中考数学试题中山
2022年广东省中山市中考数学试卷(解析版)

2022年广东省中山市中考数学试卷(真题)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.43.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.26.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC 9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y410.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.12.(3分)(2022•广东)单项式3xy的系数为.13.(3分)(2022•广东)菱形的边长为5,则它的周长是.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2022年广东省中山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.【分析】根据绝对值的意义解答即可.【解答】解:根据绝对值的意义:|﹣2|=2,故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.4【分析】应用有理数的乘方运算法则进行计算即可得出答案.【解答】解:22=4.故选:D.【点评】本题主要考查了有理数的乘方,熟练掌握有理数的乘方运算法则进行求解是解决本题的关键.3.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°【分析】利用平行线的性质可得结论.【解答】解:∵a∥b,∴∠2=∠1=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行,同位角角相等”是解决本题的关键.5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.2【分析】由题意可得DE是△ABC的中位线,再根据三角形中位线的性质即可求出DE的长度.【解答】解:∵点D,E分别为AB,AC的中点,BC=4,∴DE是△ABC的中位线,∴DE=BC=×4=2,故选:D.【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线的定义和性质是解决问题的关键.6.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.【点评】本题主要考查了平面直角坐标系中点的坐标,熟练掌握点的平移规律是解答本题的关键.7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.【分析】应用简单随机事件概率计算方法进行计算即可得出答案.【解答】解:根据题意可得,P(从中任取1本书是物理书)=.故选:B.【点评】本题主要考查了概率公式,熟练掌握简单随机事件概率的计算方法进行求解是解决本题的关键.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC【分析】根据平行四边形的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,故选:C.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对边相等的性质是解决问题的关键.9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y4【分析】根据k>0可知增减性:在每一象限内,y随x的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k=4>0,∴在第一象限内,y随x的增大而减小,∵(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,且1<2<3<4,∴y4最小.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象的增减性是解答此题的关键.10.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.【点评】本题主要考查了特殊角三角函数值,熟练掌握特殊角三角函数值进行求解是解决本题的关键.12.(3分)(2022•广东)单项式3xy的系数为 3 .【分析】应用单项式的定义进行判定即可得出答案.【解答】解:单项式3xy的系数为3.故答案为:3.【点评】本题主要考查了单项式,熟练掌握单项式的定义进行求解是解决本题的关键.13.(3分)(2022•广东)菱形的边长为5,则它的周长是20 .【分析】根据菱形的性质即可解决问题;【解答】解:∵菱形的四边相等,边长为5,∴菱形的周长为5×4=20,故答案为20.【点评】本题考查菱形的性质、解题的关键是记住菱形的四边相等,属于中考基础题.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a= 1 .【分析】把x=1代入方程x2﹣2x+a=0中,计算即可得出答案.【解答】解:把x=1代入方程x2﹣2x+a=0中,得1﹣2+a=0,解得a=1.故答案为:1.【点评】本题主要考查了一元二次方程的解,应用一元二次方程的解的定义进行求解是解决本题的关键.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.【分析】应用扇形面积计算公式进行计算即可得出答案.【解答】解:S===π.故答案为:π.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解即可得出答案.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.【分析】原式通分并利用同分母分式的加法法则计算,得到最简结果,把a 的值代入计算即可求出值.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【分析】根据角平分线性质得出PD=PE,即可利用HL证明Rt△OPD≌Rt△OPE.【解答】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL).【点评】此题考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)把x=2,y=19代入y=kx+15中,即可算出k的值,即可得出答案;(2)把y=20代入y=2x+15中,计算即可得出答案.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15;(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.【点评】本题主要考查了函数关系式及函数值,熟练掌握函数关系式及函数值的计算方法进行求解是解决本题的关键.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?【分析】(1)根据销售成绩统计,即可得出销售4万元和8万元的人数,即可补充完整图形;(2)根据众数,中位数,算术平均数的计算方法进行求解即可得出答案;(3)根据(2)中的结论进行分析即可得出答案.【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4,中位数为:5,平均数为:=7(3)应确定销售目标为7万元,要让一半以上的销售人员拿到奖励.【点评】本题主要考查了条形统计图,中位数,众数,算术平均数,熟练掌握条形统计图,中位数,众数,算术平均数的计算方法进行求解是解决本题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.【点评】本题主要考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理,熟练掌握相关性质定理是解答本题的关键.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【分析】(1)根据A(1,0),AB=4求出B(﹣3,0),把A、B的坐标代入抛物线y=x2+bx+c,即可求解;(2)过Q作QE⊥x轴于E,设P(m,0),则PA=1﹣m,易证△PQA∽△BCA,利用相似三角形的性质即可求出QE的长,又因为S△CPQ=S△PCA﹣S△PQA,进而得到△CPQ面积和m的二次函数关系式,利用二次函数的性质即可求出面积最大值.【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则PA=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴OB=3 AB=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=PA•CF﹣PA•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,解题的关键是抓住图形中某些特殊的数量关系和位置关系.此题综合性较强,中等难度,是一道很好的试题.。
