2018初一数学下册期中考试试题与答案
【试卷+答案】2018联合体初一(下)数学期中

学思育2018【联合体】初一(下)数学期中试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.计算()23a -的结果是( )A .6aB .6a -C .5a -D .5a 2.下列运算正确的是( )A .a +2a =3a 2B .a 3·a 2=a 5C .(a 4)2=a 6D .a 3+a 4=a 73.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( )A .51.0510⨯B .51.0510-⨯C .51.0510-⨯D .710510-⨯4.下列图形中,由AB ∥CD ,能得到∠1=∠2的是()A.CB B .C .D .5.下列从左到右的变形,属于因式分解的是()A .()()2339x x x +-=-B .()22121x x x x --=--C .2323824a b a b =⋅D .()22211x x x -+=-6.下列整式乘法中,能运用平方差公式进行运算的是()A .()()22a b b a +-B .()()m b m b +-C .()()a b b a --D .()()x b x b --+7.下列命题中的真命题...是( )A .相等的角是对顶角B .内错角相等C .如果33a b =,那么22a b =D .两个角的两边分别平行,则这两个角相等学思堂教育8. 比较552、443、334的大小()A. 554433234<<B.334455432<<C.553344243<<D.443355342<<二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)9.计算:213-⎛⎫=⎪⎝⎭.10.计算:()()15x x+-的结果是.11.因式分解:228a-=.12. 若3ma=,2na=,则2m na-的值为.13. 命题“两直线平行,同旁内角互补”的逆命题是.14.若23a b+=-,22a b-=,则224a b-=.15.将两张长方形纸片按如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=°.16.如图,将边长为6cm的正方形ABCD先向上平移3cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为cm2.17.常见的“幂的运算”有:①同底数幂的乘法,②同底数幂的除法,③幂的乘方,④积的乘方,在“()()()22232326410a a a a a a a⋅==⋅=”的运算过程中,运用了上述幂的运算中的.18.如图a是长方形纸带,∠DEF=28°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE=°.A DCBEFC图a 图c(第18题)(第16题)D′′B′(第15题)12学思堂教育三、解答题(本大题共9小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)计算:⑴ ()32248222a a a a a -+⋅-÷; ⑵()()2a a b a b -+20.(8分)因式分解:⑴2xy x - ⑵2363x x -+21.(6分)先化简,再求值:()()()2412323x x x --+-,其中1x =-.22.(6分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点D 的对应点D ′.⑴根据特征画出平移后的△A′B′C′;⑵利用网格的特征,画出AC 边上的高BE 并标出 画法过程中的特征点;⑶△A′B′C′的面积为 .学思堂教育23.(8分)在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,在△ABC 中,已知∠ADE =∠B ,∠1=∠2,FG ⊥AB 于点G . 求证CD ⊥AB .证明:∵∠ADE =∠B (已知),∴ ( ),∵ DE ∥BC (已证), ∴ ( ), 又∵∠1=∠2(已知),∴ ( ), ∴CD ∥FG ( ),∴ (两直线平行,同位角相等), ∵ FG ⊥AB (已知), ∴∠FGB =90°(垂直的定义). 即∠CDB =∠FGB =90°, ∴CD ⊥AB . (垂直的定义).24.(8分)证明:平行于同一条直线的两条直线平行. 已知:如图, . 求证: . 证明:(第23题)ACDEFG 12cb a (第24题)学思堂教25. (8分)发现与探索。
2018-2019学年度七年级下册期中数学试卷(含答案和解析)

2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
2018-2019年度数学学科初一年级第二学期期中考试试题+答案

2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
人教版2018七年级(下)期中数学试卷5(含答案)

七年级(下)期中数学试卷5( 总分:120 时间:90分钟) 姓名:_____________一、选择题((每空3分,共30分)1.49的平方根是()A.7 B.﹣7 C.±7 D.2.下列各式表示正确的是()A.B.C.D.3.+的相反数是()A.﹣ B.﹣+C.﹣﹣D.+4.估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间5.下列说法正确的是()A.平面内,两条互相垂直的直线构成数轴B.坐标原点不属于任何象限C.x轴上的点必是纵坐标为0,横坐标不为0D.坐标为(3,4)与(4,3)表示同一个点6.下列图形中,由AB∥CD,能使∠1=∠2成立的是()A.B.C. D.7.已知:如图,下列条件中,不能判断直线L1∥L2的是()A.∠1=∠3 B.∠4=∠5C.∠2+∠4=180°D.∠2=∠38.下列命题中,真命题的个数有()①同一平面内,两条直线一定互相平行;②有一条公共边的角叫邻补角;③内错角相等.④对顶角相等;⑤从直线外一点到这条直线的垂线段,叫做点到直线的距离.A.0个 B.1个 C.2个 D.3个9.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4) B.(1,5) C.(1,﹣3)D.(﹣5,5)10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270° C.360° D.540°二.填空题(每空3分,共30分)11.(3分)在下列说法中:①0.09是0.81的平方根;②﹣9的平方根是±3;③(﹣5)2的算术平方根是﹣5;④是一个负数;⑤0的相反数和倒数都是0;⑥=±2;⑦已知a是实数,则=|a|;⑧全体实数和数轴上的点一一对应.正确的是(填序号).12.(3分)在下列各数中,无理数有个.,0,0.5757757775…(相邻两个5之间的7的个数逐次加1).13.(9分)①|﹣3|的值为;②比较大小:﹣﹣;③已知=4.098,=1.902,则=.14.(9分)三条直线AB,CD,EF相交于点O,如图所示,∠AOD的对顶角是,∠FOB的对顶角是,∠EOB的邻补角是.15.(3分)如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=.16.(9分)在平面直角坐标系中,点(3,﹣5)在第象限.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为;点B在y轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为.17.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:____________________ .18.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是______ .19.(3分)如图,折叠宽度相等的长方形纸条,若∠1=65°,则∠2=°.20.(3分)如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=度.