专题22正方形存在性问题巩固练习(基础)-冲刺2020年中考几何专项复习(解析版)
2022年中考数学二次函数压轴题考点大汇总专题17 正方形存在性问题含答案

2022年中考数学二次函数压轴题考点大汇总正方形存在性问题知识导航作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解.从动点角度来说,关于正方形存在性问题可分为:(1)2个定点+2个全动点;(2)1个定点+2个半动点+1个全动点;甚至可以有:(3)4个半动点.不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!常用处理方法:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系.正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.方法突破例:在平面直角坐标系中,A (1,1),B (4,3),在平面中求C 、D 使得以A 、B 、C 、D 为顶点的四边形是正方形.如图,一共6个这样的点C 使得以A 、B 、C 为顶点的三角形是等腰直角三角形.至于具体求点坐标,以1C 为例,构造△AMB ≌△1C NA ,即可求得1C 坐标.至于像5C 、6C 这两个点的坐标,不难发现,5C 是3AC 或1BC 的中点,6C 是2BC 或4AC 的中点.题无定法,具体问题还需具体分析,如上仅仅是大致思路.专项训练1.如图,已知抛物线2y x bx c =++的图象经过点A (1,0),B (-3,0),与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD .(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF ⊥x 轴于F ,点M 为x 轴上一动点,点N 为直线PF 上一动点,G 为抛物线上一动点,当以点F 、N 、G 、M 四点为顶点的四边形为正方形时,求点M 的坐标.2.如图,在平面直角坐标系中,抛物线21322y x bx =-++与x 轴正半轴交于点A ,且点A 的坐标为(3,0),过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ l ⊥于点Q ,M 是直线l 上的一点,其纵坐标为32m -+.以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.3.在平面直角坐标系中,抛物线213y x bx c =-++交x 轴于(3,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线3944y x =+与抛物线交于A ,D 两点,与直线BC 交于点E .若(,0)M m 是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且59EFG OEG S S ∆∆=时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.正方形存在性问题知识导航作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解.从动点角度来说,关于正方形存在性问题可分为:(1)2个定点+2个全动点;(2)1个定点+2个半动点+1个全动点;甚至可以有:(3)4个半动点.不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!常用处理方法:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系.正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.方法突破例:在平面直角坐标系中,A (1,1),B (4,3),在平面中求C 、D 使得以A 、B 、C 、D 为顶点的四边形是正方形.如图,一共6个这样的点C 使得以A 、B 、C 为顶点的三角形是等腰直角三角形.至于具体求点坐标,以1C 为例,构造△AMB ≌△1C NA ,即可求得1C 坐标.至于像5C 、6C 这两个点的坐标,不难发现,5C 是3AC 或1BC 的中点,6C 是2BC 或4AC 的中点.题无定法,具体问题还需具体分析,如上仅仅是大致思路.专项训练1.如图,已知抛物线2y x bx c =++的图象经过点A (1,0),B (-3,0),与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD .(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF ⊥x 轴于F ,点M 为x 轴上一动点,点N 为直线PF 上一动点,G 为抛物线上一动点,当以点F 、N 、G 、M 四点为顶点的四边形为正方形时,求点M 的坐标.【分析】(1)抛物线:223y x x =+-;(2)求CE 的直线解析式或设P 点坐标表示PE=PC ,可得P 点坐标为()2,2--.(3)考虑FN ⊥FM ,故四边形为MFNG ,若要成为正方形,则GN ∥FM ,GM ⊥x 轴,即四边形MFNG 为矩形.设FN 长度为m ,则NG=FN=m ,故G 点横坐标为m-2,代入解析式得:()22,23G m m m ---,故223GM m m m =--=,解得:1m =,2m =(舍),3m =,4m =(舍).则M 点坐标为12⎛⎫-+ ⎪ ⎪⎝⎭或12⎛⎫-+ ⎪ ⎪⎝⎭.【小结】根据题目描述可知四边形是矩形,考虑四边形的边均与坐标轴平行或垂直,故构造一组邻边相等求得点坐标.2.如图,在平面直角坐标系中,抛物线21322y x bx =-++与x 轴正半轴交于点A ,且点A 的坐标为(3,0),过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ l ⊥于点Q ,M 是直线l 上的一点,其纵坐标为32m -+.以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.【分析】(1)利用待定系数法求解即可.(2)根据点M 与点P 的纵坐标相等构建方程求解即可.(3)根据PQ MQ =,构建方程求解即可.(3)当点P 在直线l 的左边,点M 在点Q 是下方下方时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,则有2313222m m m -+<-++,解得04m <<,观察图象可知.当03m <<时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,如图41-中.当4m >时,点M 在点Q 的上方,也满足条件,如图42-中.【解答】解:(1)把点(3,0)A 代入21322y x bx =-++,得到930322b =-++,解得1b =.(2) 抛物线的解析式为21322y x x =-++,213(,22P m m m ∴-++,M ,Q 重合,2313222m m m ∴-+=-++,解得0m =或4.(3)22131(1)2222y x x x =-++=--+,∴抛物线的顶点坐标为(1,2),由题意PQ MQ =,且抛物线的顶点在该正方形内部,23133()222m m m m ∴-=-+--++且322m -+>,得12m <-解得1m =1+(不合题意舍弃),1m ∴=.(4)当点P 在直线l 的左边,点M 在点Q 下方时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,则有2313222m m m -+<-++,240m m ∴-<,解得04m <<,观察图象可知.当03m <<时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,如图41-中,当34m <<时,抛物线不在矩形PQMN 内部,不符合题意,当4m >时,点M 在点Q 的上方,也满足条件,如图42-中,综上所述,满足条件的m 的值为03m <<或4m >.【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,矩形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.3.在平面直角坐标系中,抛物线213y x bx c =-++交x 轴于(3,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线3944y x =+与抛物线交于A ,D 两点,与直线BC 交于点E .若(,0)M m 是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且59EFG OEG S S ∆∆=时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)根据抛物线解析式中13a =-和交x 轴于(3,0)A -,(4,0)B 两点,利用交点式可得抛物线的解析式;(2)①如图1,先利用待定系数法求直线BC 的解析式,联立方程可得交点E 的坐标,根据(,0)M m ,且MH x ⊥轴,表示点39(,44G m m +,211(,4)33F m m m -++,由59EFG OEG S S ∆∆=,列方程可得结论;②存在,根据正方形的性质得:FH EF =,90EFH FHP HPE ∠=∠=∠=︒,同理根据(,0)M m ,得(,4)H m m -+,211(,4)33F m m m -++,分两种情况:F 在EP 的左侧,在EP 的右侧,根据EF FH =,列方程可得结论.