2021年广东省中山市中考数学试卷(附答案详解)

2021年广东省中山市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·广东省珠海市·历年真题)下列实数中,最大的数是()A. πB. √2C. |−2|D. 32.(2021·广东省珠海市·历年真题)据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为()A. 0.510858×109B. 51.0858×107C. 5.10858×104D. 5.10858×1083.(2021·广东省珠海市·历年真题)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是()A. 112B. 16C. 13D. 124.(2021·广东省珠海市·历年真题)已知9m=3,27n=4,则32m+3n=()A. 1B. 6C. 7D. 125.(2021·广东省珠海市·历年真题)若|a−√3|+√9a2−12ab+4b2=0,则ab=()A. √3B. 92C. 4√3D. 96.(2021·广东省珠海市·历年真题)下列图形是正方体展开图的个数为()A. 1个B. 2个C. 3个D. 4个7.(2021·广东省珠海市·历年真题)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A. √3B. 2√3C. 1D. 28.(2021·广东省珠海市·历年真题)设6−√10的整数部分为a,小数部分为b,则(2a+√10)b的值是()A. 6B. 2√10C. 12D. 9√109. (2021·广东省珠海市·历年真题)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记p =a+b+c 2,则其面积S =√p(p −a)(p −b)(p −c).这个公式也被称为海伦−秦九韶公式.若p =5,c =4,则此三角形面积的最大值为( )A. √5B. 4C. 2√5D. 510. (2021·广东省珠海市·历年真题)设O 为坐标原点,点A 、B 为抛物线y =x 2上的两个动点,且OA ⊥OB.连接点A 、B ,过O 作OC ⊥AB 于点C ,则点C 到y 轴距离的最大值( )A. 12B. √22 C. √32D. 1二、填空题(本大题共7小题,共28.0分)11. (2021·广东省珠海市·历年真题)二元一次方程组{x +2y =−22x +y =2的解为______ .12. (2021·广东省珠海市·历年真题)把抛物线y =2x 2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为______ . 13. (2021·广东省珠海市·历年真题)如图,等腰直角三角形ABC 中,∠A =90°,BC =4.分别以点B 、点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为______ .14. (2021·广东省珠海市·历年真题)若一元二次方程x 2+bx +c =0(b,c 为常数)的两根x 1,x 2满足−3<x 1<−1,1<x 2<3,则符合条件的一个方程为______ . 15. (2021·广东省珠海市·历年真题)若x +1x =136且0<x <1,则x 2−1x2= ______ . 16. (2021·广东省珠海市·历年真题)如图,在▱ABCD 中,AD =5,AB =12,sinA =45.过点D 作DE ⊥AB ,垂足为E ,则sin∠BCE = ______ .17. (2021·广东省珠海市·历年真题)在△ABC 中,∠ABC =90°,AB =2,BC =3.点D为平面上一个动点,∠ADB =45°,则线段CD 长度的最小值为______ . 三、解答题(本大题共8小题,共62.0分)18.(2021·广东省珠海市·历年真题)解不等式组{2x−4>3(x−2) 4x>x−72.19.(2021·广东省珠海市·历年真题)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.20.(2021·广东省珠海市·历年真题)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=13BD,求tan∠ABC的值.21.(2021·广东省珠海市·历年真题)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=4图象的一个交点x为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.22.(2021·广东省珠海市·历年真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.23.(2021·广东省珠海市·历年真题)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE沿BE折叠得到△FBE,BF交AC于点G,求CG的长.24.(2021·广东省珠海市·历年真题)如图,在四边形ABCD中,AB//CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF//CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.25.(2021·广东省珠海市·历年真题)已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.答案和解析1.【答案】A【知识点】算术平方根、实数大小比较【解析】解:|−2|=2,∵2<4,∴√2<2,∴√2<2<3<π,∴最大的数是π,故选:A.C选项,−2的绝对值是2,所以这4个数都是正数,B选项,√2<2,即可得到最大的的数是π.本题考查了实数的比较大小,知道√2<2是解题的关键.2.【答案】D【知识点】科学记数法-绝对值较大的数【解析】解:51085.8万=510858000=5.10858×108,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是确定a的值以及n的值.3.【答案】B【知识点】用列举法求概率(列表法与树状图法)【解析】解:画树状图为:共有36种等可能的结果数,其中两枚骰子向上的点数之和为7的结果有6种,∴两枚骰子向上的点数之和为7的概率为636=16,故选:B.画树状图,共有36种等可能的结果数,其中两枚骰子向上的点数之和为7的结果有6种,再由概率公式求解即可.本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】D【知识点】同底数幂的乘法、幂的乘方与积的乘方【解析】解:∵9m=32m=3,27n=33n=4,∴32m+3n=32m×33n=3×4=12.故选:D.分别根据幂的乘方运算法则以及同底数幂的乘法法则解答即可.本题考查了同底数幂的乘法以及幂的乘方,掌握幂的运算法则是解答本题的关键.5.【答案】B【知识点】非负数的性质:绝对值、非负数的性质:偶次方、非负数的性质:算术平方根【解析】解:由题意得,a−√3=0,9a2−12ab+4b2=0,解得a=√3,b=3√32,所以,ab=√3×3√32=92.故选:B.根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.【答案】C【知识点】几何体的展开图【解析】解:由正方体的四个侧面和底面的特征可知,可以拼成正方体是下列三个图形:故这些图形是正方体展开图的个数为3个.故选:C.由平面图形的折叠及正方体的展开图的特征解答即可.本题考查了几何体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.【答案】B【知识点】圆周角定理【解析】解:如图,过点D作DT⊥AB于T.∵AB是直径,∴∠ACB=90°,∴DC⊥BC,∵DB平分∠CBA,DC⊥BC,DT⊥BA,∴DC=DT=1,∵AC=3,∴AD=AC−CD=2,∴AD=2DT,∴∠A=30°,∴AB=ACcos30∘=√32=2√3,故选:B.如图,过点D作DT⊥AB于T.证明DT=DC=1,推出AD=2DT,推出∠A=30°,可得结论.本题考查圆周角定理,角平分线的性质定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,利用角平分线的性质定理解决问题.8.【答案】A【知识点】估算无理数的大小【解析】解:∵3<√10<4,∴2<6−√10<3,∵6−√10的整数部分为a,小数部分为b,∴a=2,b=6−√10−2=4−√10,∴(2a+√10)b=(2×2+√10)×(4−√10)=(4+√10)(4−√10)=6,故选:A.根据算术平方根得到3<√10<4,所以2<6−√10<3,于是可得到a=2,b=4−√10,然后把a与b的值代入(2a+√10)b中计算即可.本题考查了估算无理数的大小,解题的关键是利用完全平方数和算术平方根对无理数的大小进行估算.9.【答案】C【知识点】完全平方式、二次根式的化简求值,p=5,c=4,【解析】解:∵p=a+b+c2∴5=a+b+4,2∴a+b=6,∴a=6−b,∴S=√p(p−a)(p−b)(p−c)=√5(5−a)(5−b)(5−4)=√5(5−a)(5−b)=√5ab−25=√5b(6−b)−25=√−5b2+30b−25=√−5(b−3)2+20,当b=3时,S有最大值为√20=2√5.