三、解答题(50分)21.(10分)求下列各式的值:(1)﹣﹣(2).22.(10分)求下列x的值.(1)3x3=﹣81 (2)(x﹣1)2=4.23.(6分)完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换).∴CE∥BF().∴∠=∠C().又∵∠B=∠C(已知),∴∠=∠B(等量代换).∴AB∥CD().24.(6分)已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.25.(12分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化位置,并写出A′、B′、C′的坐标.(3)求出S△ABC .26.(8分)已知,求a+b﹣c的平方根.27.(8分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.七年级(下)期中数学试卷参考答案与试题解析一、选择题((每空2分,共20分)1.49的平方根是()A.7 B.﹣7 C.±7 D.【分析】根据一个正数有两个平方根,它们互为相反数解答即可.【解答】解:∵(±7)2=49,∴±=±7,故选:C.【点评】本题考查了平方根的概念,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根是解题的关键.2.下列各式表示正确的是()A.B.C.D.【分析】利用平方根的定义化简各项,即可做出判断.【解答】解:A、=5,本选项错误;B、±=±5,本选项错误;C、±=±5,本选项正确;D、±=±5,本选项错误.故选:C.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.3.+的相反数是()A.﹣ B.﹣+C.﹣﹣D.+【分析】利用相反数的定义求解.【解答】解:+的相反数是﹣(+)=﹣﹣,故选:C.【点评】本题主要考查了绝对值,解题的关键是去括号时注意符号变化.4.估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间【分析】11介于9与16之间,即9<11<16,则利用不等式的性质可以求得介于3与4之间.【解答】解:∵9<11<16,∴3<<4,即的值在3与4之间.故选:C.【点评】此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹比法”是估算的一般方法,也是常用方法.5.下列说法正确的是()A.平面内,两条互相垂直的直线构成数轴B.坐标原点不属于任何象限C.x轴上的点必是纵坐标为0,横坐标不为0D.坐标为(3,4)与(4,3)表示同一个点【分析】根据平面直角坐标系中相关知识点及点的坐标的相关知识找到正确选项即可.【解答】解:A、平面内,两条互相垂直的数轴构成平面直角坐标系,故错误;B、坐标原点在坐标轴上,不属于任何象限,正确;C、x轴上的点的纵坐标为0,横坐标可以为任何数,故错误;D、表示两个点,故错误;故选:B.【点评】考查点的坐标的易错知识;掌握平面直角坐标系的构成及点的坐标的相关知识是解决本题的关键.6.下列图形中,由AB∥CD,能使∠1=∠2成立的是()A.B.C.D.【分析】根据平行线的性质对各选项分析判断后利用排除法求解.【解答】解:A、由AB∥CD可得∠1+∠2=180°,故本选项错误;B、∵AB∥CD,∴∠1=∠3,又∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项正确;C、由AC∥BD得到∠1=∠2,由AB∥CD不能得到,故本选项错误;D、梯形ABCD是等腰梯形才可以有∠1=∠2,故本选项错误.故选:B.【点评】本题考查了平行线的性质,等腰梯形的性质,熟记性质并准确识图是解题的关键.7.已知:如图,下列条件中,不能判断直线L1∥L2的是()A.∠1=∠3 B.∠4=∠5 C.∠2+∠4=180°D.∠2=∠3【分析】依据平行线的判定定理即可判断.【解答】解:A、内错角相等,两直线平行,故正确;B、同位角相等,两直线平行,故正确;C、同旁内角互补,两直线平行,故正确;D、错误.故选:D.【点评】本题考查了平行线的判定定理,正确理解定理是关键.8.下列命题中,真命题的个数有()①同一平面内,两条直线一定互相平行;②有一条公共边的角叫邻补角;③内错角相等.④对顶角相等;⑤从直线外一点到这条直线的垂线段,叫做点到直线的距离.A.0个 B.1个 C.2个 D.3个【分析】根据同一平面内两直线的位置关系、邻补角、平行线的性质、对顶角及点到直线的距离等知识性质逐一进行判断即可.【解答】解:①同一平面内两直线的位置关系有相交、平行、重合,故错误,不是真命题;②两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角互为邻补角,所以有一条公共边的角叫邻补角错误,不是真命题;③只有两条直线平行,内错角相等,所以只说内错角相等错误,不是真命题;④对顶角相等是真命题;⑤从直线外一点到这条直线的垂线段,叫做点到直线的距离是假命题;所以④为真命题;故选:B.【点评】本题考查真命题的概念及同一平面内两直线的位置关系、邻补角、平行线的性质、对顶角及点到直线的距离等知识,关键准确掌握.9.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4) B.(1,5) C.(1,﹣3)D.(﹣5,5)【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P′的坐标即可得解.【解答】解:∵点P(﹣2,1)向右平移3个单位长度,∴点P′的横坐标为﹣2+3=1,∵向上平移4个单位长度,∴点P′的纵坐标为1+4=5,∴点P′的坐标为(1,5).故选:B.【点评】本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270° C.360° D.540°【分析】首先过点P作PA∥a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.【解答】解:过点P作PA∥a,则a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠NPA=180°,∴∠1+∠2+∠3=360°.故选:C.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.二.填空题(每空3分,共30分)11.(3分)在下列说法中:①0.09是0.81的平方根;②﹣9的平方根是±3;③(﹣5)2的算术平方根是﹣5;④是一个负数;⑤0的相反数和倒数都是0;⑥=±2;⑦已知a是实数,则=|a|;⑧全体实数和数轴上的点一一对应.正确的是⑦⑧(填序号).【分析】分别利用平方根以及算术平方根和二次根式的性质、实数与数轴分别分析得出即可.【解答】解:①0.9是0.81的平方根,故此选项错误;②﹣9没有平方根,故此选项错误;③(﹣5)2的算术平方根是5,故此选项错误;④无意义;⑤0没有倒数,故此选项错误;⑥=2,故此选项错误;⑦已知a是实数,则=|a|,正确;⑧全体实数和数轴上的点一一对应,正确.故答案为:⑦⑧.【点评】此题主要考查了实数有关概念,正确把握相关概念是解题关键.12.(3分)在下列各数中,无理数有7个.,0,0.5757757775…(相邻两个5之间的7的个数逐次加1).【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:=2,=,所给数据中无理数有:,,﹣π,,,﹣,0.5757757775…(相邻两个5之间的7的个数逐次加1),共7个.故答案为:7.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是熟练掌握无理数的三种形式.13.(9分)①|﹣3|的值为3﹣;②比较大小:﹣<﹣;③已知=4.098,=1.902,则=19.02.【分析】①先确定的正负,根据绝对值的性质进行解答即可得解;②先比较与的大小,再比较与的大小,进而得解;③因为一个数的小数点向左(或向右)移动3位,则其立方根的小数点向左(或向右)移动1位,据此即可得解.