【解答】解:(1) 抛物线213y x bx c =-++交x 轴于(3,0)A -,(4,0)B 两点,2111(3)(4)4333y x x x x ∴=-+-=-++;(2)①如图1,(4,0)B ,(0,4)C ,∴设BC 的解析式为:y kx n =+,则404k n n +=⎧⎨=⎩,解得14k n =-⎧⎨=⎩,BC ∴的解析式为:4y x =-+,39444x x ∴-+=+,解得:1x =,(1,3)E ∴,(,0)M m ,且MH x ⊥轴,39(,)44G m m ∴+,211(,4)33F m m m -++,59EFG OEG S S ∆∆=,∴151()()292E F E G FG x x ON x x ⨯-=⨯-,2113959[(4)()](1)(1)334494m m m m m -++-+-=⨯-,解得:134m =,22m =-;②存在,由①知:(1,3)E ,四边形EFHP 是正方形,FH EF ∴=,90EFH FHP HPE ∠=∠=∠=︒,(,0)M m ,且MH x ⊥轴,(,4)H m m ∴-+,211(,4)33F m m m -++,分两种情况:)i 当31m -< 时,如图2,点F 在EP 的左侧,221114(4)(4)3333FH m m m m m ∴=-+--++=-,EF FH = ,∴214133m m m -=-,解得:112m +=(舍),212m -=,1(2H -∴,72+,P ∴,)ii 当14m <<时,点F 在PE 的右边,如图3,同理得214133m m m -+=-,解得:11132m +=,21132m =(舍),同理得713(1,2P -;综上,点P 的坐标为:713+或713)-.【点评】本题考查的是二次函数综合运用,涉及到一次函数,正方形的性质,二次函数,两函数的交点,图形的面积计算等,与方程相结合,求解点的坐标,难度适中.相似三角形存在性问题知识导航在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.【相似判定】判定1:三边对应成比例的两个三角形是相似三角形;判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;判定3:有两组角对应相等的三角形是相似三角形.以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.【题型分析】通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.【思路总结】根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.然后再找:思路1:两相等角的两边对应成比例;思路2:还存在另一组角相等.事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.一、如何得到相等角?二、如何构造两边成比例或者得到第二组角?搞定这两个问题就可以了.方法突破例一、如图,抛物线2y ax bx c =++与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,且过点D (2,-3).点Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)如图2,直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.【分析】(1)抛物线:223y x x =--;(2)思路:考虑到△ABC 和△BOE 有一组公共角,公共角必是对应角.∠ABC 的两边BA 、BC 与∠OBE 的两边BO 、BE 成比例即可,故可得:BE BA BO BC =或BE BC BO BA=.解得:BE =或BE =E 点坐标为()1,2-或39,44⎛⎫- ⎪⎝⎭.当E 点坐标为()1,2-时,直线OE 解析式为2y x =-,联立方程:2223x x x -=--,解得:1x ,2x =,此时Q 点坐标为-或(;当E 点坐标为39,44⎛⎫- ⎪⎝⎭时,直线OE 解析式为3y x =-,联立方程:2323x x x -=--,解得:112x -+=,212x --=,此时Q 点坐标为⎝⎭或⎝⎭.综上所述,Q 点坐标为-或(或⎝⎭或⎝⎭.说明:过程应详细分类讨论两种情况,分别求出结果.例二、如图1,在平面直角坐标系中,直线y =x -1与抛物线2y x bx c =-++交于A 、B 两点,其中A (m ,0)、B (4,n ),该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求m 、n 的值及该抛物线的解析式;(2)如图2,连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A 、D 、Q 为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)m =1,n =3,抛物线解析式为265y x x =-+-;(2)思路:平行得相等角,构造两边成比例由题意得D (5,0),故直线CD 解析式为:y =x -5,∴CD ∥AB ,∴∠CDA =∠BAD ,考虑到点Q 在线段CD上,∴DA AB DQ AD =或DA AD DQ AB =,解得:DQ =或DQ =Q 点坐标为78,33⎛⎫- ⎪⎝⎭或()2,3-.专项训练1.已知抛物线2:L y x bx c =-++过点(3,3)-和(1,5)-,与x 轴的交点为A ,B (点A 在点B 的左侧).(1)求抛物线L 的表达式;(2)若点P 在抛物线L 上,点E 、F 在抛物线L 的对称轴上,D 是抛物线L 的顶点,要使(PEF DAB P ∆∆∽的对应点是)D ,且:1:4PE DA =,求满足条件的点P 的坐标.2.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于(1,0)A -,(4,0)B 两点,与y 轴交于点(0,2)C -.(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记BDE ∆的面积为1S ,ABE ∆的面积为2S ,求12S S 的最大值;(3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB ∆∆∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.3.在平面直角坐标系xOy 中,把与x 轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线2113:222L y x x =--的顶点为D ,交x 轴于点A 、B (点A 在点B 左侧),交y 轴于点C .抛物线2L 与1L 是“共根抛物线”,其顶点为P .(1)若抛物线2L 经过点(2,12)-,求2L 对应的函数表达式;(2)当BP CP -的值最大时,求点P 的坐标;(3)设点Q 是抛物线1L 上的一个动点,且位于其对称轴的右侧.若DPQ ∆与ABC ∆相似,求其“共根抛物线”2L 的顶点P 的坐标.4.如图,抛物线2y x bx c =++经过点(3,12)和(2,3)--,与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l .(1)求该抛物线的表达式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P 、D 、E 为顶点的三角形与AOC ∆全等,求满足条件的点P ,点E 的坐标.5.如图1,抛物线21(2)62y x =-++与抛物线21122y x tx t =-++-相交y 轴于点C ,抛物线1y 与x 轴交于A 、B 两点(点B 在点A 的右侧),直线23y kx =+交x 轴负半轴于点N ,交y 轴于点M ,且OC ON =.(1)求抛物线1y 的解析式与k 的值;(2)抛物线1y 的对称轴交x 轴于点D ,连接AC ,在x 轴上方的对称轴上找一点E ,使以点A ,D ,E 为顶点的三角形与AOC ∆相似,求出DE 的长;(3)如图2,过抛物线1y 上的动点G 作GH x ⊥轴于点H ,交直线23y kx =+于点Q ,若点Q '是点Q 关于直线MG 的对称点,是否存在点G (不与点C 重合),使点Q '落在y 轴上?若存在,请直接写出点G 的横坐标,若不存在,请说明理由.6.如图,抛物线28(0)y ax bx a =++≠与x 轴交于点(2,0)A -和点(8,0)B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当35PBC ABC S S ∆∆=时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC ∆相似?若存在,求点M 的坐标;若不存在,请说明理由.7.如图,抛物线22y ax bx =++与x 轴交于A ,B 两点,且2OA OB =,与y 轴交于点C ,连接BC ,抛物线对称轴为直线12x =,D 为第一象限内抛物线上一动点,过点D 作DE OA ⊥于点E ,与AC 交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)当线段DF 的长度最大时,求D 点的坐标;(3)抛物线上是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC ∆相似?若存在,求出m 的值;若不存在,请说明理由.8.如图,抛物线2336y bx c +=++与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,33BO AO ==,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,3BC CD =.(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当ABD ∆与BPQ ∆相似时,请直接写出所有满足条件的点Q 的坐标.9.如图,抛物线212y x bx c =++与x 轴交于A 、B 两点(点A 在点B 左边),与y 轴交于点C .直线122y x =-经过B 、C 两点.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,过点P 且垂直于x 轴的直线与直线BC 及x 轴分别交于点D 、M .PN BC ⊥,垂足为N .