故选:C.根据公式算出a+b的值,代入公式即可求出解.本题考查二次根式的应用,解答本题的关键是明确题意,求出相应的三角形的面积.10.【答案】A【知识点】二次函数的最值、二次函数图象上点的坐标特征【解析】解:如图,分别作AE、BF垂直于x轴于点E、F,设OE=a,OF=b,由抛物线解析式为y=x2,则AE=a2,BF=b2,作AH⊥BH于H,交y轴于点G,连接AB交y轴于点D,设点D(0,m),∵DG//BH,∴△ADG~△ABH,∴DGBH =AGAH,即 m−a2b2−a2=aa+b.化简得:m=ab.∵∠AOB=90°,∴∠AOE+∠BOF=90°,又∠AOE+∠EAO=90°,∴∠BOF=∠EAO,又∠AEO=∠BFO=90°,∴△AEO~△OFB.∴AEOF =EOBF,即a2b =ab2,化简得ab=1.则m=ab=1,说明直线AB过定点D,D点坐标为(0,1).∵∠DCO=90°,DO=1,∴点C是在以DO为直径的圆上运动,∴当点C到y轴距离等于此圆半径12时,点C到y轴距离的最大.故选:A.分别作AE、BF垂直于x轴于点E、F,设OE=a,OF=b,由抛物线解析式可得AE=a2,BF=b2,作AH⊥BH于H,交y轴于点G,连接AB交y轴于点D,设点D(0,m),易证△ADG~△ABH,所以DGBH =AGAH,即 m−a2b2−a2=aa+b.可得m=ab.再证明△AEO~△OFB,所以AEOF =EOBF,即a2b=ab2,可得ab=1.即得点D为定点,坐标为(0,1),得DO=1.进而可推出点C是在以DO为直径的圆上运动,则当点C到y轴距离为此圆的半径12时最大.本题考查了二次函数结合动点问题背景下的最值求法,涉及相似三角形,圆周角定理,此题难度较大,关键是要找出点D 为定点,确定出点C 的轨迹为一个圆,再求最值. 11.【答案】【知识点】灵活选择解法解二元一次方程(组)【解析】解:{x +2y =−2①2x +y =2②, ①×2−②,得:3y =−6,即y =−2,将y =−2代入②,得:2x +(−2)=2,解得:x =2,所以方程组的解为{x =2y =−2. 故答案为{x =2y =−2. 直接利用加减消元法求解可得问题的答案.本题考查的是解二元一次方程组,利用加减消元法把方程组化为一元方程是解答此题的关键.12.【答案】y =2x 2+4x【知识点】二次函数图象与几何变换【解析】解:把抛物线y =2x 2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:y =2(x +1)2+1−3,即y =2x 2+4x故答案为y =2x 2+4x .可根据二次函数图象左加右减,上加下减的平移规律进行解答.本题考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.13.【答案】4−π【知识点】等腰直角三角形、扇形面积的计算【解析】解:等腰直角三角形ABC 中,∠A =90°,BC =4,∴∠B =∠C =45°,∴AB =AC =√22BC =2√2 ∵BE =CE =12BC =2,∴阴影部分的面积S=S△ABC−S扇形BDE −S扇形CEF=12×2√2×2√2−45π×22360×2=4−π,故答案为4−π.阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.本题考查了扇形的面积公式,正确熟记扇形的面积公式是解此题的关键,题目比较好,难度适中.14.【答案】x2−2=0(答案不唯一)【知识点】一元二次方程的概念【解析】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足−3<x1<−1,1<x2<3,∴满足条件分方程可以为:x2−2=0(答案不唯一),故答案为:x2−2=0(答案不唯一).根据一元二次方程的定义解决问题即可,注意答案不唯一.本题考查一元二次方程的应用,解题的关键是理解题意,灵活运用所学知识解决问题.15.【答案】−6536【知识点】分式的化简求值【解析】解:∵0<x<1,∴x<1x,∴x−1x<0,∵x+1x =136,∴(x+1x )2=16936,即x2+2+1x2=16936,∴x2−2+1x2=16936−4,∴(x−1x )2=2536,∴x−1x =−56,∴x2−1x2=(x+1x)(x−1x)=136×(−56)=−6536,故答案为:−6536.根据题意得到x−1x <0,根据完全平方公式求出x−1x,根据平方差公式把原式变形,代入计算即可.本题考查的是分式的化简求值,掌握完全平方公式、平方差公式是解题的关键.16.【答案】【知识点】平行四边形的性质、解直角三角形【解析】解:如图,过点B作BF⊥EC于点F,∵DE⊥AB,AD=5,sinA=DEAD =45,∴DE=4,∴AE=√AD2−DE2=3,在▱ABCD中,AD=BC=5,AB=CD=12,∴BE=AB−AE=12−3=9,∵CD//AB,∴∠DEA=∠EDC=90°,∠CEB=∠DCE,∴tan∠CEB=tan∠DCE,∴BFEF =DECD=412=13,∴EF=3BF,在Rt△BEF中,根据勾股定理,得EF2+BF2=BE2,∴(3BF)2+BF2=92,解得,BF=9√1010,∴sin∠BCE=BFBC =9√10105=9√1050.故答案为:9√1050.过点B作BF⊥EC于点F,根据DE⊥AB,AD=5,sinA=DEAD =45,可得DE=4,根据勾股定理可得AE=3,再根据平行四边形的性质可得AD=BC=5,AB=CD=12,BE=AB−AE=12−3=9,根据tan∠CEB=tan∠DCE,可得EF=3BF,再根据勾股定理可得BF的长,进而可得结果.本题考查了相似三角形的判定和性质,平行四边形的性质,勾股定理等知识,得出EF= 3BF是解决本题的关键.17.【答案】√5−√2【知识点】勾股定理、圆周角定理、点与圆的位置关系【解析】解:如图所示.∵∠ADB=45°,AB=2,作△ABD的外接圆O,连接OC,当O、D、C三点共线时,CD的值最小.∵∠ADB=45°,∴∠AOB=90°,∴△AOB为等腰直角三角形,∴AO=BO=sin45°×AB=√2.∵∠OBA=45°,∠ABC=90°,∴∠OBE=45°,作OE⊥BC于点E,∴△OBE为等腰直角三角形.∴OE=BE=sin45°⋅OB=1,∴CE=BC−BE=3−1=2,在Rt△OCD中,OC=√OE2+CE2=√1+4=√5.当O、D、C三点共线时,CD最小为CD=OC−OD=√5−√2.故答案为:√5−√2.根据∠ADB=45°,AB=2,作△ABD的外接圆O,连接OC,当O、D、C三点共线时,CD的值最小.将问题转化为点圆最值.可证得△AOB为等腰直角三角形,OB=OA=√2,同样可证△OBE也为等腰直角三角形,OE=BE=1,由勾股定理可求得OC的长为√5,最后CD最小值为OC−OD=√5−√2.本题考查了动点与隐圆条件下的点圆最值,涉及到点与圆的位置关系、勾股定理、圆周角定理等基础知识点,难度较大,需要根据条件进行发散思维.解题关键在于确定出点D的运动轨迹为一个圆.18.【答案】解:解不等式2x−4>3(x−2),得:x<2,,得:x>−1,解不等式4x>x−72则不等式组的解集为−1<x<2.【知识点】一元一次不等式组的解法【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:(1)由列表中90分对应的人数最多,因此这组数据的众数应该是90,由于人数总和是20人为偶数,将数据从小到大排列后,第10个和第11个数据都是90分,因此这组数据的中位数应该是90,=90.5;平均数是:80×2+85×3+90×8+95×5+100×22+3+8+5+2(2)根据题意得:600×8+5+2=450(人),20答:估计该年级获优秀等级的学生人数是450人.【知识点】用样本估计总体、算术平均数、中位数、众数【解析】(1)根据条形统计图,计算众数、中位数和平均数;(2)利用样本估计总体思想求解可得.本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.20.【答案】解:(1)如图,连接BD,设BC垂直平分线交BC于点F,∴BD=CD,C△ABD=AB+AD+BD=AB+AD+DC=AB+AC,∵AB=CE,∴C△ABD=AC+CE=AE=1,故△ABD的周长为1.(2)设AD=x,∴BD=3x,又∵BD=CD,∴AC=AD+CD=4x,在Rt△ABD中,AB=√BD2−AD2=√(3x)2−x2=2√2x.∴tan∠ABC=ACAB =4x2√2x=√2.【知识点】线段垂直平分线的概念及其性质、解直角三角形【解析】(1)连接BD,设BC垂直平分线交BC于点F,再根据线段垂直平分线的性质求解即可;(2)设AD=x,则BD=CD=3x,AC=4x,由勾股定理可表示出AB=2√2x,从而可计算出tan∠ABC=ACAB =4x2√2x=√2.本题考查了线段垂直平分线的性质,解直角三角形、勾股定理等知识,抓住正切的定义是解题关键.21.