【解答】解:①∵6<9,∴<3,∴根据绝对值的性质:||=,故答案为:;②∵≈1.732,≈1.57,∴,∴﹣<,故答案为:<;③∵=1.902,∴===1.902×10=19.02,故答案为:19.02.【点评】本题主要考查了绝对值的性质,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,还考查了实数的大小比较,以及立方根的定义,注意总结.14.(9分)三条直线AB,CD,EF相交于点O,如图所示,∠AOD的对顶角是∠BOC,∠FOB的对顶角是∠AOE,∠EOB的邻补角是∠AOD和∠BOF.【分析】根据对顶角和邻补角的定义解答,注意两直线相交,一个角的对顶角只有一个,但邻补角有两个.【解答】解:对顶角和邻补角在两条直线相交的图形中产生,根据对顶角、邻补角的定义得:∠AOD的对顶角是∠BOC,∠FOB的对顶角是∠AOE,∠EOB的邻补角是∠AOE和∠BOF.【点评】本题考查对顶角和邻补角的定义,是一个需要熟记的内容.15.(3分)如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=33°.【分析】根据平移的性质,得对应角∠EDF=∠A,即可得∠EAF的度数.【解答】解:在△ABC中,∠A=33°,∴由平移中对应角相等,得∠EAF=∠A=33°.故答案为:33°.【点评】此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.16.(9分)在平面直角坐标系中,点(3,﹣5)在第四象限.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为(5,0);点B在y轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为(0,﹣5).【分析】根据各象限内点的坐标特征解答;根据x轴正半轴上点的坐标特征解答;根据y轴负半轴上点的坐标特征解答.【解答】解:点(3,﹣5)在第四象限;点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为(5,0);点B在y轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为(0,﹣5).故答案为:四;(5,0);(0,﹣5).【点评】本题考查了点的坐标特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣);还要熟记坐标轴上的点的特征.17.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.18.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.【点评】本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.19.(3分)如图,折叠宽度相等的长方形纸条,若∠1=65°,则∠2=50°.【分析】首先根据折叠可得∠3=∠4,再根据平行线的性质可得∠4=∠3=∠1=65°,再由平角定义可得∠2的度数.【解答】解:根据折叠可得∠3=∠4,∵AB∥CD,∠1=65°,∴∠4=65°,∴∠3=65°,∴∠2=180°﹣65°×2=50°.故答案为:50;【点评】此题主要考查了平行线的性质,以及翻折变换,关键是掌握两直线平行,内错角相等.20.(3分)如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=30度.【分析】根据平行线的性质得到∠EFD=∠1,再由FG平分∠EFD即可得到.【解答】解:∵AB∥CD∴∠EFD=∠1=60°又∵FG平分∠EFD.∴∠2=∠EFD=30°.【点评】本题主要考查了两直线平行,同位角相等.三、解答题(50分)21.(8分)求下列各式的值:(1)﹣﹣(2).【分析】(1)原式利用平方根,立方根,以及二次根式的性质计算即可得到结果;(2)原式利用算术平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=3﹣6+3=0;(2)原式=+0.5﹣=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)求下列x的值.(1)3x3=﹣81(2)(x﹣1)2=4.【分析】(1)根据立方根,即可解答;(2)根据平方根.即可解答.【解答】解:(1)3x3=﹣81,x3=﹣27,x=﹣3.(2)(x﹣1)2=4,x﹣1=±2,解得:x1=3,x2=﹣1.【点评】本题考查了立方根、平方根,解决本题的关键是熟记立方根、平方根的定义.23.(6分)完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换).∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换).∴AB∥CD(内错角相等,两直线平行).【分析】先由对顶的定义得到∠1=∠CGD,则∠2=∠CGD,根据平行线的判定得到CE∥BF,则∠C=∠BFD,易得∠B=∠BFD,然后根据平行线的判定即可得到AB ∥CD.【解答】解:答案为:对顶角相等;同位角相等,两直线平行;BFD两直线平行,同位角相等;BFD;内错角相等,两直线平行.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;同位角相等,两直线平行;两直线平行,同位角相等.24.(6分)已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.【分析】由∠ADE=∠B可判定DE∥BC,即可知∠DEC与∠C互补,即可求解.【解答】解:∵∠ADE=∠B,∴DE∥BC,∴∠DEC+∠C=180°,又∵∠DEC=115°,∴∠C=65°.【点评】此题考查了平行线的判定及平行线的性质,属于简单题型.25.(11分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化位置,并写出A′、B′、C′的坐标..(3)求出S△ABC【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(3)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)△A′B′C′如图所示,A′(1,1),B′(6,4),C′(3,5);=5×4﹣×5×3﹣×1×3﹣×2×4,(3)S△ABC=20﹣7.5﹣1.5﹣4,=20﹣13,=7.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.26.(5分)已知,求a+b﹣c的平方根.【分析】根据非负数的性质列出方程求出a、b、c的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:则a+b﹣c=2+1﹣(﹣1)=4,则a+b﹣c的平方根是:±2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.27.(8分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.【分析】利用平行线的判定及性质,通过证明∠1=∠BCD=∠2达到目的.【解答】证明:∵∠B=∠ADE(已知),∴DE∥BC(同位角相等,两直线平行)∴∠1=∠DCB.(两直线平行,内错角相等)∵CD⊥AB,GF⊥AB,∴CD∥FG(平面内,垂直于同一条直线的两条直线平行),∴∠2=∠DCB.(两直线平行,同位角相等)∴∠1=∠2.(等量代换)【点评】此题主要考查了平行线的判定及性质.性质:1、两直线平行,同位角相等;2、两直线平行,内错角相等;3、两直线平行,同旁内角互补.判定:1、同位角相等,两直线平行;2、内错角相等,两直线平行;3、同旁内角互补,两直线平行.。
2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。
2018年华师版七年级下期数学期中考试试卷含答案

2018年七年级下期数学期中考试试卷(问卷部分)考生注意:1。
本学科试卷共四道大题,满分120分。
2。
