变形,是因式分解的为 ( ) A .(3﹣x )(3+x )=9﹣x 2B.(a-b)(a 2+ab+b 2)=a 3-b 3 +4b 2-1=a(a-4b)+(2b+1)(2b-1) =(2x+5y)(2x-5y)30.如图,C 岛在A 岛的北偏东45°方向,C 岛在B 岛的北偏西25°方向,则从C 岛看A 、B 两岛的视角∠ACB 的度数是( )A .70°B .20°C .35°D .110°31.如图,直线AB ∥CD ,BE 平分∠ABC ,交CD 于D ,∠CDB=30°,那么∠C 的度数为DAB CEA .120°B .130°C .100°D .150°32.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140° 33.如图,下列条件中,能判定DE ∥AC 的是( )A.∠EDC=∠EFCB.∠AFE=∠ACDC.∠1=∠2D.∠3=∠4ba 2134.下列说法中,正确的是 ( )A.内错角相等.B.同旁内角互补.C.同角的补角相等.D.相等的角是对顶角. 35.若23,24mn==,则322m n -等于( )B.98 C.278 D.271636.下列各式中不能用平方差公式计算的是( ) A.))((y x y x +-- B.))((y x y x --+-C.))((y x y x ---D.))((y x y x +-+ 37.如图,下列推理错误的是( )A .∵∠1=∠2,∴c ∥dB .∵∠3=∠4,∴c ∥dC .∵∠1=∠3,∴ a ∥bD .∵∠1=∠4,∴a ∥b38.如果把分式2xx y-中的x 和y 都扩大5倍,那么分式的值将 ( )A.扩大5倍B.扩大10倍C.不变D.缩小5倍39.化简2932mmm --的结果是( )A.3-m m B.m m-3 C.3+-m m D.3+m m40.若要使分式23363(1)x x x -+-的值为整数,则整数x 可取的个数为( )A. 5个B. 2个C. 3个D. 4个41.为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化cd改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )ABCD42.一汽艇顺流航行36千米与逆流航行24千米的时间都是3小时,如果设汽艇在静水中的速度为每小时x千米,水流速度为每小时y千米,那么下面所列方程正确的是().A.()()336324x yx y-=⎧⎪⎨+=⎪⎩B.()()324336x yx y-=⎧⎪⎨+=⎪⎩C.3624x yx y-=⎧⎨+=⎩D.336324xy=⎧⎨=⎩43.若(x–4)(x+8)=x2+mx+n,则m、n的值分别为(). ,32 ,- 32 4 ,32 4 ,- 32 44.已知│3a-2b-12│+(a+2b+4)2=0,则().A.3ab=⎧⎨=⎩B.23ab=⎧⎨=-⎩C.32ab=-⎧⎨=⎩D.23ab=-⎧⎨=-⎩45.方程组3x 4y79x -10y250-=⎧⎨+=⎩①②的最简便的解法是().A.由①式得再代入②式B.由②式得再代入①式C.①×3得③式,再将③式与②式相减D.由②式得9x=10y-25,再代入①式46.△ABC的周长为30 cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4 cm,则△ABD的周长是A.22 cm B.20 cm C.18 cm D.15 cm47.如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为()A.20°B.40°C.50°D.60°48.下列运算正确的是()A.3a2-a2=3 B.(a2)3=a5C.a3·a6=a9D.(2a2)2=4a249.甲、乙两人练习跑步,如果乙在甲前面10m处,则两人同时跑,甲5s可追上乙;如果甲让乙先跑2s,则甲4s可追上乙.设甲的速度为x m/s,乙的速度为y m/s.