【答案】解:(1)∵P(1,m)为反比例函数y=4x图象上一点,∴代入得m=41=4,∴m=4;(2)令y=0,即kx+b=0,∴x=−bk ,A(−bk,0),令x=0,y=b,∴B(0,b),∵PA=2AB,由图象得,可分为以下两种情况:①B在y轴正半轴时,b>0,∵PA=2AB,过P作PH⊥x轴交x轴于点H,又B1O⊥A1H,∠PA1O=∠B1A1O,∴△A1OB1∽△A1HP,∴A1B1A1P =A1OA1H=B1OPH=12,∴B1O=12PH=4×12=2,∴b=2,∴A1O=OH=1,∴|−bk|=1,∴k=2;②B在y轴负半轴时,b<0,过P作PQ⊥y轴,∵PQ⊥B2Q,A2O⊥B2Q,∠A2B2O=∠AB2Q,∴△A2OB2△PQB2,∴A2B2PB2=13=A2OPQ=B2OB2Q,∴AO=|−bk |=13PO=13,B2O=13B2Q=12OQ=|b|=2,∴b=−2,∴k=6,综上,k=2或k=6.【知识点】一次函数与反比例函数综合【解析】(1)把P(1,m)代入反比例函数解析式即可求得;(2)分两种情况,通过证得三角形相似,求得BO的长度,进而即可求得k的值.本题是反比例函数与一次函数的交点问题,考查了反比例函数图象上点的坐标特征,三角形相似的判定和性质,求得AO的长度的解题的关键.22.【答案】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a−10)元,则8000a =6000a−10,解得:a=40,经检验a=40是方程的解,∴猪肉每盒进价40元,豆沙粽每盒进价30元,答:猪肉每盒进价40元,豆沙粽每盒进价30元;(2)由题意得,当x=50时,,每天可售出100盒,当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100−2(x−50)]盒,∴y=x[100−2(x−50)]−40x[100−2(x−50)]=−2x2+280x−8000,配方,得:y=−2(x−70)2+1800,∵x<70时,y随x的增大而增大,∴当x=65时,y取最大值,最大值为:−2(65−70)2+1800=1750(元).答:y关于x的函数解析式为y=−2x2+280x−8000(50≤x≤65),且最大利润为1750元.【知识点】分式方程的应用、二次函数的应用【解析】(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a−10)元,根据商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列出方程,解方程即可;(2)由题意得,当x=50时,,每天可售出100盒,当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100−2(x−50)]盒,列出每天销售猪肉粽的利润y与猪肉粽每盒售价x 元的函数关系式,根据二次函数的性质及x的取值范围求利润的最大值.本题考查了二次函数的应用以及分式方程的解法,关键是根据题意列出每天销售猪肉粽的利润y与猪肉粽每盒售价x元的函数关系式.23.【答案】解:延长BF交CD于H,连接EH.∵四边形ABCD是正方形,∴AB//CD,∠D=∠DAB=90°,AD=CD=AB=1,∴AC=√AD2+CD2=√12+12=√2,由翻折的性质可知,AE=EF,∠EAB=∠EFB=90°,∠AEB=∠FEB,∵点E是AD的中点,∴AE=DE=EF,∵∠D=∠EFH=90°,在Rt△EHD和Rt△EHF中,{EH=EHED=EF,∴Rt△EHD≌Rt△EHF(HL),∴∠DEH=∠FEH,∴∠HEB=90°,∴∠DEH+∠AEB=90°,∵∠AEB+∠ABE=90°,∴∠DEH=∠ABE,∴△EDH∽△BAE,∴ED AB =DH EA =12, ∴DH =14,CH =34, ∵CH//AB ,∴CG GA =CH AB =34,∴CG =37AC =3√27.【知识点】翻折变换(折叠问题)、正方形的性质【解析】延长BF 交CD 于H ,连接EH.证明△EDH∽△BAE ,推出ED AB =DH EA =12,推出DH =14,CH =34,由CH//AB ,推出CG GA =CH AB =34,可得结论. 本题考查翻折变换,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是求出DH ,CH ,利用平行线分线段成比例定理解决问题即可. 24.【答案】(1)证明:∵CD =DF ,∴∠DCF =∠DFC ,∵EF//CD ,∴∠DCF =∠EFC ,∴∠DFC =∠EFC ,∴∠DFE =2∠EFC ,∵AB =AF ,∴∠ABF =∠AFB ,∵CD//EF ,CD//AB ,∴AB//EF ,∴∠EFB =∠AFB ,∴∠AFE =2∠BFE ,∵∠AFE +∠DFE =180°,∴2∠BFE +2∠EFC =180°,∴∠AEF +∠EFC =90°,∴∠BFC =90°,∴CF ⊥BF ;(2)证明:如图1,取AD 的中点O ,过点O 作OH ⊥BC 于H ,∴∠OHC=90°=∠ABC,∴OH//AB,∵AB//CD,∴OH//AB//CD,∵AB//CD,AB≠CD,∴四边形ABCD是梯形,∴点H是BC的中点,即OH是梯形ABCD的中位线,∴OH=12(AB+CD),∵AB=AF,CD=DF,∴OH=12(AF+DF)=12AD,∵OH⊥BC,∴以AD为直径的圆与BC相切;(3)如图2,由(1)知,∠DFE=2∠EFC,∵∠DFE=120°,∴∠CFE=60°,在Rt△CEF中,EF=2,∠ECF=90°−∠CFE=30°,∴CF=2EF=4,∴CE=√CF2−EF2=2√3,∵AB//EF//CD,∠ABC=90°,∴∠ECD=∠CEF=90°,过点D作DM⊥EF,交EF的延长线于M,∴∠M=90°,∴∠M=∠ECD=∠CEF=90°,∴四边形CEMD是矩形,∴DM=CE=2√3,过点A作AN⊥EF于N,∴四边形ABEN是矩形,∴AN=BE,由(1)知,∠CFB=90°,∵∠CFE =60°,∴∠BFE =30°,在Rt △BEF 中,EF =2,∴BE =EF ⋅tan30°=2√33, ∴AN =2√33, ∴S △ADE =S △AEF +S △DEF=12EF ⋅AN +12EF ⋅DM =12EF(AN +DM) =12×2×(2√33+2√3) =8√33.【知识点】圆的综合【解析】(1)先判断出∠DFE =2∠EFC ,同理判断出∠AFE =2∠BFE ,进而判断出2∠BFE +2∠EFC =180°,即可得出结论;(2)取AD 的中点O ,过点O 作OH ⊥BC 于H ,先判断出OH =12(AB +CD),进而判断出OH =12AD ,即可得出结论;(3)先求出∠CFE =60°,CE =2√3,再判断出四边形CEMD 是矩形,得出DM =2√3,过点A 作AN ⊥EF 于N ,同理求出AN =2√33,即可得出结论. 此题是圆的综合题,主要考查了平行线的性质,切线的判定,锐角三角函数,矩形的判定,作出辅助线求出DM 是解本题的关键.25.【答案】解:(1)不妨令4x −12=2x 2−8x +6,解得:x 1=x 2=3, 当x =3时,4x −12=2x 2−8x +6=0.∴y =ax 2+bx +c 必过(3,0),又∵y =ax 2+bx +c 过(−1,0),∴{a −b +c =09a +3b +c =0,解得:{b =−2a c =−3a, ∴y =ax 2−2ax −3a ,又∵ax 2−2ax −3a ≥4x −12,∴ax 2−2ax −3a −4x +12≥0,整理得:ax 2−2ax −4x +12−3a ≥0,∴a >0且△≤0,∴(2a +4)2−4a(12−3a)≤0,∴(a −1)2≤0,∴a =1,b =−2,c =−3.∴该二次函数解析式为y =x 2−2x −3.(2)令y =x 2−2x −3中y =0,得x =3,则A 点坐标为(3,0);令x =0,得y =−3,则点C 坐标为(0,−3).设点M 坐标为(m,m 2−2m −3),N(n,0),根据平行四边对角线性质以及中点坐标公式可得:①当AC 为对角线时,{x A +x C =x M +x N y A +y C =y M +y N, 即{3+0=m +n 0−3=m 2−2m −3+0,解得:m 1=0(舍去),m 2=2, ∴n =1,即N 1(1,0).②当AM 为对角线时,{x A +x M =x C +x N y A +y M =y C +y N, 即{3+m =0+n 0+m 2−2m −3=−3+0,解得:m 1=0(舍去),m 2=2, ∴n =5,即N 2(5,0).③当AN 为对角线时,{x A +x N =x C +x M y A +y N =y C +y M, 即{3+n =0+m 0+0=−3+m 2−2m −3,解得:m 1=1+√7,m 2=1−√7, ∴n =√7−2或−2−√7,∴N 3(√7−2,0),N 4(−2−√7,0).综上所述,N 点坐标为(1,0)或(5,0)或(√7−2,0)或(−2−√7,0).【知识点】二次函数综合【解析】(1)令4x −12=2x 2−8x +6,解之可得交点为(3,0),则二次函数必过(3,0),又过(−1,0),则把两点坐标代入解析式可得y =ax 2−2ax −3a ,又ax 2−2ax −3a ≥4x −12,整理可得ax 2−2ax −4x +12−3a ≥0,所以a >0且△≤0,则可得a =1,从而求得二次函数解析式;(2)由题意可得A(3,0),C(0,−3),设点M 坐标为(m,m 2−2m −3),N(n,0).根据对角线的不同可分三类情况建立方程组讨论求解即可:①AC 为对角线则有{x A +x C =x M +x N y A +y C =y M +y N;②AM 为对角线则有{x A +x M =x C +x N y A +y M =y C +y N ;③AN 为对角线则有{x A +x N =x C +x M y A +y N =y C +y M.本题考查了待定系数法求二次函数解析式,二次函数与坐标轴的交点坐标,平行四边形的判定与性质,二次函数与一元二次方程的的联系,根的判别式,对于平行四边形的存在性要注意分类讨论求解.。