本试卷的所有......作答一律答.....在答卷部分.....,在问卷部分作答而答卷部分无作答则无.................效.,不计分数....。
一、选择题(本大题共10个小题,每小题3分,共30分。
)1.若关于x 的方程1(2)39a a x --+=是一元一次方程,则该方程的解为( )。
A 。
0B 。
—3C 。
2D 。
32。
已知一元一次不等式组2135(1)43x x x x +≤+⎧⎨-≥-⎩,下列说法正确的是( )。
A 。
有无数个解 B.无解 C.2x ≠ D 。
有唯一解2x =3.方程12123x x+--=去分母后正确的是( )。
A.3(1)2(2)1x x +--= B.2(1)3(2)6x x +--= C.3(1)2(2)6x x +--= D.3(1)421x x +--=4.若2个单项式23a b x y +与42a bx y -的和仍是单项式,则ab 的值为( ).A.8B.3C.—3 D 。
25.把不等式3(1)123x x +-≤+的解集在数轴上表示出来,正确的是( ).A.B 。
C 。
D.6。
解方程组272a b a b +=⎧⎨-=⎩,①,②的最佳方法是( ).A 。
代入法消去a ,由②得2a b =+B 。
代入法消去b ,由①得72b a =- C.加减法消去a ,①—②×2得33b = D 。
加减法消去b ,①+②得39a =7.10位同学利用“五一国际劳动节"放假时间,为了响应国家“绿化河山,美丽中国”的号召,共植树36棵,其中男生每人植树4棵,女生每人植树3棵。
设男生有x 人,女生有y 人,根据题意,列方程正确的是( )。
A 。
364310x y x y +=⎧⎨+=⎩ B.103436x y x y +=⎧⎨+=⎩ C.363410x y x y +=⎧⎨+=⎩ D 。
2018-2019学年七年级(下)期中数学试卷(有答案和解析)

2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.计算a6÷a2的结果是( )A.a3 B.a4 C.a8 D.a122.二元一次方程2x+y=11的非负整数解有( )A.1个 B.2个 C.6个 D.无数个3.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A、C两点之间 B.E、G两点之间C.B、F两点之间 D.G、H两点之间4.方程3x+2y=1和2x=y+3的公共解是( )A. B. C. D.5.若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式、如在代数式a+b+c中,把a和b互相替换,得b+a+c;把a和c互相替换,得c+b+a;把b和c…;a+b+c 就是完全对称式、下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a其中为完全对称式的是( )A.①② B.②③ C.①③ D.①②③6.已知方程组的解满足x+y=3,则k的值为( )A.10 B.8 C.2 D.﹣87.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是( )A. B.C .D .8.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片的小正方形卡片((a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣15,则小正方形卡片的面积是( )A .10B .8C .2D .5二、填空题(每题3分,共30分)9.某细胞的直径约为0.0000102米,用科学记数法表示为 米. 10.计算:1012﹣992= .11.若(a ﹣2)x |a |﹣1+3y =1是二元一次方程,则a = .12.已知(m +n )2=7,(m ﹣n )2=3,则m 2+n 2= .13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= °.14.设A =(x ﹣3)(x ﹣7),B =(x ﹣2)(x ﹣8),则A 、B 的大小关系为 .15.如图,面积为3cm 2的△ABC 纸片沿BC 方向平移至△DEF 的位置,平移的距离是BC 长的2倍,则△ABC 纸片扫过的面积为 .16.如果4x 2﹣mxy +9y 2是一个完全平方式,则m =.17.如果方程组的解中x 与y 的值相等,那么a 的值是 .18.对于正整数m ,若m =pq (p ≥q >0,且p ,q 为整数),当p ﹣q 最小时,则称pq 为m 的“最佳分解”,并规定f (m )=(如:12的分解有12×1,6×2,4×3,其中,4×3为12的最佳分解,则f (12)=).关于f (m )有下列判断:①f (27)=3;②f (13)=;③f (2018)=;④f (2)=f (32);⑤若m 是一个完全平方数,则f (m )=1.其中,正确判断的序号是 . 三、解答题(共96分) 19.(8分)计算(1)(3.14﹣π)0+(﹣4)2﹣()﹣1(2)(x ﹣3)2﹣(x +2)(x ﹣2)20.(8分)因式分解 (1)a 2﹣25 (2)xy 2﹣4xy +4x 21.(8分)解方程组 (1) (2)22.(8分)先化简再求值:4(a +2)2﹣7(a +3)(a ﹣3)+3(a ﹣1)2,其中a 是最小的正整数. 23.(8分)如图,EG ⊥BC 与点G ,∠BFG =∠DAC ,AD 平分∠BAC ,试判断AD 与BC 的位置关系,并说明理由.24.(8分)小明和小丽同解一个二元一次方程组,小明正确解得,小丽因抄错了c ,解得.已知小丽除抄错c 外没有发生其他错误,求a +b +c 的值.25.(12分)拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2.(1)则图③可以解释为等式: .(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a 2+7ab +2b 2,并通过拼图对多项式3a 2+7ab +2b 2因式分解:3a 2+7ab +2b 2= . (3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(x >y ),结合图案,指出以下关系式:(1)xy =;(2)x +y =m ;(3)x 2﹣y 2=m •n ;(4)x 2+y 2=其中正确的关系式的个数有( ) A .1个 B .2个 C .3个 D .4个. 26.(12分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn +2n 2﹣6n +9=0,求m 和n 的值. ∵m 2+2mn +2n 2﹣6n +9=0∴m 2+2mn +n 2+n 2﹣6n +9=0∴(m +n )2+(n ﹣3)2=0∴m +n =0,n ﹣3=0∴m =﹣3,n =3 根据你的观察,探究下面的问题:(1)若x 2+4x +4+y 2﹣8y +16=0,求的值.(2)试说明不论x ,y 取什么有理数时,多项式x 2+y 2﹣2x +2y +3的值总是正数.(3)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=10a +8b ﹣41,且c 比a 、b 都大,求c 的取值范围.27.(12分)某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省线的租车方案,并求出最少租金.28.(12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= °;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减计算即可. 【解答】解:a6÷a2=a6﹣2=a4.故选:B.【点评】本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.2.【分析】最小的非负整数为0,把x=0,x=1,x=2,x=3…依次代入二元一次方程2x+y=11,求y值,直至y为负数,从而得到答案.