设(,0)M m .①点P 在抛物线上运动,若P 、D 、M 三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m 的值;②当点P 在直线BC 下方的抛物线上运动时,是否存在一点P ,使PNC ∆与AOC ∆相似.若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,抛物线21y ax bx =++的对称轴为直线32x =,其图象与x 轴交于点A 和点(4,0)B ,与y 轴交于点C .(1)直接写出抛物线的解析式和CAO ∠的度数;(2)动点M ,N 同时从A 点出发,点M 以每秒3个单位的速度在线段AB 上运动,点N 个单位的速度在线段AC 上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为(0)t t >秒,连接MN ,再将线段MN 绕点M 顺时针旋转90︒,设点N 落在点D 的位置,若点D 恰好落在抛物线上,求t 的值及此时点D 的坐标;(3)在(2)的条件下,设P 为抛物线上一动点,Q 为y 轴上一动点,当以点C ,P ,Q 为顶点的三角形与MDB ∆相似时,请直接写出点P 及其对应的点Q 的坐标.(每写出一组正确的结果得1分,至多得4分)相似三角形存在性问题知识导航在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.【相似判定】判定1:三边对应成比例的两个三角形是相似三角形;判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;判定3:有两组角对应相等的三角形是相似三角形.以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.【题型分析】通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.【思路总结】根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.然后再找:思路1:两相等角的两边对应成比例;思路2:还存在另一组角相等.事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.一、如何得到相等角?二、如何构造两边成比例或者得到第二组角?搞定这两个问题就可以了.方法突破例一、如图,抛物线2y ax bx c =++与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,且过点D (2,-3).点Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)如图2,直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.【分析】(1)抛物线:223y x x =--;(2)思路:考虑到△ABC 和△BOE 有一组公共角,公共角必是对应角.∠ABC 的两边BA 、BC 与∠OBE 的两边BO 、BE 成比例即可,故可得:BE BA BO BC =或BE BC BO BA=.解得:BE =或BE =故E 点坐标为()1,2-或39,44⎛⎫- ⎪⎝⎭.当E 点坐标为()1,2-时,直线OE 解析式为2y x =-,联立方程:2223x x x -=--,解得:1x ,2x =此时Q 点坐标为-或(;当E 点坐标为39,44⎛⎫- ⎪⎝⎭时,直线OE 解析式为3y x =-,联立方程:2323x x x -=--,解得:1x =2x =此时Q 点坐标为⎝⎭或⎝⎭.综上所述,Q 点坐标为-或(或⎝⎭或⎝⎭.说明:过程应详细分类讨论两种情况,分别求出结果.例二、如图1,在平面直角坐标系中,直线y =x -1与抛物线2y x bx c =-++交于A 、B 两点,其中A (m ,0)、B (4,n ),该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求m 、n 的值及该抛物线的解析式;(2)如图2,连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A 、D 、Q 为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)m =1,n =3,抛物线解析式为265y x x =-+-;(2)思路:平行得相等角,构造两边成比例由题意得D (5,0),故直线CD 解析式为:y =x -5,∴CD ∥AB ,∴∠CDA =∠BAD ,考虑到点Q 在线段CD 上,∴DAABDQ AD =或DAADDQ AB =,解得:823DQ =或32DQ =故Q 点坐标为78,33⎛⎫- ⎪⎝⎭或()2,3-.专项训练1.已知抛物线2:L y x bx c =-++过点(3,3)-和(1,5)-,与x 轴的交点为A ,B (点A 在点B 的左侧).(1)求抛物线L 的表达式;(2)若点P 在抛物线L 上,点E 、F 在抛物线L 的对称轴上,D 是抛物线L 的顶点,要使(PEF DAB P ∆∆∽的对应点是)D ,且:1:4PE DA =,求满足条件的点P 的坐标.【分析】(1)利用待定系数法可求解析式;(2)先求出点A ,点B ,点D 坐标,由相似三角形的性质可求解.【解答】解:(1) 抛物线2y x bx c =-++过点(3,3)-和(1,5)-,∴51393b c b c -=-++⎧⎨=--+⎩,解得:40b c =-⎧⎨=⎩,∴抛物线解析式为24y x x =--;(2)令0y =,则204x x =--,14x ∴=-,20x =,∴点(4,0)A -,点(0,0)B ,∴对称轴为2x =-,∴点(2,4)D -,如图,设对称轴与x 轴的交点为H ,过点P 作PQ DH ⊥于Q ,设点2(,4)P m m m --,PEF DAB ∆∆ ∽,∴14PE PQ AD DH ==,1414PQ ∴=⨯=,|2|1m ∴+=,1m ∴=-或3-,∴点(1,3)P -或(3,3)-.【点评】本题是二次函数综合题,考查了二次函数的性质,相似三角形的判定和性质,灵活运用相似三角形的性质是本题的关键.2.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于(1,0)A -,(4,0)B 两点,与y 轴交于点(0,2)C -.(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记BDE ∆的面积为1S ,ABE ∆的面积为2S ,求12S S 的最大值;(3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB ∆∆∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)设抛物线的解析式为(1)(4)y a x x =--,将点C 的坐标代入可求得a 的值,从而得到抛物线的解析式;(2)过点D 作DG x ⊥轴于点G ,交BC 于点F ,过点A 作AK x ⊥轴交BC 的延长线于点K ,证明AKE DFE ∆∆∽,得出DF DE AK AE =,则12BDE ABE S S DE DF S S AE AK∆∆===,求出直线BC 的解析式为122y x =-,设213(,2)22D m m m --,则1(,2)2F m m -,可得出12S S 的关系式,由二次函数的性质可得出结论;(3)设1(P a ,12a ,①当点P 在直线BQ 右侧时,如图2,过点P 作PN x ⊥轴于点N ,过点Q 作QM ⊥直线PN 于点M ,得出13(4Q a ,12)a -,将点Q 的坐标代入抛物线的解析式求得a 的值即可,②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为15(4a ,2),代入抛物线的解析可得出答案.【解答】解:(1)设抛物线的解析式为(1)(4)y a x x =+-.将(0,2)C -代入得:42a =,解得12a =,∴抛物线的解析式为1(1)(4)2y x x =+-,即213222y x x =--.(2)过点D 作DG x ⊥轴于点G ,交BC 于点F ,过点A 作AK x ⊥轴交BC 的延长线于点K,//AK DG ∴,AKE DFE ∴∆∆∽,∴DF DE AK AE=,∴12BDE ABE S S DE DF S S AE AK ∆∆===,设直线BC 的解析式为1y kx b =+,∴11402k b b +=⎧⎨=-⎩,解得1122k b ⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为122y x =-,(1,0)A - ,15222y ∴=--=-,52AK ∴=,设213(,2)22D m m m --,则1(,2)2F m m -,2211312222222DF m m m m m ∴=--++=-+.∴222121214142(2)555552m m S m m m S -+==-+=--+.∴当2m =时,12S S 有最大值,最大值是45.(3)符合条件的点P 的坐标为6834(,99或63()55++.//l BC ,∴直线l 的解析式为12y x =,设1(P a ,1)2a ,①当点P 在直线BQ 右侧时,如图2,过点P 作PN x ⊥轴于点N ,过点Q 作QM ⊥直线PN 于点M ,(1,0)A - ,(0,2)C -,(4,0)B ,5AC ∴=5AB =,5BC =,222AC BC AB += ,90ACB ∴∠=︒,PQB CAB ∆∆ ∽,∴12PQ AC PB BC ==,90QMP BNP ∠=∠=︒ ,90MQP MPQ ∴∠+∠=︒,90MPQ BPN ∠+∠=︒,MQP BPN ∴∠=∠,QPM PBN ∴∆∆∽,∴12QM PM PQ PN BN PB ===,14a QM ∴=,1111(4)222PM a a =-=-,12MN a ∴=-,1134444a BN QM a a -=--=-,13(4Q a ∴,12)a -,将点Q 的坐标代入抛物线的解析式得21111333()222424a a a ⨯-⨯-=-,解得10a =(舍去)或1689a =.6834(,)99P ∴.