下列方程组正确的是()A.5510442x yx y y=+⎧⎨=+⎩B.5510424x yx y y-=⎧⎨-=⎩C.5105442x yx y+=⎧⎨-=⎩D.5510424x yx y-=⎧⎨-=⎩50.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.参考答案1.D . 【解析】试题分析:A .2x 和4x 不是同类项,不能合并,原式错误,故本选项错误;B .2x 和3y 不是同类项,不能合并,原式错误,故本选项错误;C .633x x x ÷=,原式错误,故本选项错误;D .326()x x =,原式正确,故本选项正确. 故选D .考点:1.幂的乘方与积的乘方;2.同底数幂的除法;3.同类项. 2.B . 【解析】试题分析:∵∠1+∠3=90°,∠1=32°,∴∠3=90°﹣∠1=58°,∵直尺的两边互相平行,∴∠3=∠2=58°,故选B .考点:平行线的性质. 3.D 【解析】试题分析:D 选项可以利用完全平方公式进行因式分解. 考点:因式分解.4.A【解析】试题分析:根据平行线的性质可得:∠1+∠2=∠B=45°,则∠2=20°.考点:平行线的性质.5.D .【解析】 试题分析:∵6m x =,3n x =, ∴222()m n m n m n x x x x x -=÷=÷ =263÷=12.故选D .考点:整式的运算.6.D .【解析】试题分析:原式通分并利用同分母分式的加法法则计算,约分即可得到结果.原式故选D .考点:分式的加减法.7.C .【解析】试题分析:∵x+2=0∴x=-2当x=-2时,x-1=-2-1=-3≠0.故选C .考点:分式的值为零的条件.8.A .【解析】试题分析:(1)中的面积=a 2-b 2,(2)中梯形的面积=(2a+2b )(a-b )÷2=(a+b )(a-b ),两图形阴影面积相等,据此可得:a 2-b 2=(a+b )(a-b ).故选A ..考点:平方差公式的几何背景.9.C .【解析】试题分析:A 、3mn 与3n 不是同类项,不能合并,故该选项错误;B 、333301y y y y y -÷===≠,故该选项错误;C 、32326()x x x ⨯==,故该选项正确;D 、232356a a a a a +⋅==≠.故选C .考点:整式的运算.10.A .【解析】试题分析:∵AB ∥CD ∥EF ,∴∠AOE=∠OAB=∠ACD ,∵AC 平分∠BAD ,∴∠DAC=∠BAC ,∵BC ∥AD ,∴∠DAC=∠ACB ,∵∠AOE=∠FOC ,∴∠AOE=∠OAB=∠ACD=∠DAC=∠ACB=∠FOC ,∴与∠AOE (∠AOE 除外)相等的角有5个.故选A .考点:平行线的性质.11.B .【解析】试题分析:A .∵∠1=∠2,∴AB ∥DC ,故此选项错误;B .∵∠1=∠2,∴AB ∥CD ,故此选项正确;C .若∠A=∠3,无法判断AD ∥BC ,故此选项错误;D .若∠A+∠ADC=180°,则AB ∥DC ,故此选项错误;故选B .考点:平行线的判定.12.B .【解析】 试题分析:333()28n n x x ===,故选B .考点:幂的乘方与积的乘方.13.D【解析】试题分析:因为当x=0时,20x =,所以A .21x x -错误;因为当x=1时,x-1=0,所以B .11x x +-错误;因为当x= ±1时,x -1=0,所以C .11x x +- 错误;因为不论x 取何值,1x +>0,所以 D .11x x -+正确,故选:D . 考点:分式有意义的条件.14.C第7题【解析】试题分析:因为形如(0)A B B ≠的式子叫分式,简单地理解就是分母中有字母的式子是分式,所以22,,,3122x a b a x a a-++是分式,共3个,故选:C . 考点:分式.15.A【解析】试题分析:甲地的时间为x 天,则乙队的时间为(2x -10)天,根据甲的工作效率+乙的工作效率=合作的工作效率列出方程.