【解答】解:最小的非负整数为0,当x=0时,0+y=11,解得:y=11,当x=1时,2+y=11,解得:y=9,当x=2时,4+y=11,解得:y=7,当x=3时,6+y=11,解得:y=5,当x=4时,8+y=11,解得:y=3,当x=5时,10+y=11,解得:y=1,当x=6时,12+y=11,解得:y=﹣1(不合题意,舍去)即当x≥6时,不合题意,即二元一次方程2x+y=11的非负整数解有6个,故选:C.【点评】本题考查解二元一次方程,正确掌握代入法是解题的关键.3.【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释. 【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.【分析】组成方程组求解即可.【解答】解:解方程组得,故选:D.【点评】本题主要考查了二元一次方程的解,解题的关键是正确求出方程组的解.5.【分析】由于将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式,由于将代数式中的任意两个字母互相替换,代数式不变,根据这个定义分别将①②③进行替换,看它们都有没有改变,由此即可确定是否完全对称式. 【解答】解:①∵(a﹣b)2=(b﹣a)2,∴①是完全对称式;②ab+bc+ca中把a和b互相替换得ab+bc+ca,∴②是完全对称式;③a2b+b2c+c2a中把a和b互相替换得b2a+a2c+c2b,和原来不相等,∴不是完全对称式;故①②正确.故选:A.【点评】此题是一个阅读材料题,考查了完全平方公式,难点在于读懂题意,然后才能正确利用题意解决问题.6.【分析】理解清楚题意,运用三元一次方程组的知识,解出K的数值.【解答】解:由题意可得,2×①﹣②得y=k﹣,②﹣③得x=﹣2,代入③得y=5,则k﹣=5,解得k=8.故选:B.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【分析】此题中的等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.【点评】此题是追及问题.注意:无论是哪一个等量关系中,总是甲跑的路程=乙跑的路程. 8.【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,根据整式是混合运算法则计算即可.【解答】解:图3中的阴影部分的面积为:(a﹣b)2,图2中的阴影部分的面积为:(2b﹣a)2,由题意得,(a﹣b)2﹣(2b﹣a)2=2ab﹣15,整理得,b2=5,则小正方形卡片的面积是5,故选:D.【点评】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键. 二、填空题(每题3分,共30分)9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000102=1.02×10﹣5,故答案为:1.02×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】直接利用平方差公式分解因式进而计算得出即可.【解答】解:1012﹣992=(101+99)×(101﹣99)=400.故答案为:400.【点评】此题主要考查了平方差公式的应用,熟练掌握平方差公式是解题关键.11.【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0. 【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵(m+n)2=m2+n2+2mn=7①,(m﹣n)2=m2+n2﹣2mn=3②,∴①+②得:2(m2+n2)=10,则m2+n2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.13.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.14.【分析】根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案. 【解答】解:∵A=(x﹣3)(x﹣7)=x2﹣10x+21,B=(x﹣2)(x﹣8)=x2﹣10x+16, ∴A﹣B=x2﹣10x+21﹣(x2﹣10x+16)=5>0,∴A>B,故答案为:A>B.【点评】本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.15.【分析】根据平移的性质可以知道四边形ACED 的面积是三个△ABC 的面积,△ABC 纸片扫过的面积为四边形ABDF 的面积=5个△ABC 的面积; 【解答】解:∵平移的距离是边BC 长的两倍, ∴BC =CE =EF ,∴四边形ACED 的面积是三个△ABC 的面积; ∴△ABC 纸片扫过的面积=S四边形ABFD=5×3=15cm 2,【点评】【点评】考查了平移的性质,考查了平移的性质,考查了平移的性质,本题的关键是得出四边形本题的关键是得出四边形ACED 的面积是三个△ABC 的面积.然后根据已知条件计算.16.【分析】这里首末两项是2x 和3y 这两个数的平方,那么中间一项为加上或减去2x 和3y 积的2倍.【解答】解:∵4x 2﹣mxy +9y 2是一个完全平方式, ∴﹣mxy =±2×2x ×3y , ∴m =±12.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 17.【分析】把y =x 代入方程组求出a 的值即可. 【解答】解:把y =x 代入方程组得:,解得:,则a 的值是3, 故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.【分析】先分解因数,进而找出最佳分解,即可得出结论. 【解答】解:①∵27的分解有27×1,9×3, ∴9×3为27的最佳分解,则f (12)==,故说法①错误;②∵13的分解有13×1,∴13×1为13的最佳分解,则f (13)=,故说法②正确;③∵2018的分解有2018×1,1009×2,∴1009×2为2018的最佳分解,则f (2018)=,故说法③错误;④∵2的分解有2×1,∴2×1为2的最佳分解,则f (2)=,∵32的分解有32×1,16×2,8×4,∴8×4为32的最佳分解,则f (22)==,∴f (2)=f (32),故说法④正确;⑤∵m 是一个完全平方数,设m =n 2(m >0),∴n ×n 为m 的最佳分解,则f (m )==1,故说法⑤正确,∴正确判断的序号为②④⑤,故答案为②④⑤.【点评】此题主要考查了新定义,分解因数,完全平方数的特点,能正确分解因数是解本题的关键.三、解答题(共96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(1)原式=1+16﹣2=15;(2)原式=x 2﹣6x +9﹣x 2+4=﹣6x +13.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【分析】(1)两项考虑平方差公式;(2)提取公因式x后,再用完全平方公式.【解答】解:(1)原式=(a+5)(a﹣5);(2)原式=x(y2﹣4y+4)=x(y﹣2)2.【点评】本题考查了因式分解的平方差公式和完全平方公式.题目比较简单,掌握公式是关键.21.【分析】(1)用代入法求解方程组比较简便;(2)变形2x+y=1,可用代入法求解,亦可①×2﹣②用加减法求解.【解答】解:(1),把②代入①,得2(1﹣y)+4y=5,解得,y=,把y=代入②,得x=1﹣=﹣.∴原方程组的解为.(2)由①,得y=1﹣2x③,把③代入②,得5x+2(1﹣2x)=3,解得x=1把x=1代入③,得y=1﹣2×1=﹣1.所以原方程组的解为.【点评】本题考查的是二元一次方程组的解法,题目相对简单,掌握代入、加减消元法是解决本题的关键.22.【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【解答】解:原式=4(a2+4a+4)﹣7(a2﹣9)+3(a2﹣2a+1)=4a 2+16a +16﹣7a 2+63+3a 2﹣6a +3=10a +82,最小的正整数是1,则a =1,原式=10+82=92,.【点评】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可. 23.