②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为15(4a ,2).此时点P 的坐标为63()55++.【点评】本题是二次函数综合题,考查了待定系数法求一次函数和二次函数的解析式,相似三角形的性质和判定,勾股定理的应用,二次函数的性质,三角形的面积等知识,熟练掌握相似三角形的判定与性质是解题的关键.3.在平面直角坐标系xOy 中,把与x 轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线2113:222L y x x =--的顶点为D ,交x 轴于点A 、B (点A 在点B 左侧),交y 轴于点C .抛物线2L 与1L 是“共根抛物线”,其顶点为P .(1)若抛物线2L 经过点(2,12)-,求2L 对应的函数表达式;(2)当BP CP -的值最大时,求点P 的坐标;(3)设点Q 是抛物线1L 上的一个动点,且位于其对称轴的右侧.若DPQ ∆与ABC ∆相似,求其“共根抛物线”2L 的顶点P 的坐标.【分析】(1)由题意设抛物线2L 的解析式为(1)(4)y a x x =+-,利用待定系数法求出a 即可解决问题.(2)由题意BP AP =,如图1中,当A ,C ,P 共线时,BP PC -的值最大,此时点P 为直线AC 与直线32x =的交点.(3)由题意,顶点3(2D ,258-,PDQ ∠不可能是直角,第一种情形:当90DPQ ∠=︒时,①如图31-中,当QDP ABC ∆∆∽时.②如图32-中,当DQP ABC ∆∆∽时.第二种情形:当90DQP ∠=︒.①如图33-中,。
中考数学复习----《正方形的性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《正方形的性质》知识点总结与专项练习题(含答案解析)知识点总结1.正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形2.正方形的性质:①具有平行四边形的一切性质。
②具有矩形与菱形的一切性质。
所以正方形的四条边都相等,四个角都是直角。
对角线相互平分且相等,且垂直,且平分每一组对角,把正方形分成了四个全等的等腰直角三角形。
正方形既是中心对称图形,也是轴对称图形。
对角线交点是对称中心,对角线所在直线是对称轴,过每一组对边中点的直线也是对称轴。
练习题1.(2022•黄石)如图,正方形OABC的边长为,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(﹣2,0)B.(2,0)C.(0,2)D.(0,2)【分析】连接OB,由正方形的性质和勾股定理得OB=2,再由旋转的性质得B1在y轴正半轴上,且OB1=OB=2,即可得出结论.【解答】解:如图,连接OB,∵正方形OABC的边长为,∴OC=BC=,∠BCO=90°,∠BOC=45°,∴OB===2,∵将正方形OABC绕原点O顺时针旋转45°后点B旋转到B1的位置,∴B 1在y 轴正半轴上,且OB 1=OB =2,∴点B 1的坐标为(0,2),故选:D .2.(2022•广州)如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE =1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则MN 的长为( )A .26B .23C .2﹣3D .226− 【分析】连接EF ,由正方形ABCD 的面积为3,CE =1,可得DE =﹣1,tan ∠EBC ===,即得∠EBC =30°,又AF 平分∠ABE ,可得∠ABF =∠ABE =30°,故AF ==1,DF =AD ﹣AF =﹣1,可知EF =DE =×(﹣1)=﹣,而M ,N 分别是BE ,BF 的中点,即得MN =EF =. 【解答】解:连接EF ,如图:∵正方形ABCD 的面积为3,∴AB =BC =CD =AD =,∵CE =1,∴DE=﹣1,tan∠EBC===,∴∠EBC=30°,∴∠ABE=∠ABC﹣∠EBC=60°,∵AF平分∠ABE,∴∠ABF=∠ABE=30°,在Rt△ABF中,AF==1,∴DF=AD﹣AF=﹣1,∴DE=DF,△DEF是等腰直角三角形,∴EF=DE=×(﹣1)=﹣,∵M,N分别是BE,BF的中点,∴MN是△BEF的中位线,∴MN=EF=.故选:D.3.(2022•贵阳)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是()A.4B.8C.12D.16【分析】根据题意和题目中的数据,可以计算出小正方形的边长,然后即可得到小正方形的周长.【解答】解:由题意可得,小正方形的边长为3﹣1=2,∴小正方形的周长为2×4=8,故选:B.4.(2022•青岛)如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE 的长度为( )A .26B .6C .22D .23【分析】首先利用正方形的性质可以求出AC ,然后利用等边三角形的性质可求出OE .【解答】解:∵四边形ABCD 为正方形,AB =2,∴AC =2,∵O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形,∴∠AOE =90°,∴AC =AE =2,AO =,∴OE =×=. 故选:B .5.(2022•泰州)如图,正方形ABCD 的边长为2,E 为与点D 不重合的动点,以DE 为一边作正方形DEFG .设DE =d 1,点F 、G 与点C 的距离分别为d 2、d 3,则d 1+d 2+d 3的最小值为( )A .2B .2C .22D .4【分析】连接AE ,那么,AE =CG ,所以这三个d 的和就是AE +EF +FC ,所以大于等于AC ,故当AEFC 四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE ,∵四边形DEFG 是正方形,∴∠EDG =90°,EF =DE =DG ,∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,∴∠ADE =∠CDG ,∴△ADE ≌△CDG (SAS ),∴AE =CG ,∴d 1+d 2+d 3=EF +CF +AE ,∴点A ,E ,F ,C 在同一条线上时,EF +CF +AE 最小,即d 1+d 2+d 3最小,连接AC ,∴d 1+d 2+d 3最小值为AC ,在Rt △ABC 中,AC =AB =2,∴d 1+d 2+d 3最小=AC =2, 故选:C .6.(2022•黔东南州)如图,在边长为2的等边三角形ABC 的外侧作正方形ABED ,过点D 作DF ⊥BC ,垂足为F ,则DF 的长为( )A .23+2B .5﹣33C .3﹣3D .3+1【分析】方法一:如图,延长DA 、BC 交于点G ,利用正方形性质和等边三角形性质可得:∠BAG =90°,AB =2,∠ABC =60°,运用解直角三角形可得AG =2,DG =2+2,再求得∠G =30°,根据直角三角形性质得出答案.方法二:过点E 作EG ⊥DF 于点G ,作EH ⊥BC 于点H ,利用解直角三角形可得EH =1,BH =,再证明△BEH ≌△DEG ,可得DG =BH =,即可求得答案.【解答】解:方法一:如图,延长DA、BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°﹣90°=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∴AG=AB•tan∠ABC=2×tan60°=2,∴DG=AD+AG=2+2,∵∠G=90°﹣60°=30°,DF⊥BC,∴DF=DG=×(2+2)=1+,故选D.方法二:如图,过点E作EG⊥DF于点G,作EH⊥BC于点H,则∠BHE=∠DGE=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∵四边形ABED是正方形,∴BE=DE=2,∠ABE=∠BED=90°,∴∠EBH=180°﹣∠ABC﹣∠ABE=180°﹣60°﹣90°=30°,∴EH=BE•sin∠EBH=2•sin30°=2×=1,BH=BE•cos∠EBH=2cos30°=,∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°,∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG,在△BEH和△DEG中,,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1,故选:D.7.(2022•随州)七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABCD中,BD为对角线,E,F分别为BC,CD的中点,AP⊥EF分别交BD,EF于O,P两点,M,N分别为BO,DO的中点,连接MP,NF,沿图中实线剪开即可得到一副七巧板.则在剪开之前,关于该图形,下列说法正确的有()①图中的三角形都是等腰直角三角形;②四边形MPEB是菱形;③四边形PFDM的面积占正方形ABCD面积的.A.只有①B.①②C.①③D.②③【分析】①利用正方形的性质和中位线的性质可以解决问题;②利用①的结论可以证明OM≠MP解决问题;③如图,过M作MG⊥BC于G,设AB=BC=x,利用正方形的性质与中位线的性质分别求出BE和MG即可判定是否正确.【解答】解:①如图,∵E,F分别为BC,CD的中点,∴EF为△CBD的中位线,∴EF∥BD,∵AP⊥EF,∴AP⊥BD,∵四边形ABCD为正方形,∴A、O、P、C在同一条直线上,∴△ABC、△ACD、△ABD、△BCD、△OAB、△OAD、△OBC、△OCD、△EFC都是等腰直角三角形,∵M,N分别为BO,DO的中点,∴MP∥BC,NF∥OC,∴△DNF、△OMP也是等腰直角三角形.