2020年广东省中山市中考数学试卷-含详细解析

2020年广东省中山市中考数学试卷-含详细解析1.选择题1.答案:A。
2.答案:B。
3.答案:A。
4.答案:C。
5.答案:B。
6.答案:A。
7.答案:C。
8.答案:D。
9.答案:C。
10.答案:B。
2.填空题11.答案:x(x−1)。
12.答案:2.13.答案:1010.14.答案:−1.15.答案:60°。
3.改写后的文章2020年广东省中山市中考数学试卷一、选择题(共10小题,共30.0分)1.9的相反数是()A。
−9 B。
9 C。
1/9 D。
−1/92.一组数据2,4,3,5,2的中位数是()A。
5 B。
3.5 C。
3 D。
2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A。
(−3,2) B。
(−2,3) C。
(2,−3) D。
(3,−2)4.一个多边形的内角和是540°,那么这个多边形的边数为()A。
4 B。
5 C。
6 D。
75.若式子√2x−4在实数范围内有意义,则x的取值范围是()A。
x≠2 B。
x≥2 C。
x≤2 D。
x≠−26.已知△xxx的周长为16,点D,E,F分别为△xxx 三条边的中点,则△xxx的周长为()A。
8 B。
2√2 C。
16 D。
47.把函数x=(x−1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为()A。
x=x2+2 B。
x=(x−1)2+1 C。
x=(x−2)2+2 D。
x=(x−1)2−38.不等式组{2−3x≥−1.x−1≥−2(x+2)}的解集为()A。
无解 B。
x≤1 C。
x≥−1 D。
−1≤x≤19.如图,在正方形ABCD中,xx=3,点E,F分别在边AB,CD上,∠xxx=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A。
1 B。
√2 C。
√3 D。
210.如图,抛物线x=xx2+xx+x的对称轴是x=1,下列结论:①xxx>0;②x2−4xx>0;③8x+x0。
广东省中山市2020年(春秋版)中考数学试卷C卷

广东省中山市2020年(春秋版)中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分)下列说法错误的是()A . 互为相反数之和等于0B . 互为倒数之积等于1C . 倒数等于本身的数有0,±1D . 相反数是它本身的数只有02. (2分)在﹣5,0,π,这四个数中,最大的有理数的是()A . ﹣5B . 0C . πD .3. (2分) (2017八上·沂水期末) 如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A . 95°B . 85°C . 75°D . 35°4. (2分)(2017·黑龙江模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分)方程整理成一般形式后为()A .B .C .D .6. (2分)(2018·南充) 如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A . CE=B . EF=C . cos∠CEP=D . HF2=EF•CF7. (2分)下面几个几何体,主视图是圆的是()A .B .C .D .8. (2分) (2017八上·西安期末) 已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)(2017·东莞模拟) 下列说法正确的是()A . 要调查人们对“低碳生活”的了解程度,宜采用普查方式B . 一组数据3,4,4,6,8,5的众数和中位数都是3C . 必然事件的概率是100%,随机事件的概率是50%D . 若甲组数据的方差S甲2=0.128,乙组数据的方差S乙2=0.036;则乙组数据比甲组数据稳定10. (2分)若点P(0,4m+1)在y轴的正半轴上,则有()A . m<B . m>-C . m=D . m=-11. (2分)二次函数y=-3x2+6x+1的图象如何移动就得到y=-3x2的图象()A . 向右移动1个单位,向上移动4个单位B . 向左移动1个单位,向上移动4个单位C . 向右移动1个单位,向下移动4个单位D . 向左移动1个单位,向下移动4个单位12. (2分)(2012·贵港) 如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于()A . 10B . 11C . 12D . 13二、填空题. (共6题;共7分)13. (2分)把多项式中各项的________提取出来,写成公因式与另一个因式的________的形式,这种因式分解的方法叫做提公因式法.14. (1分)我国西部地区幅员辽阔、资源丰富,面积约6720000平方公里,占中国国土面积70%,用科学记数法表示6720000=________15. (1分) (2017七上·余姚期中) 已知的小数部分为,的小数部分为,则=________.16. (1分)在等腰梯形ABCD中,, BC=4AD,且AD=,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F .若是以AB为腰的等腰三角形,则CF的长等于________ 。
广东省中山市中考数学试题及答案zwh

2020年广东省中山市初中毕业生学业考试数 学 试 题说明:1.全卷共6页,考试历时100分钟,总分值为120分。
2.答卷前,考生务必用黑色笔迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必需用黑色笔迹钢笔或签字笔作答、答案必需写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原先的答案,然后再写上新的答案;不准利用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必维持答题卡的整洁。
考试终止时,将试卷和答题卡一并交回。
一、选择题(本大题5小题,每题3分,共15分)在每题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.-3的相反数是( ) A .3B .31C .-3D .31-2.如图,已知∠1 = 70º,若是CD ∥BE ,那么∠B 的度数为( ) A .70ºB .100ºC .110ºD .120º3.某学习小组7位同窗,为玉树地震灾区捐钱,捐钱金额别离为5元,10元,6元,6元,7元,8元,9元,那么这组数据的中位数与众数别离为( ) A .6,6B .7,6C .7,8D .6,84.左以下图为主视方向的几何体,它的俯视图是( )5.以下式子运算正确的选项是( ) A .123=- B .248=C .331= D .4321321=-++A .B . D .C .第4题图第2题图B CED A1请将以下各题的正确答案填写在答题卡相应的位置上。
6. 据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次。
试用科学记数法表示8000000=_______________________。
广东省中山市2021版中考数学试卷(I)卷