【分析】根据角平分线的定义可得∠BAD =∠DAC ,从而可得∠BFG =∠BAD ,再根据同位角相等,两直线平行可得EG ∥AD ,然后根据EG ⊥BC 即可证明AD ⊥BC .【解答】解:AD ⊥BC .理由如下:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFG =∠DAC ,∴∠BFG =∠BAD ,∴EG ∥AD ,∴∠EGC =∠ADC ,又∵EG ⊥BC ,∴∠EGC =90°,∴∠ADC =90°,∴AD ⊥BC .【点评】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键. 24.【分析】因为小明的解正确,所以可以代入任何一个方程,代入①可求c 的值,代入②得a ﹣b =2;因为小丽抄错了c ,因此可以代入②中,得a ﹣3b =1,建立方程组,可以得出a 、b 的值,从而求出结论.【解答】解:将代入cx ﹣3y =﹣2①得,c +3=﹣2,c =﹣5, 将代入ax +by =2②得,a ﹣b =2③, 将代入②得,2a ﹣6b =2,a ﹣3b =1④,将③,④联立,, 解之得,所以.【点评】本题考查了二元一次方程组的解,要求方程组的字母系数,通常采用代入法,将正确的解代入即可.25.【分析】(1)看图即可得出所求的式子;(2)画出的矩形边长分别为(3a+b)和(a+2b)即可;(3)根据图中每个图形的面积之间的关系即可判断出正确的有几个.【解答】解:(1)由分析知:图③所表示的等式为:(2a+b)(a+2b)=2a2+5ab+2b2;(2)示意图如下3a2+7ab+2b2=(3a+b)(a+2b);(3)D.【点评】此题考查利用图形面积研究因式分解,同时也加深了对多项式乘多项式的理解. 26.【分析】(1)已知等式利用完全平方公式整理配方后,求出x与y的值,即可求出所求;(2)原式配方变形后,利用非负数的性质判断即可;(3)已知等式利用完全平方公式配方后,利用非负数的性质求出a与b的值,即可求出c的范围.【解答】解:(1)已知等式整理得:(x+2)2+(y﹣4)2=0,可得x+2=0,y﹣4=0,解得:x=﹣2,y=4,则原式=﹣2;(2)∵(x﹣1)2≥0,(y+1)2≥0,∴原式=(x﹣1)2+(y+1)2+1≥1>0,则不论x,y取什么有理数时,多项式x2+y2﹣2x+2y+3的值总是正数;(3)已知等式整理得:(a﹣5)2+(b﹣4)2=0,可得a﹣5=0,b﹣4=0,解得:a=5,b=4,则c的范围是5<c<9.【点评】此题考查了配方法的应用,非负数的性质:偶次幂,以及三角形三边关系,熟练掌握完全平方公式是解本题的关键.27.【分析】(1)设每辆小客车能坐x人,每辆大客车能坐y人,根据题意可得等量关系:3辆小客车座的人数+1辆大客车座的人数=105人;1辆小客车座的人数+2辆大客车座的人数=110人,根据等量关系列出方程组,再解即可;(2)①根据题意可得小客车m辆运的人数+大客车n辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金150元,大客车每辆租金250元分别计算出租金即可.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出二元一次方程或方程组.28.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得 t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点评】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.。
2017-2018学年度下学期七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A.7×10﹣6B.0.7×10﹣6C.7×10﹣7D.70×10﹣82.下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.D.2a3•3a2=6a53.16m÷4n÷2等于()A.2m﹣n﹣1B.22m﹣n﹣2C.23m﹣2n﹣1D.24m﹣2n﹣14.若9x2+ax+16是完全平方式,则a应是()A.12B.﹣12C.±12D.±245.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)6.下列三条线段能构成三角形的是()A.1,2,3B.3,4,5C.7,10,18D.4,12,77.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0D.q+2p=08.下列分解因式正确的是()A.a﹣16a3=(1+4a)(a﹣4a2)B.3x﹣6y+3=3(x﹣2y)C.x2﹣x﹣2=(x+2)(x﹣1)D.﹣x2+2x﹣1=﹣(x﹣1)29.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°10.如图,有下列判定,其中正确的有()①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+∠4=180°,则AD∥BC.A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分)11.五边形的内角和是°.12.计算﹣a3•(﹣a)2=.13.(x﹣1)0=1成立的条件是.14.若x+3y﹣2=0,则2x•8y=.15.如果,那么a,b,c的大小关系为.16.若(x﹣3)(x+m)=x2+nx﹣15,则n=.17.已知x﹣y=5,(x+y)2=49,则x2+y2的值等于.18.如图a是长方形纸带,∠DEF=22°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是.三、解答题(共9小题,满分64分)19.(12分)计算(1)2a(a﹣2a3)﹣(﹣3a2)2;(2)(﹣1)2017+(π﹣3.14)0﹣()﹣2;(3)(x﹣3)(x+2)﹣(x+1)220.(8分)分解因式(1)4a2x2+16ax2y+16x2y2;(2)a2(a﹣3)﹣a+3.21.(5分)若33×9m+4÷272m﹣1的值为729,求m的值.22.(5分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.23.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.24.(6分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.25.(6分)如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=70°,则∠ABC+∠BCD=°;∠E=°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F,所添加的条件为.26.(8分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.27.(8分)已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故选:C.【点评】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】分别利用完全平方公式以及同底数幂的乘法和积的乘方计算分析得出即可.【解答】解:A、(﹣2a3)2=4a6,故此选项错误;B、(a﹣b)2=a2+b2﹣2ab,故此选项错误;C、=2a+,故此选项错误;D、2a3•3a2=6a5,此选项正确.故选:D.【点评】此题主要考查了完全平方公式的应用以及同底数幂的乘法和积的乘方等知识,熟练掌握完全平方公式的形式是解题关键.3.【分析】先转化为底数为2的幂的除法,再利用同底数幂相除,底数不变指数相减计算即可.【解答】解:16m÷4n÷2,=24m÷22n÷2,=24m﹣2n﹣1.故选:D.【点评】本题考查同底数幂的除法,转化为同底数幂的除法是解题的关键.4.【分析】利用完全平方公式的结构特征判断即可得到a的值.【解答】解:∵9x2+ax+16是完全平方式,∴a=±24.