故①正确;②根据①得OM=BM=PM,∴BM≠PM∴四边形MPEB不可能是菱形.故②错误;③∵E,F分别为BC,CD的中点,∴EF∥BD,EF=BD,∵四边形ABCD是正方形,且设AB=BC=x,∴BD=x,∵AP⊥EF,∴AP⊥BD,∴BO=OD,∴点P在AC上,∴PE=EF,∴PE=BM,∴四边形BMPE是平行四边形,∴BO=BD,∵M为BO的中点,∴BM=BD=x,∵E为BC的中点,∴BE=BC=x,过M作MG⊥BC于G,∴MG=BM=x,∴四边形BMPE的面积=BE•MG=x2,∴四边形BMPE的面积占正方形ABCD面积的.∵E、F是BC,CD的中点,∴S△CEF=S△CBD=S四边形ABCD,∴四边形PFDM的面积占正方形ABCD面积的(1﹣﹣﹣)=.故③正确.故选:C.8.(2022•宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积【分析】根据题意设PD=x,GH=y,则PH=x﹣y,根据矩形纸片和正方形纸片的周长相等,可得AP=x+y,先用面积差表示图中阴影部分的面积,并化简,再用字母分别表示出图形四个选项的面积,可得出正确的选项.【解答】解:设PD=x,GH=y,则PH=x﹣y,∵矩形纸片和正方形纸片的周长相等,∴2AP+2(x﹣y)=4x,∴AP=x+y,∵图中阴影部分的面积=S矩形ABCD﹣2△ADH﹣2S△AEB=(2x+y)(2x﹣y)﹣2ו(x﹣y)(2x+y)﹣2ו(2x﹣y)•x=4x2﹣y2﹣(2x2+xy﹣2xy﹣y2)﹣(2x2﹣xy)=4x2﹣y2﹣2x2+xy+y2﹣2x2+xy=2xy,A、正方形纸片的面积=x2,故A不符合题意;B、四边形EFGH的面积=y2,故B不符合题意;C、△BEF的面积=•EF•BQ=xy,故C符合题意;D、△AEH的面积=•EH•AM=y(x﹣y)=xy﹣y2,故D不符合题意;故选:C.9.(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°【分析】根据正方形的性质和全等三角形的判定和性质,可以得到∠ADF的度数,从而可以求得∠CDF的度数.【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.10.(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵四边形ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠F AO=20°.在△AOF和△BOE中,,∴△AOF ≌△BOE (SAS ).∴∠F AO =∠EBO =20°,∵OB =OC ,∴△OBC 是等腰直角三角形,∴∠OBC =∠OCB =45°,∴∠CBE =∠EBO +∠OBC =65°.故选:C .11.(2022•益阳)如图,将边长为3的正方形ABCD 沿其对角线AC 平移,使A 的对应点A ′满足AA ′=31AC ,则所得正方形与原正方形重叠部分的面积是 .【分析】由正方形边长为3,可求AC =3,则AA ′=AC =,由平移可得重叠部分是正方形,根据正方形的面积公式可求重叠部分面积.【解答】解:∵正方形ABCD 的边长为3,∴AC =3,∴AA ′=AC =, ∴A ′C =2,由题意可得重叠部分是正方形,且边长为2,∴S 重叠部分=4.故答案为:4.12.(2022•海南)如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE =AF ,∠EAF =30°,则∠AEB = °;若△AEF 的面积等于1,则AB 的值是 .【分析】利用“HL”先说明△ABE与△ADF全等,得结论∠BAE=∠DAF,再利用角的和差关系及三角形的内角和定理求出∠AEB;先利用三角形的面积求出AE,再利用直角三角形的边角间关系求出AB.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL).∴∠BAE=∠DAF.∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣30°)=30°.∴∠AEB=60°.故答案为:60.过点F作FG⊥AE,垂足为G.∵sin∠EAF=,∴FG=sin∠EAF×AF.∵S△AEF=×AE×FG=×AE×AF×sin∠EAF=1,∴×AE2×sin30°=1.即×AE2×=1.∴AE=2.在Rt△ABE中,∵cos∠BAE=,∴AB=cos30°×AE=×2=.故答案为:.13.(2022•广西)如图,在正方形ABCD中,AB=42,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【分析】作辅助线,构建全等三角形,先根据翻折的性质得△EGH'≌△EGH,所以△EGH′的周长=△EGH的周长,接下来计算△EGH的三边即可;证明△BME≌△FNE(ASA)和△BEO≌△EFP(AAS),得OE=PF=2,OB=EP=4,利用三角函数和勾股定理分别计算EG,GH和EH的长,相加可得结论.【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.14.(2022•无锡)如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE 且分别交AE、BC于点H、G,则BG=.【分析】设CG=x,则BG=8﹣x,根据勾股定理可得AB2+BG2=CE2+CG2,可求得x 的值,进而求出BG的长.【解答】解:连接AG,EG,∵E是CD的中点,∴DE=CE=4,设CG=x,则BG=8﹣x,在Rt△ABG和Rt△GCE中,根据勾股定理,得AB2+BG2=CE2+CG2,即82+(8﹣x)2=42+x2,解得x=7,∴BG=BC﹣CG=8﹣7=1.故答案是:1.15.(2022•江西)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为.【分析】根据图形可得长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,然后利用勾股定理即可解决问题.【解答】解:根据图形可知:长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,则长方形的对角线长==.故答案为:.。
【2020精编】北师大初中数学中考冲刺:几何综合问题--知识讲解(基础)

1 中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过 添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经 验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用 数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t(s)表示移动的时间(0≤t ≤6),那么:⑴当t 为何值时,△QAP 为等腰直角三角形?⑵求四边形QAPC 的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?D ABC QP2【思路点拨】⑴中应由△QAP 为等腰直角三角形这一结论,需补充条件AQ=AP ,由AQ=6-t ,AP=2t ,可求出t 的值;⑵中四边形QAPC 是一个不规则图形,其面积可由矩形面积减去△DQC 与△PBC 的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论. 【答案与解析】解:(1)对于任何时刻t ,AP=2t ,DQ=t ,QA=6-t .当QA=AP 时,△QAP 为等腰直角三角形,即6-t=2t ,解得:t=2(s ),所以,当t=2s 时,△QAP 为等腰直角三角形.(2)在△QAC 中,QA=6-t ,QA 边上的高DC=12,∴S △QAC =12QA •DC=12(6-t )•12=36-6t . 在△APC 中,AP=2t ,BC=6, ∴S △APC =12AP •BC=12•2t •6=6t . ∴S 四边形QAPC =S △QAC +S △APC =(36-6t )+6t=36(cm 2).由计算结果发现:在P 、Q 两点移动的过程中,四边形QAPC 的面积始终保持不变.(也可提出:P 、Q两点到对角线AC 的距离之和保持不变)(3)根据题意,可分为两种情况,在矩形ABCD 中:①当QA AP AB BC=时,△QAP ∽△ABC ,则有: 62126t t -=,解得t=1.2(s ), 即当t=1.2s 时,△QAP ∽△ABC ;②当QA AP BC AB=时,△PAQ ∽△ABC ,则有: 62612t t -=,解得t=3(s ), 即当t=3s 时,△PAQ ∽△ABC ;所以,当t=1.2s 或3s 时,以点Q 、A 、P 为顶点的三角形与△ABC 相似.【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC 的面积也可由△QAC 与△CAP 的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD 中,AD ∥BC ,AD=3,CD=5,BC=10,梯形的高为4,动点M 从点B 出发沿线段BC 以每秒2个单位长度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒(1)直接写出梯形ABCD 的中位线长;(2)当MN ∥AB 时,求t 的值;(3)试探究:t 为何值时,使得MC=MN .【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋•泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD 为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;34 (3)如图3,在(2)的条件下,若D 点在BC 的延长线上运动,以AD 为边作等腰Rt △ADE ,∠DAE=90°(顶点A 、D 、E 按逆时针方向排列),连接CE .