考点:分式方程的应用.16.D【解析】试题分析:总人数=25÷50%=50(人);汽车的百分比=1-50%-30%=20%;骑车人数为10人,则25÷10=;步行的人数=50×30%=15(人).考点:统计图17.D【解析】试题分析:AF 平分023,13252BAC EF AC ∠∴∠=∠∴∠=∠==∠.故选D .考点:1角平分线性质;2平行线性质.18.C .【解析】试题分析:根据平行线的性质可得,30DEF CBF ∠=∠=︒ ,由折叠可知180CBA α∠+∠=︒ ,即302180α︒+∠=︒ ,解得α∠=75°.故选:C .考点:平行线的性质;折叠的性质.19.C .【解析】试题分析:根据平行线的性质可得,同位角相等,即∠4=∠5,而其它选项不是直线AB 、直线CD 被第三条直线所截得到同位角、内错角或同旁内角.故选:C .考点:平行线的性质.20.D .【解析】试题分析:A .了解在校大学生的主要娱乐方式,B .了解某市居民对废电池的处理情况,涉及到的数量太多,不适合作普查,只能作抽样调查;C .日光灯管厂要检测一批灯管的使用寿命,具有一定的破坏性,不适合作普查;D .对甲型H7N9流感患者的同一车厢的乘客进行医学检查,同一车厢内的乘客数量有限,也有必要了解每位乘客的情况,所以要作普查. 故选:D .考点:普查和抽样调查.21.D【解析】试题分析:设原来火车的平均速度为x 千米/时,需要的时间为210x小时; 动车的的平均速度为千米/时,需要的时间为2101.8x小时; 此时,甲地到乙地的行驶时间缩短了小时;∴﹣=;故选D考点:分式的应用22.D【解析】试题分析:分式的值为0,则分子=0,且分母≠0 故92-x =0,解得x=±3且()23+x ≠0 解得x ≠-3 综上,x=3故选D考点:分式有意义23.D【解析】试题分析:A 、任何非零实数的零次幂为1;B 、同底数幂乘法,底数不变,指数相加,原式=122a ;C 、同底数莫除法,底数不变,指数相减,原式=9a ;D 、幂的乘方法则,底数不变,指数相乘,计算正确.考点:幂的计算.24.B【解析】试题分析:根据两直线平行,同位角相等求出∠ABC 的度数,再根据角平分线的定义解答. 试题解析:∵EF ∥AB ,∠CEF=100°,∴∠ABC=∠CEF=100°,∵BD 平分∠ABC ,∴∠100°=50°. 故选B .考点:1.平行线的性质;2.角平分线的定义.25.C试题分析:根据阴影部分的面积相等的法则进行计算.考点:平方差公式的几何意义.26.C【解析】试题分析:同底数幂的除法法则,底数不变,指数相减.考点:同底数幂的除法.27.C【解析】试题分析:1000名考生的数学成绩是总体的一个样本;近8万多名考生的数学成绩是总体;每位考生的数学成绩是个体;1000是样本容量.考点:总体、样本、个体和样本容量.28.B【解析】试题分析:分式的值为零,则分式的分子为零,分母不为零.根据题意可得2x-4=0且x+2≠0,解得x=2.考点:分式的性质.29.D【解析】试题分析:因式分解是指将几个单项式的和的形式转化成几个单项式或多项式积的形式.考点:因式分解.30.A【解析】试题分析:通过过点C作平行线,得出∠ACB=45°+25°=70°.考点:平行线的性质.【解析】试题分析:因为AB ∥CD ,∠CDB=30°,所以∠CDB=∠ABD=30°,BE 平分∠ABC ,所以∠CBD=∠ABD=30°,所以∠C=180°-30°-30°=120°,故选:A.考点:1.平行线的性质;2.角的平分线;3.三角形的内角和.32.B【解析】试题分析:根据图形可得∠1与∠2的内错角互余,因为直线a 与直线b 平行,内错角相等,所以∠1与∠2互余,又∠1=40°,所以∠2=90°-40°=50°,故选:B.考点:1.互余的性质;2.平行线的性质.33.D【解析】试题分析:因为∠EDC 与∠EFC 既不是同位角又不是内错角,所以A 错误;因为∠AFE 与∠ACD 既不是同位角又不是内错角,所以B 错误;因为由∠1=∠2能得到EF ∥BC,所以C 错误;因为∠3与∠4是内错角,所以由∠3=∠4能得到DE ∥AC ,所以D 正确,故选:D. 考点:平行线的判定.34.C【解析】试题分析:A.