故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点评】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.6.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,不符合题意;B、3+4>5,能够组成三角形,符合题意;C、7+10<18,不能够组成三角形,不符合题意;D、4+7<12,不能够组成三角形,不符合题意.故选:B.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.8.【分析】分别利用提取公因式法以及公式法和十字相乘法分解因式进而得出答案.【解答】解:A、a﹣16a3=a(1+4a)(1﹣4a),故A错误;B、3x﹣6y+3=3(x﹣2y+1),故B错误;C、x2﹣x﹣2=(x﹣2)(x+1),故C错误;D、﹣x2+2x﹣1=﹣(x﹣1)2,故D正确.故选:D.【点评】此题主要考查了提取公因式法以及十字相乘法和公式法分解因式,熟练应用公式法分解因式是解题关键.9.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB,根据平行线的性质求出∠ABD+∠EDB,即可求出答案.【解答】解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=180°﹣∠ABC+180°﹣∠EDC=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故选:D.【点评】本题考查了平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.10.【分析】根据等角对等边,平行线的性质与判定对各小题分析判断即可得解.【解答】解:①若∠1=∠3,则AB=AD,故本小题错误;②若AD∥BC,则∠2=∠3,故本小题错误;③若∠1=∠3,AD∥BC,则∠1=∠2,正确;④若∠C+∠3+∠4=180°,则AD∥BC正确;综上所述,正确的有③④共2个.故选:B.【点评】本题考查了平行线的判定与性质,是基础题,准确识图并熟记平行线的判定方法与性质是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分)11.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.12.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:﹣a3•(﹣a)2=﹣a3•a2=﹣a5.故答案为:﹣a5.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.13.【分析】根据零指数幂:a0=1(a≠0),求解即可.【解答】解:由题意得,x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】本题考查了零指数幂,解答本题的关键是掌握a0=1(a≠0).14.【分析】原式利用幂的乘方及积的乘方运算法则变形,将已知等式变形后代入计算即可求出值.【解答】解:∵x+3y﹣2=0,即x+3y=2,∴原式=2x+3y=22=4.故答案为:4【点评】此题考查了幂的乘方与积的乘方,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.15.【分析】先依据零指数幂的性质和负整数指数幂的性质求得a,b,c的值,然后在比较大小即可.【解答】解:∵a=(﹣0.1)0=1,b=(﹣0.1)﹣1=﹣=﹣10,c=(﹣)2=,∴a>c>b.故答案为:a>c>b.【点评】本题主要考查的是零指数幂的性质和负整数指数幂的性质,掌握相关性质是解题的关键.16.【分析】首先利用多项式乘以多项式计算出(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x ﹣3m,进而可得x2+(m﹣3)x﹣3m=x2+nx﹣15,从而可得m﹣3=n,﹣3m=﹣15,再解即可.【解答】解:(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x﹣3m,∵(x﹣3)(x+m)=x2+nx﹣15,∴x2+(m﹣3)x﹣3m=x2+nx﹣15,∴m﹣3=n,﹣3m=﹣15,解得:m=5,n=2,故答案为:2.【点评】此题主要考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17.【分析】首先得出x2+y2﹣2xy=25①,进而得出x2+y2+2xy=49②,求出x2+y2的值即可.【解答】解:∵x﹣y=5,∴x2+y2﹣2xy=25①,∵(x+y)2=49,∴x2+y2+2xy=49②,∴①+②得:2(x2+y2)=74,∴x2+y2=37.故答案为:37.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.18.【分析】根据两直线平行,内错角相等可得∠EFB=∠DEF,再根据翻折的性质,图c中∠EFB 处重叠了3层,然后根据根据∠CFE=180°﹣3∠EFB代入数据进行计算即可得解.【解答】解:∵∠DEF=22°,长方形ABCD的对边AD∥BC,∴∠EFB=∠DEF=22°,由折叠,∠EFB处重叠了3层,∴∠CFE=180°﹣3∠EFB=180°﹣3×22°=114°.故答案为:114°.【点评】本题考查了翻折变换,平行线的性质,观察图形判断出图c中∠EFB处重叠了3层是解题的关键.三、解答题(共9小题,满分64分)19.【分析】(1)先计算乘法和乘方,再合并同类项即可得;(2)先计算乘方、零指数幂和负整数指数幂,再计算加减可得;(3)先计算乘法和完全平方式,再去括号、合并同类项即可得.【解答】解:(1)原式=2a2﹣4a4﹣9a4=2a2﹣13a4;(2)原式=﹣1+1﹣9=﹣9;(3)原式=x2+2x﹣3x﹣6﹣(x2+2x+1)=x2+2x﹣3x﹣6﹣x2﹣2x﹣1=﹣3x﹣7.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.20.【分析】(1)首先提取公因式4x2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式(a﹣3),再利用平方差公式分解因式即可.【解答】解:(1)4a2x2+16ax2y+16x2y2;=4x2(a2+4ay+4y2)=4x2(a+2y)2;(2)a2(a﹣3)﹣a+3=(a﹣3)(a2﹣1)=(a﹣3)(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得:m=2.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.22.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=6,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.23.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.24.【分析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.【解答】解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.25.【分析】(1)先根据三角形内角和定理求出∠FBC+∠BCF=180°﹣∠F=110°,再由角平分线定义得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.由角平分线定义得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,然后根据三角形内角和定理求出∠E =180°﹣(∠DAE+∠ADE)=110°;(2)由四边形ABCD的内角和为360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根据三角形内角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.