①题(2)的结论还成立吗?请说明理由;②连结BE ,若BE=10,BC=6,求AE 的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,即可得出结论;②由△ABD ≌△ACE ,以及等边三角形的性质,就可以得出AC=DC+CE ;(2)先判定△ABD ≌△ACE (SAS ),得出∠B=∠ACE=45°,BD=CE ,在Rt △DCE 中,根据勾股定理得出CE 2+CD 2=DE 2,即可得到BD 2+CD 2=DE 2;(3)①运用(2)中的方法得出BD 2+CD 2=DE 2;②根据Rt △BCE 中,BE=10,BC=6,求得CE=22106-=8,进而得出CD=8﹣6=2,在Rt △DCE 中,求得DE=2228+=,最后根据△ADE 是等腰直角三角形,即可得出AE 的长.【答案与解析】解:(1)①如图1,∵△ABC 和△ADE 是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,∴∠BAC ﹣∠DAC=∠DAE ﹣∠DAC ,∴∠BAD=∠EAC .在△ABD 和△ACE 中,,∴△ABD ≌△ACE (SAS ),∴BD=CE ;②∵BD=CE ,AC=BC ,又∵BC=BD+CD ,∴AC=CE+CD ;(2)BD 2+CD 2=DE 2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC ﹣∠DAC=∠DAE ﹣∠DAC ,即∠BAD=∠CAE ,在△ABD 与△ACE 中,,∴△ABD ≌△ACE (SAS ),∴∠B=∠A CE=45°,BD=CE ,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴CE=22106-=8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,DE=2228+=68,∵△ADE是等腰直角三角形,∴AE=683422==.【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0︒<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD.5∵点D在∠PBC的平分线上,∴∠1=∠2.∵△ABC是等边三角形,∴ BA=BC=AC,∠ACB= 60°.∵ BP=BA,∴ BP=BC.∵ BD= BD,∴△PBD≌△CBD.∴∠BPD=∠3.∵ DB=DA,BC=AC,CD=CD,∴△BCD≌△ACD.∴1 34302ACB∠=∠=∠=︒.∴∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题4.如图,直角三角形纸片ABC中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B与点C重合,折痕与AB、BC的交点分别为D、E.(1) DE的长为;(2) 将折叠后的图形沿直线AE剪开,原纸片被剪成三块,其中最小一块的面积等于.【思路点拨】(1)由题意可得:DE是线段BC的垂直平分线,易证DE∥AC,即DE是△ABC的中位线,即可求得DE的长;(2)由DE∥AC,DE=12AC,易证△AOC∽△EOD,根据相似三角形的对应边成比例,即可求得OA:OE=2,然后求得△ACE的面积,利用等高三角形的面积比等于对应底的比,即可求得答案.6【答案与解析】(1)根据题意得:DE⊥BC,CE=BE,∵∠ACB=90°,即AC⊥BC,∴DE∥AC,∴AD=BD,∴DE=12AC=12×8=4;(2)∵DE∥AC,DE=12AC,∴△AOC∽△EOD,∴OA:OE=AC:DE=2,∵CE=12BC=12×6=3,∵∠ACB=90°,AC=8,∴S△ACE=12CE•AC=12×3×8=12,∴S△OCE=13S△ACE=4,∴S△ADE+S△ODE=S△ABC-4-12=8,∴其中最小一块的面积等于4.【总结升华】考查了折叠的性质、直角三角形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系,是一道典型的几何综合题.举一反三【变式】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,那么△AB′E与四边形AECD重叠部分的面积是 . 【答案】在Rt△ABE中,∵∠B=45°,AB=2,∴AE=BE=2,∴S△ABE=1.由翻折的性质可知:△AB′E≌△ABE,∴EB′=EB=2∴B′C=BB′-BC=22-2,∵四边形ABCD是菱形,∴CF∥BA.∴∠ B′FC=∠B′AB=90°, ∠B′CF=∠B=45°∴CF=2'=2-22B C∴SB FC△'=221CF=3-22∴S阴=SB E′△A-SB FC′△=22-2.75.如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10 cm,CD=4 cm,等腰直角△PMN的斜边MN=10 cm, A点与N点重合, MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角△PMN沿AB 所在直线以1 cm/s的速度向右移动,直到点N与点B重合为止.(1)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN移动x (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积为y(cm2),求y与x之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN与等腰梯形ABCD重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN,AN=x (cm),过点E 作EH ⊥AB于点H,则EH平分AN,求出EH,根据三角形的面积公式求出即可;②当6<x≤10时,重叠部分的形状是等腰梯形ANED,求出AN=x(cm),CE=BN=10-x,DE=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,求出DF,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E作EH⊥AB 于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),8∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD 上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=.∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.9。
2020年中考数学第一轮复习 第二十二讲 矩形 菱形 正方形 知识点+真题(后含答案)

2020年中考数学第一轮复习第二十二讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【注意:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【注意:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证 ⑵先证是菱形,再证【注意:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。
这四者之间的关系可表示为:2、正方形也既是 对称图形,又是 对称图形,有 条对称轴3、几种特殊四边形的性质和判定都是从 、 、 三个方面来看 的,要注意它们的区别和联系】【中考真题考点例析】考点一:与四边形有关的折叠问题例1(2019潍坊)如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A ′,折痕为DE .若将∠B 沿EA ′向内翻折,点B 恰好落在DE 上,记为B ′,则AB = .对应练习1-1(泸州)如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE=105cm ,且tan ∠EFC=34,那么该矩形的周长为( )A .72cmB .36cmC .20cmD .16cm对应练习1-2(湖州)如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,则AD AB的值为( ) A .12 B .33 C .23D .22 考点二:和菱形有关的的问题例2(2019聊城中考)在如图菱形ABCD 中,点P 是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE V V ≌;(2)求证:DE BF EF =+.对应练习2-1(2019潍坊)如图1,菱形ABCD的顶点A,D在直线l上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′.B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.对应练习2-2(泉州)如图,菱形ABCD的周长为85,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO= ,菱形ABCD的面积S= .考点三:和矩形有关的题目例3(2019年山东临沂)如图,在□ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=12AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND对应练习3-1(2019青岛中考)如图,在□ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 中点,延长AE 至G ,使EG=AE ,连接CG .