广东省中山市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果a=-,b=-2,那么︱a︱÷︱b︱等于()A . -B .C .D .2. (2分) (2019七下·九江期中) 我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A . 7.5x105B . 7.5×10-5C . 0.75×10-4D . 75×10-63. (2分)(2017·高安模拟) 下面几何体的主视图是()A .B .C .D .4. (2分)如图,AB∥CD,AD和BC相交于点O,∠A=30°,∠COD=80°,则∠C=()A . 50°B . 60°C . 70°D . 80°5. (2分)计算(-3a2b)2的结果正确的是()A . -6a4b2B . 6a4b2C . -9a4b2D . 9a4b26. (2分) (2018七上·武汉期中) 设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A . ﹣1B . 0C . 1D . 不存在7. (2分)在边长为1的小正方形组成的4×3网格中,有如图所示的A、B两个格点在格点上任意放置点C,恰好能使△ABC的面积为1的概率是()A .B .C .D .8. (2分)下面选项对于等边三角形不成立的是()A . 三边相等B . 三角相等C . 是等腰三角形D . 有一条对称轴9. (2分)(2018·无锡模拟) 已知如图,菱形ABCD四个顶点都在坐标轴上,对角线AC、BD交于原点O,DF 垂直AB交AC于点G,反比例函数,经过线段DC的中点E,若BD=4,则AG的长为()A .B . +2C . 2 +1D . +110. (2分) (2019九上·秀洲期中) 如图,等腰的直角边与正方形的边长均为2,且与在同一直线上,开始时点与点重合,让沿这条直线向右平移,直到点与点重合为止.设的长为,与正方形重合部分(图中阴影部分)的面积为,则与之间的函数关系的图象大致是A .B .C .D .二、填空题 (共8题;共8分)11. (1分)(2017·西乡塘模拟) 函数y= 的自变量的取值范围是________.12. (1分)小明解方程 = ﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为________.13. (1分) (2015八下·绍兴期中) 已知数据2,3,4,4,a,1的平均数是3,则这组数据的众数是________14. (1分)(2018·滨州模拟) 经过两次连续降价,某药品销售单价由原来的49元降到30元,设该药品平均每次降价的百分率为x,根据题意可列方程是________.15. (1分)(2017·昌平模拟) 已知二次函数y=x2+(2m﹣1)x,当x<0时,y随x的增大而减小,则m的取值范围是________.16. (1分)一个扇形的圆心角为60°,这个扇形的弧长是6π,则这个扇形的面积是________.17. (1分)如图,Rt△ABC中,∠ACB=90°,BC=6,AC=8,现将△ABC折叠,使点A与点B重合,折痕为DE,则tan∠CBE=________.18. (1分)(2017·徐州模拟) 在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为________.三、解答题 (共7题;共82分)19. (10分)先化简,再求值:÷(x2﹣2xy),其中x=1,y=﹣2.20. (12分)某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:类别重视一般不重视人数a15b(1)求表格中a,b的值;(2)请补全统计图;(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.21. (15分) (2016九上·通州期中) 如图,在平面直角坐标系xOy中,过坐标原点O的直线l与双曲线y=相交于点A(m,3).(1)求直线l的表达式;(2)过动点P(n,0)且垂于x轴的直线与l及双曲线的交点分别为B,C,当点B位于点C上方时,写出n 的取值范围________.22. (10分) (2016九上·相城期末) 如图,小刚从点出发,沿着坡度为的斜坡向上走了650米到达点,且.(1)则他上升的高度是米;(2)然后又沿着坡度为的斜坡向上走了1000米达到点.问小刚从点到点上升的高度是多少米(结果保留根号)?23. (10分)(2018·铜仁模拟) 永定土楼是世界文化遗产“福建土楼”的组成部分,是闽西的旅游胜地.“永定土楼”模型深受游客喜爱.图中折线(AB∥CD∥x轴)反映了某种规格土楼模型的单价y(元)与购买数量x(个)之间的函数关系.(1)求当10≤x≤20时,y与x的函数关系式;(2)已知某旅游团购买该种规格的土楼模型总金额为2625元,问该旅游团共购买这种土楼模型多少个?(总金额=数量×单价)24. (10分)(2017·本溪模拟) 如图,△ABE是⊙O的内接三角形,AB为直径,过点B的切线与AE的延长线交于点C,D是BC的中点,连接DE,连接CO,线段CO的延长线交⊙O于F,FG⊥AB于G.(1)求证:DE是⊙O的切线;(2)若AE=4,BE=2,求AG的长.25. (15分)(2019·台州模拟) 已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB 于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值?若是,请求出该定值;若不是,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共82分)19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
2020年广东省中山市中考数学试卷-含详细解析
2020年广东省中山市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m 2b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
中山中考数学试题及答案
中山中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填入题后的括号内。
)1. 下列各数中,最大的数是()A. -3B. -2C. 0D. 12. 若a-b=2,则10a-10b的值是()A. 10B. 20C. 18D. 223. 一个直角三角形的两条直角边分别为3和4,其面积是()A. 6B. 12C. 9D. 154. 已知x=2是方程ax-5=0的一个解,则a的值是()A. 2.5B. 10C. 5D. 15. 一个数的平方等于这个数本身,这个数是()A. 1B. 0C. 1或0D. 1或-16. 下列哪个选项是二次根式()A. √3B. √2C. √4D. √17. 一个数的绝对值是其本身或其相反数,这个数是()A. 正数B. 负数C. 零D. 非负数8. 一个圆的半径为5,则其面积是()A. 25πB. 50πC. 100πD. 200π9. 一个多项式减去另一个多项式,结果可能是()A. 单项式B. 多项式C. 常数D. 以上都是10. 一个数的立方根等于这个数本身,这个数是()A. 1B. -1C. 0D. 1或-1或0二、填空题(本题共5小题,每小题3分,共15分。
请将答案填在题中横线上。
)11. 一个数的相反数是-5,这个数是______。
12. 若一个三角形的内角和为180°,则一个四边形的内角和为______。
13. 一个数的平方根是4,则这个数是______。
14. 一个数的立方是-64,则这个数是______。
15. 一个数的绝对值是5,则这个数可能是______。
三、解答题(本题共5小题,每小题10分,共50分。
请在答题卡上作答。
)16. 解方程:2x + 5 = 13。
17. 已知一个直角三角形的两条直角边分别为6和8,求斜边的长度。
18. 计算:(3x - 2y)²。
2020年广东省中山市中考数学试卷
2020年广东省中山市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A .﹣9B .9C .19D .−192.一组数据2,4,3,5,2的中位数是( )A .5B .3.5C .3D .2.53.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)4.若一个多边形的内角和是540°,则该多边形的边数为( )A .4B .5C .6D .75.若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣26.已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .47.把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3 8.不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤19.如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A .1B .√2C .√3D .210.如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2﹣4ac >0;③8a +c <0;④5a +b +2c >0,正确的有( )A .4个B .3个C .2个D .1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy ﹣x = .12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m +n = .13.若√a −2+|b +1|=0,则(a +b )2020= .14.已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为 .15.如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 .#DLQZ16.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.#DLQZ三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.