【解答】解:(1)∵∠F=70,∴∠FBC+∠BCF=180°﹣∠F=110°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,∴∠E=180°﹣(∠DAE+∠ADE)=110°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为220°;110°;AB∥CD.【点评】本题考查了三角形、四边形内角和定理,角平分线定义,平行线的判定,等式的性质,利用数形结合,理清角度之间的关系是解题的关键.26.【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=﹣2.【点评】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.27.【分析】(1)①利用角平分线的性质求出∠ABO的度数;②利用角平分线的性质和平行线的性质求得∠OAC=60°;(2)需要分类讨论:当点D在线段OB上和点D在射线BE上两种情况.【解答】解:(1)①∵∠MON=80°,OE平分∠MON.∴∠AOB=∠BON=40°,∵AB∥ON,∴∠ABO=40°故答案是:40°;②如答图1,∵∠MON=80°,且OE平分∠MON,∴∠1=∠2=40°,又∵AB∥ON,∴∠3=∠1=40°,∵∠BAD=∠ABD,∴∠BAD=40°∴∠4=80°,∴∠OAC=60°,即x=60°.(2)存在这样的x,①如答图2,当点D在线段OB上时,若∠BAD=∠ABD,则x=40°;若∠BAD=∠BDA,则x=25°;若∠ADB=∠ABD,则x=10°.②如答图3,当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=115°,C不在ON上,舍去;综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=10°、25°、40°.【点评】本题考查的是平行线的性质,三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年七年级数学下册期中测试卷
一、选择题.(每空3分,共18分)
1. 如图,直线AB 、CD 相交于点O,
若
∠1+∠2=120°,则∠BOC 等于 ( )
A.120°
B.140°
C.150°
D.160°
2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )
A .30° B.25° C.20° D.15°
3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )
A .(-1,1)
B .(-2,-1)
C .(-3,1)
D .(1,-2) 4.下列现象属于平移的是( )
A .冷水加热过程中小气泡上升成为大气泡
B 急刹车时汽车在地面上的滑动
C .投篮时的篮球运动
D .随风飘动的树叶在空中的运动 5.下列各数中,是无理数的为( ) A .39 B. 3.14 C. 4 D. 722-
6.若a 2=9, 3b =-2,则a+b=( )
A. -5
B. -11
C. -5 或 -11
D. ±5或±11
班级: 姓名: 考号:
密 封 线
二、填空.(每小题3分,共27分)
7.把命题“平行于同一条直线的两条直线平行”改成如果……那么形式:_________________________________________________________
8.一大门的栏杆如右图所示,BA⊥AE,若CD∥AE,则∠
ABC+∠BCD=____度.
9.如右图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;
③∠4与∠1是内错角;④∠1与∠3是同位角。
其中正确的是
_______(填序号).
10.在数轴上,-2对应的点为A,点B与点A的距离为7,
则点B表示的数为_________.
11.绝对值小于7的所有整数有_____________.
12.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1B1的坐标分别为(2,a)、(b,3),则a+b=____________.
13.第二象限内的点P(x,y),满足|x|=9,y2=4,则点P的坐标是______.
14.若x3m-3-2y n-1=5 是二元一次方程,则M n=__________
15.平方根节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如2009年的3月3日,2016年的4月4日,请你写出本世纪内你喜欢的一个平方根节:_______年_____月_____日.(题中所举例子除外)
三、解答题. 16. 解方程组(8分)
⎩⎨⎧=-=+152y x y x ⎩
⎨⎧=-=+623432y x y x
17.(6分)如右图,先填空后证明. 已知: ∠1+∠2=180°求证:a ∥b 证明:∵ ∠1=∠3( ), ∠1+∠2=180°( ) ∴ ∠3+∠2=180°( ) ∴ a ∥b ( ) 请你再写出一种证明方法.
18.(7分)在平面直角坐标系中, △ABC 三个顶点的位置如图(每个小正方形的边长均为1).(1)请画出△ABC 沿x 轴向平移3个单位长度,再沿y 轴向上平移2个单位长度后的△A ′B ′C ′(其中A ′、B ′、C ′分别是A 、B 、C 的对应点,不写画法)
(2)直接写出A ′、B ′、C ′三点的坐标: A ′(_____,______); B ′(_____,______); C ′(_____,______)。
(3)求△ABC 的面积。
19.(6分)如图所示,火车站、码头分别位于A ,B 两点,直线a 和b 分别表示铁路与河流.
(1)从火车站到码头怎样走最近,画图并说明理由; (2)从码头到铁路怎样走最近,画图并说明理由; (3)从火车站到河流怎样走最近,画图并说明理由.
20. (6分) 计算:
23=_____,27.0=_____,20=____,2
6)(-=_____,2)4
3(-=_
____
(1)根据计算结果,回答: 2a 一定等于a 吗?你发现其中的规律了吗?请
你用自己的语言描述出来.
(2)利用你总结的规律,计算
2
)14.3(π-
21. (6分)如图,直线AB、CD相交于点O,OF⊥CO,∠AOF与∠BOD的度数之比为3∶2,求∠AOC的度数.
22. (8分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙
第一次第二次甲种货车辆数(单位:辆)25
乙种货车辆数(单位:辆)36
15.535
累计运货物吨数(单位:
吨)
现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?
23.(8分)如图,已知直线 L l ∥L 2,且L 3 和 L l 、L 2分别交于A 、B 两点,点P 在AB 上。
(1)试找出∠1、∠2、∠3之间的关系并说出理由;
(2)如果点P 在A 、B 两点之间运动时,问 ∠1、∠2、∠3 之间的关系是否发生变化?
(3)如果点P 在A 、B 两点外侧运动时,试探究 ∠1、∠2、∠3 之间的关系(点P 和A 、B 不重合)
七年级数学第二学期期中试卷参考答案
1-6 ABCBAC
7. 如果两条直线平行于同一条直线 8. 270° 9.略
A
P
B
1
l 2
l 3
l 1 2
3
10. -2+7, -2-7 11. 0, ± 1, ±2 12. 2 13.(-3,2) 14.
9
16
15.略 16. ⎩⎨
⎧==12y x
⎩
⎨⎧==02
y x
(1) 2a 不一定等于a, 2a =|a |= ⎪
⎩⎪
⎨⎧<->>)
0()0(0)
0(a a a a a
(2)π-3.14
21.(1) ∠ 2=115° ∠4=65° (2)相等或互补 (3)120′,60′ 22.36° 23.
17.对顶角相等;已知;等量代换;同旁内角互补,两直线平行。
证明略
18.(1)图略 (2)A ′(0,5),B ′(-1,3),C (4,0) 19.
20.3,0.7, 0, 6, 4
3。