(1)求证:△ABE≌△CDF ;(2)当AB 与AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.考点四:和正方形有关的试题例4(2019年菏泽)如图,E,F 是正方形ABCD 的对角线AC 上的两点,AC=8,AE=CF=2,则四边形BEDF 的周长是____.对应练习4-1(2019年枣庄)如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A. 4B. 25C. 6D. 26对应练习4-2(2019年山东临沂)如图,在正方形ABCD 中,E 是DC 边上一点,(与D 、C 不重合),连接AE ,将△ADE 沿AE 所在的直线折叠得到△AFE ,延长EF 交BC 于点G ,连接AG ,作GH ⊥AG ,与AE 的延长线交于点H ,连接CH .显然AE 是∠DAF 的平分线,EA 是∠DEF 的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角的平分线),并说明理由.考点五:矩形的动点问题例5(2019年泰安)如图,矩形ABCD 中,4AB =,2AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A. 2B. 4C. 2D. 22 考点六:平行四边形、矩形、菱形及正方形综合题例6(2019年泰安)在平面直角坐标系中,直线:1l y x =+与y 轴交于点1A ,如图所示,A BG C M FH DE依次作正方形111OA B C ,正方形1222C A B C ,正方形2333C A B C ,正方形3444C A B C ,…,点1A ,2A ,3A ,4A ,…在直线l 上,点1C ,2C ,3C ,4C ,…⑴x 轴正半轴上,则前n 个正方形对角线的和是_____.对应练习6-1(2019年莱芜)如图在坐标系中放置一菱形OABC ,已知∠ABC=60°,OA=1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B 的落点依次为B 1,B 2,B 3,…,则B 2019的坐标为 .对应练习6-2(2019年山东滨州)如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若AB =6,AD =10,求四边形CEFG 的面积.第二十二讲 矩形 菱形 正方形 参考答案【中考真题考点例析】考点一:与四边形有关的折叠问题例1 答案:3 解:在矩形ABCD 中,∠ADC =∠C =∠B =90°,AB =DC .由翻折可知,∠AED =∠A 'ED =∠A 'EB =60°,∴∠A 'DE =∠ADE =30°,∴∠A 'DC =30°=∠A 'DB ',又∠A 'B 'D =∠B =∠C ,DA '=DA ',∴△DB 'A '≌△DCA '(AAS ),∴DC =DB '.在Rt △ADE 中,tan30°=AD AE,即33=2AE ,解得AE =332.∴DE =334.设AB =DC =DB '=x ,则B 'E =BE =x -332,即有x -332+x =334,解得x =3.对应练习1-1 答案:A对应练习1-2 答案:A解析:∵矩形沿直线AC 折叠,点B 落在点E 处,∴∠BAC=∠EAC ,AE=AB=CD ,∵矩形ABCD 的对边AB ∥CD ,∴∠DCA=∠BAC ,∴∠EAC=∠DCA ,设AE 与CD 相交于F ,则AF=CF ,∴AE -AF=CD -CF ,即DF=EF ,∴AF EFFC DF =,又∵∠AFC=∠EFD ,∴△ACF ∽△EDF ,∴53==AC DE FC DF,设DF=3x ,FC=5x ,则AF=5x ,在Rt △ADF 中,AD=2222(3x)-(5x)DF -AF ==4x ,又∵AB=CD=DF+FC=3x+5x=8x ,∴2184==x x AB AD.故选A .考点二:和菱形有关的的问题例2 答案:证明:(1)∵四边形ABCD 为菱形,∴AB AD =,AD BC ∥,∴BPA DAE ∠=∠.在ABP ∆和DAE ∆中,又∵ABC AED ∠=∠,∴BAF ADE ∠=∠.∵ABF BPF ∠=∠且BPA DAE ∠=∠,∴ABF DAE ∠=∠,又∵AB DA =,∴()ABF DAE ASA ≅V V .(2)∵ABF DAE ≅V V ,∴AE BF =,DE AF =.∵AF AE EF BF EF =+=+, ∴DE BF EF =+.对应练习2-1 答案:解:(1)∵MN ∥B ′D ′,∴D C B C D N B M ''''=''.又∵C ′B ′=C ′D ′,∴MB ′=ND ′.在AB ′M 和△AD ′N 中,∴AB ′=AD ′,∠AB ′M =∠AD ′N , B ′M =D ′N ,∴△AB ′M ≌△AD ′N ,∴∠B ′AM =∠D ′AN .又∵∠D ′AN =α,∴∠B ′AM =α.∴∠B ′AM =∠BAB ′=21∠BAC =41∠BAD =15°.即α=15°.(2)在△AB ′E 和△AD ′G 中,∠AB ′E =∠AD ′G ,∠EAB ′=∠GAD ′,AB ′=AD ′,∴△AB ′E ≌△AD ′G ,∴EB ′=GD ′,AE =AG .在△AHE 和△AHG 中,AE =AG ,∠EAH =∠GAH ,AH =AH ,∴△AHE ≌△AHG ,∴EH =GH .∵△HEB ′的周长为2,∴EH +EB ′+HB ′=2,∴GH +GD ′+B ′H =2,∴B ′D ′=BD =2,∴菱形ABCD 的周长为8.对应练习2-2 答案:1:2,16解析:∵四边形ABCD 是菱形,∴AO=CO ,BO=DO ,∴AC=2AO ,BD=2BO ,∴AO :BO=1:2;∵菱形ABCD 的周长为58,∴AB=52,∵AO :BO=1:2,∴AO=2,BO=4,∴菱形ABCD 的面积S=248⨯=16 故答案为:1:2,16.考点三:和矩形有关的题目例3 答案:A解:在□ABCD 中,OA =OC ,OB =OD ,又∵BM =DN ,∴OM =ON ,∴四边形AMCN 是平行四边形.当OM =12AC 时,则OA =OM =OC ,∴∠OAM =∠OMA ,∠OCM =∠OMC ,∴∠AMC =180°÷2=90°,∴□AMCN 是矩形.对应练习3-1 答案:解:(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅V V(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.考点四:和正方形有关的试题例4 答案:解:连接BD,如图所示:因此OD=OB=OC=OA=12AC=4,AE=CF=2,因此OE=OF=8222--=2.所以DF=DE=BE=BF=222425+=,所以四边形BEDF的周长是4×25=85.对应练习4-1 答案:D解:ADE∆Q绕点A顺时针旋转90︒到ABF∆的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,25AD DC∴==,2DE=Q,Rt ADE∴∆中,2226AE AD DE=+=故选:D.对应练习4-2 答案:解:AG是∠BAF的平分线,GA是∠BGF的平分线,GH是∠EGC的平分线,CH是∠DCM 的平分线.证明如下:∵四边形ABCD为正方形,∴∠D=∠B=90°,AB=AD.∵△ADE沿AE翻折至△AFE,∴AD=AF,∠D=∠AFE=90°,∴AB=AF.又∵AG=AG,∴Rt△ABG≌Rt△AFGAB GC NFHDEM(HL ).∴∠BAG =∠FAG ,∠BGA =∠FGA ,即GA 是∠BGF 的平分线,GH 是∠EGC 的平分线.∵GH ⊥AG ,∴∠AGH =90°,∴∠AGE+∠HGE =90°,∠AGB+∠HGC =90°, 又⑴∠AGB =∠AGE ,∴∠HGE =∠HGC , 即GH 是∠EGC 的平分线.如图,过点H 作HN ⊥BC 于点N ,则∠GNH =∠ABG =90°∵∠AGB+∠HGC =90°,∠AGB+∠BAG =90°,∴∠HGC =∠BAG . ∵∠GAE =21∠BAD =45°,∠AGH =90°,∴∠AHG =45°,∴AG =GH , ∴△ABG ≌△GNH (AAS ),∴BG =HN , GN =AB =BC , ∴BG =CN ,∴CN =HN ,∴∠HCN =45°,∴∠ECH =45°, 即CH 是∠DCM 的平分线. 考点五:矩形的动点问题 例5 答案:D解:根据题意要使PB 最小,就必须使得DF 最长,因此可得当C 点和F 点重合时,才能使PB 最小.Q 当C 和F 重合时,P 点是CD 的中点2CP ∴=BP ∴===故选D.考点六:平行四边形、矩形、菱形及正方形综合题例6答案:(21n-解:根据根据题意可得11OA =,212A C =,324A C =,L 112n n n A C --=所以可得正方形111OA B C正方形1222C A B C 的对角线为正方形2333C A B C 的对角线为正方形3444C A B C 的对角线为L正方形1n n n n C A B C -的对角线为2n -所以前n 个正方形对角线的和为12(1248+2n n --++=++++L L (21n-故答案为(21n-对应练习6-1 答案:(1342,0)解:连接AC,如图所示.∠四边形OABC是菱形,∠OA=AB=BC=OC.∠∠ABC=90°,∠∠ABC是等边三角形.∠AC=AB.∠AC=OA.∠OA=1,∠AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∠2019=335×6+4,∠点B4向右平移1340(即335×4)到点B2019.∠B4的坐标为(2,0),∠B2019的坐标为(2+1340,0),∠B2019的坐标为(1342,0).