只有两直线平行,内错角才相等,故本选项错误;B.两条平行线被第三条直线所截,同旁内角互补,故本选项错误;C.同角的补角相等,故本选项正确;D.如所有的直角都相等但不一定是对顶角,故本选项错误,故选C .考点:1.平行线的性质;2.补角的性质;3. 对顶角.35.D【解析】试题分析:因为23,24m n ==故选:D.考点:同底数幂的运算.36.A【解析】试题分析:A.含x、y的项都符号相反,不能用平方差公式计算;B.含x的项符号相同,含y 的项符号相反,能用平方差公式计算;C.含y的项符号相同,含x的项符号相反,能用平方差公式计算;D.含y的项符号相同,含x的项符号相反,能用平方差公式计算,故选:A.考点:平方差公式.37.C【解析】试题分析:A.∵∠1,∠2是内错角且∠1=∠2,∴c∥d ,所以A正确;B.∵∠3,∠4是同位角且∠3=∠4,∴c∥d所以B正确;C.∵∠1,∠3既不是同位角又不是内错角,即使∠1=∠3,也推不出a∥b,所以C错误;D.∵∠1,∠4是内错角且∠1=∠4,∴a∥b,所以D正确,故选:C.考点:平行线的判定.38.C【解析】试题分析:当x和y都扩大5倍时,原式2)xx y x y,则分式的大小不变.考点:分式的性质. 39.C【解析】试题分析:原式3)(3)(3)mm m=3m.考点:分式的化简40.C.【解析】试题分析:根据x3是(x-1)的倍数,可得答案.试题解析:由题意得,x-1=-3,1,3,故x-1=-3,x=-2;x-1=1,x=2;x-1=3,x=4,故选C.考点:分式的值.41.A【解析】试题分析:关键描述语是:“提前2天完成绿化改造任务”.等量关系为:原计划的工作时间-实际的工作时间=2.试题解析:若设原计划每天绿化(x)m,实际每天绿化(x+10)m,故选A.考点:由实际问题抽象出分式方程.42.B.【解析】试题分析:根据顺流航行的速度=静水的速度+水流速度,逆流航行的速度=静水的速度-水流速度,可知此汽艇的顺流航行的速度为(x+y)千米/时,逆流航行的速度为(x-y)千米/时,再根据路程=速度×时间分别列等式,联立方程组,即() ()324 336x yx y-=⎧⎪⎨+=⎪⎩.故选:B.考点:列方程组解应用题—行程问题.43.B.【解析】试题分析:根据整式的乘法的运算方法可知,(x–4)(x+8)=x2+4x-32,所以m=4,n=-32. 故选:B.考点:整式的乘法.44.B.【解析】试题分析:根据非负数的性质可知,3a-2b-12=0,a+2b+4=0,联立方程组,解得23 ab=⎧⎨=-⎩.考点:非负数的性质的应用;二元一次方程组的解法.45.C.【解析】试题分析:观察两个方程中未知数的系数,方程②中x的系数是方程①中x的系数是3倍,所以由①×3得③式,再将③式与②式相减,消去未知数x的方法较简便.故选:C.考点:解方程组的消元法.46.A【解析】试题分析:由折叠可得:AD=CD,AE=CE,因为△ABC的周长为30 cm,AE=4 cm,所以AB+AC=30-8=22cm,所以△ABD的周长=AB+BD+AD=AB+BD+CD=AB+AC=22cm,故选:A.考点:图形折叠的性质.47.C【解析】试题分析:∵EF平分∠CEG,∠1=80°∴∠FED=(180°-80°)/2=50°又∵AB∥CD∴∠2=180°-50°-80°=50°,故选C考点:1.角平分线的性质;2.平行线的性质48.C【解析】试题分析:A.3a2-a2=2a2,故错误;B.(a2)3=a6,故错误;C.a3·a6=a9,故正确;D.(2a2)2=4a4,故错误;故选C考点:幂的运算49.A.【解析】试题分析:此题中的等量关系:①小彬先跑10米,小明跑5秒就可追上小彬;②小彬先跑2秒,小明跑4秒可追上小彬.试题解析:根据小彬先跑10米,小明跑5秒就可追上小彬,得方程5x=5y+10;根据小彬先跑2秒,小明跑4秒可追上小彬得方程4x=4y+2y.故选A.考点:由实际问题抽象出二元一次方程组.50.C【解析】试题分析:根据题意,得故选:C.考点:分式方程。

相关文档
最新文档