#DLQZ四、解答题(二)(本大题3小题,每小题8分,共24分)21.已知关于x,y的方程组{ax+2√3y=−10√3,x+y=4与{x−y=2,x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AÊ上一点,AD =1,BC =2.求tan ∠APE 的值.23.某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,点B 是反比例函数y =8x (x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =k x (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k = ;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.如图,抛物线y =3+√3x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,C的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省中山市中考数学试卷参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.A ; 2.C ; 3.D ; 4.B ; 5.B ; 6.A ; 7.C ; 8.D ; 9.D ; 10.B ;二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.x (y ﹣1); 12.4; 13.1; 14.7; 15.; 16.13; 17.; 三、解答题(一)(本大题3小题,每小题6分,共18分)18. ; 19. ; 20. ;四、解答题(二)(本大题3小题,每小题8分,共24分)21. ; 22. ; 23. ;五、解答题(三)(本大题2小题,每小题10分,共20分)24.2; 25. ;。
广东省中山市中考数学试卷
广东省中山市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·江西) 2的相反数是()A .B .C .D .2. (2分)徐州市总投资为44亿元的东三环路高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,拉动了个区域间的交流,44亿用科学记数法表示为()A . 0.44×109B . 4.4×109C . 44×108D . 4.4×1083. (2分)(2016·温州) 三本相同的书本叠成如图所示的几何体,它的主视图是()A .B .C .D .4. (2分)若ab2=﹣6,则﹣ab2(a2b4﹣ab2﹣1)的值为()A . 246B . 216C . ﹣216D . 2745. (2分) (2018八上·龙岗期末) 甲,乙,丙,丁四名跳远运动员选拔塞成绩的平均数与方差如下表所示:甲乙丙丁平均数561561560560方差 3.515.5 3.516.5根据表中数据,要从中选一名成绩好又发挥稳定的运动员参赛,应该选择()A . 甲B . 乙C . 丙D . 丁6. (2分)甲、乙两人各自安装10台仪器,甲比乙每小时多安装2台,结果甲比乙少用1小时完成安装任务。
如果设乙每小时安装x台,根据题意得()A .B .C .D .7. (2分)如图,在三角形ABC中,AB∥DE,AD⊥BC,∠BAC=90°,与∠DAC相等的角(不包括∠DAC本身)有()A . 1B . 2C . 3D . 48. (2分) (2019八上·利辛月考) 已知(-2,y1),(0,y2)在一次函数y= a(x+1)(a<0)的图象上,则y1 ,y2 , 0的大小关系是()A . y1>0>y2B . y2>0>y1C . y1>y2>0D . y2>y1>09. (2分)下列说法正确的是()A . 买一张福利彩票一定中奖,是必然事件.B . 买一张福利彩票一定中奖,是不可能事件.C . 抛掷一个正方体骰子,点数为奇数的概率是.D . 一组数据:1,7,3,5,3的众数是3.10. (2分) (2020九上·来宾期末) 如图,点A、B分别是反比例函数y= 与正比例函数y=k1x,y=k2x 的交点,过点A作x轴的垂线AC,垂足为C,线段AC与直线y=k2x交于点D,若△ADO的面积为4,点D为线段OB 的三等分点,则k的值为()A .B . 4C . 8D . 9二、填空题 (共8题;共9分)11. (1分)(2017·深圳模拟) 将4x2﹣4分解因式得________.12. (1分)(2020·东城模拟) 已知关于x的一元二次方程mx2+2x﹣1=0(m为常数)有两个不相等的实数根,则m的取值范围是________.13. (2分)在Rt△ABC中,∠C=90°,D、E、F分别为AB、BC、AC边上的中点,AC=4cm,BC=6cm,那么四边形CEDF为________,它的边长分别为________.14. (1分)点A(x1 , y1)、B(x2 , y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是________.15. (1分)在一只不透明的袋中装有红球、白球若干个,这些球除颜色外形状大小均相同.八(2)班同学进行了“探究从袋中摸出红球的概率”的数学活动,下表是同学们收集整理的试验结果:试验次数n1001502005008001000摸到红球的次数m681111363455647010.680.740.680.690.7050.701根据表格,假如你去摸球一次,摸得红球的概率大约是________ (结果精确到0.1).16. (1分) (2018八上·桥东期中) 如图,∠AOB=45°,点M,N在边OA上,OM=3,ON=7,点P是直线OB上的点,要使点P,M,N构成等腰三角形的点P有________个.17. (1分) (2016九上·仙游期末) 如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B 为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.18. (1分) (2020八上·昭平期末) 已知:如图,点E、F分别在等边三角形ABC的边CB、AC的延长线上,BE=CF,FB的延长线交AE于点G则∠AGB=________.三、解答题 (共8题;共74分)19. (5分)(2016·姜堰模拟) 计算:20. (7分)(2017·重庆) 中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为________度,并将条形统计图补充完整________.(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.21. (7分)(2017·宝应模拟) 如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形,建立如图所示的平面直角坐标系,点C的坐标为(0,﹣1).(1)在如图的方格纸中把△ABC以点O为位似中心扩大,使放大前后的位似比为1:2,画出△A1B2C2(△ABC与△A1B2C2在位似中心O点的两侧,A,B,C的对应点分别是A1,B2,C2).(2)利用方格纸标出△A1B2C2外接圆的圆心P,P点坐标是________⊙P的半径=________.(保留根号)22. (10分)学校决定购买A、B两种型号电脑,若购买A型电脑3台,B型电脑8台共需40000元;若购买A型电脑14台,B型电脑4台共需80000元.(1) A、B两种型号电脑每台多少元?(2)若用不超过160000元去购买A、B两种型号电脑共45台,则最多可购买A型电脑多少台?23. (10分) (2018九上·柯桥期末) 如图,,点O为边AN上一点,以O为圆心,6为半径作交AN于D、E两点.(1)当与AM相切时,求AD的长;(2)如果,判断AM与的位置关系?并说明理由.24. (10分)(2017·宿州模拟) 某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?25. (10分) (2016九上·盐城期末) 如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为y .①求y关于x的函数关系式.②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.26. (15分)(2018·青羊模拟) 已知点A(-2,2),B(8,12)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>4),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E,连接FH、AE,求之值(用含m的代数式表示);(3)如图2,直线AB分别交x轴、y轴于C、D两点,点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ 与抛物线的一个交点,当运动到t秒时,QM=3PM,求t的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共74分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年广东省中山市初中毕业生学业考试数 学 试 题说明:1.全卷共6页,考试用时100分钟,满分为120分。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.-3的相反数是( ) A .3B .31C .-3D .31-2.如图,已知∠1 = 70º,如果CD ∥BE ,那么∠B 的度数为( ) A .70ºB .100ºC .110ºD .120º3.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元, 8元,9元,则这组数据的中位数与众数分别为( ) A .6,6B .7,6C .7,8D .6,84.左下图为主视方向的几何体,它的俯视图是( )5.下列式子运算正确的是( ) A .123=-B .248=C .331= D .4321321=-++A .B . D .C .第4题图第2题图B CED A1二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上。
6. 据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000 人次。
试用科学记数法表示8000000=_______________________。
7.化简:11222---+-y x y xy x =_______________________。
8.如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cosB =54,则AC =____________。
9.已知一次函数b x y -=与反比例函数xy 2=的图象,有一个交点的纵坐标是2, 则b 的值为_____________。
10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···, 则正方形A 4B 4C 4D 4的面积为__________。
三、解答题(一)(本大题5小题,每小题6分,共30分)111001()260(2)2cos π--+-。
12.解方程组:⎩⎨⎧=-+=-4330222y y x y x第8题图ABC D第10题图(1) A 1 B 1 C 1 D 1 A B C D D 2 A 2 B 2C 2D 1 C 1 B 1A 1 A BCD 第10题图(2)13.如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt △ABC 的顶点均在格点上,在建立平面直角坐标系后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为(-3,3)。
(1)将Rt △ABC 沿x 轴正方向平移5个单位得到Rt △A 1B 1C 1,试在图上画出的图形Rt △A 1B 1C 1的图形,并写出点A 1的坐标;(2)将原来的Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 2B 2C 2,试在图上画出Rt △A 2B 2C 2的图形。
14.如图,P A 与⊙O 相切于A 点,弦AB ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA =2,OP =4。
(1)求∠POA 的度数; (2)计算弦AB 的长。
15.已知一元二次方程022=+-m x x 。
(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为x 1,x 2,且3321=+x x ,求m 的值。
第13题图第14题图 CB P DA OA E四、解答题(二)(本大题4小题,每小题7分,共28分)16.分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示)。
欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘。
(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由。
17.已知二次函数c bx x y ++-=2的图象如图所示,它与x 轴的一个交点坐标为(-1,0),与y 轴的交点坐标为(0,3)。
(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围。
18.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE 。
已知∠BAC =30º, EF ⊥AB ,垂足为F ,连结DF 。
(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形。
第16题图转盘A 转盘B 第17题图19.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆。
经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李。
(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?五、解答题(三)(本大题3小题,每小题9分,共27分)20.已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G 。
∠C =∠EFB =90º,∠E =∠ABC =30º,AB =DE =4。
(1)求证:△EGB 是等腰三角形;(2)若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小_____度时,四边形ACDE 成为以ED 为底的梯形(如图(2)),求此梯形的高。
第20题图(1) A B C E F F B (D ) G G A E D 第20题图(2)21.阅读下列材料:1×2 =31×(1×2×3-0×1×2), 2×3 = 31×(2×3×4-1×2×3),3×4 = 31×(3×4×5-2×3×4),由以上三个等式相加,可得 1×2+2×3+3×4 =31×3×4×5 = 20。
读完以上材料,请你计算下列各题: (1) 1×2+2×3+3×4+···+10×11(写出过程); (2) 1×2+2×3+3×4+···+n×(n +1) = _________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = _________。
22.如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2。
动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上), 当动点N 运动到点A 时,M 、N 两点同时停止运动。
连接FM 、FN ,当F 、N 、M 不在同一直线时, 可得△FMN ,过△FMN 三边的中点作△PQW 。
设动点M 、N 的速度都是1个单位/秒,M 、N 运动的 时间为x 秒。
试解答下列问题: (1)说明△FMN ∽△QWP ;(2)设0≤x ≤4(即M 从D 到A 运动的时间段)。
试问x 为何值时,△PQW 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值。
2010年广东省中山市初中毕业生学业考试数 学 试 题 参 考 答 案1、A2、C3、B4、D5、D6、6810⨯7、1x y -+8、59、1- 10、625 11、解:原式1222142=+-⨯+=。
12、解:⎩⎨⎧=-+=-4330222y y x y x由①得: 2x y =………… ③将③代入②,化简整理,得: 2340y y +-= 解得:13y y ==-或将13y y ==-或代入①,得: 21x y =⎧⎨=⎩ 或63x y =-⎧⎨=-⎩13、(1)如右图,A 1(-1,1); (2)如右图。
14、(1)60° (2)AB =15、(1)m ≤1 (2)12331()422m x x ===, 16、(1)59 (2)不公平。
因为欢欢获胜的概率是59;乐乐获胜的概率是49。
17、(1)22323b c y x x =-=-++,, (2)13x -<< 18、(1)提示:AC EF AB AC AE ====,,…………… ①…… ②第13题(1)答案第13题(2)答案(2)提示:000603090DAF EFA∠=+==∠,AD∥EF且AD=EF19、(1)四种方案,分别为::4:5:6:7:6:5:4:3⎧⎧⎧⎧⎨⎨⎨⎨⎩⎩⎩⎩甲甲甲甲或或或乙乙乙乙(2):4:6⎧⎨⎩甲乙最便宜,费用为18800元。
20、(1)提示:030EBG E∠=∠=GE GB∴=(2)30(度)21、(1)原式11011124403=⨯⨯⨯=(2)1(1)(2)3n n n⨯⨯+⨯+(3)126022、(1)提示:∵PQ∥FN,PW∥MN∴∠QPW=∠PWF,∠PWF =∠MNF∴∠QPW=∠MNF同理可得:∠PQW=∠NFM或∠PWQ=∠NFM ∴△FMN∽△QWP(2)当443x x==或时,△PQW为直角三角形;当0≤x<43,43<x<4时,△PQW不为直角三角形。