对应练习6-2 答案:解:(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,∵FDE=90°,∴22+(6﹣x)2=x2,解得,x=,∴CE=,∴四边形CEFG的面积是:CE•DF=×2=.【聚焦中考真题】一、选择题1.(威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BFC.BD=DF D.AC=BF2.(枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.3- 1 B.3 -5C.5+ 1 D.5- 13.(凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为()A.14B.15C.16 D.174.(铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.(宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等6.(随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是()A.25B.20C.15D.107.(重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm8.(南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.1639.(巴中)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是()A.24B.16C.43D.2310.茂名)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2B.4C.2 3D.4311.(成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.412.(包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S213.(扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°14.(绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.2825cm B.2120cm C.2815cm D.2521cm15.(雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5二、填空题16.(临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是.17.(烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画⌒AC,连结AF,CF,则图中阴影部分面积为.18.(济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3.其中正确的序号是(把你认为正确的都填上).19.(宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为------度时,两条对角线长度相等.20.(淮安)若菱形的两条对角线分别为2和3,则此菱形的面积是.21.(无锡)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.22.(黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.(攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan∠DBE的值是.24.(南充)如图,正方形ABCD的边长为2,过点A作AE⊥AC,AE=1,连接BE,则tanE= .25.(苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).26.(哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为.27.(北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.28.(南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.29.(舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.30.(桂林)如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB 为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2,当点P 从点C运动到点D时,线段O1O2中点G的运动路径的长是.31.(荆州)如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形;④s=38(x-2)2(0<x<2);其中正确的是(填序号).三、解答题32.(2019潍坊)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.33.(2019年泰安)如图,四边形ABCD 是正方形,EFC ∆是等腰直角三角形,点E 在AB 上,且90CEF ∠=︒,FG AD ⊥,垂足为点G . (1)试判断AG 与FG 是否相等?并给出证明.(2)若点H 为CF 的中点,GH 与DH 垂直吗?若垂直,给出证明;若不存在,说明理由. 34.(2019年日照)如图,在矩形ABCD 中,对角线AC 的中点为O ,点G ,H 在对角线AC 上,AG =CH ,直线GH 绕点O 逆时针旋转α角,与边AB 、CD 分别相交于点E 、F (点E 不与点A 、B 重合).(1)求证:四边形EHFG 是平行四边形;(2)若∠α=90°,AB =9,AD =3,求AE 的长.35.(济宁)如图1,在正方形ABCD 中,E 、F 分别是边AD 、DC 上的点,且AF ⊥BE . (1)求证:AF=BE ;(2)如图2,在正方形ABCD 中,M 、N 、P 、Q 分别是边AB 、BC 、CD 、DA 上的点,且MP ⊥NQ .MP 与NQ 是否相等?并说明理由.36.(青岛)已知:如图,在矩形ABCD 中,M ,N 分别是边AD 、BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)当AD :AB= 时,四边形MENF 是正方形(只写结论,不需证明) 37. (淄博)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).38.(济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.39.(资阳)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.40.(营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=43,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.CF的长.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.43.(南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.44.(广州)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.45.(厦门)如图所示,在正方形ABCD中,点G是边BC上任意一点,DE⊥AG,垂足为E,延长DE交AB于点F.在线段AG上取点H,使得AG=DE+HG,连接BH.求证:∠ABH=∠CDE.46.(黔东南州)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME ∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.47.(铁岭)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.48.(南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.49.(贵阳)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD 于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.50.(曲靖)如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.(1)求证:△DCF≌△ADG.(2)若点E是AB的中点,设∠DCF=α,求sinα的值.51.(绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为22,对角线AE,DF相交于点O,连接OC.求OC的长度.52.(盘锦)如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E 在BC同侧,连接EF,CF.(1)如图 ,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图 ,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.53.(2019年济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折AD=,痕,连接EF并延长交BM于点P,若8AB=,求线段PE的长.5第二十二讲矩形菱形正方形参考答案【聚焦中考真题】一、选择题1-5 DDCCB5-10 BCDCB11-15 BBBBC二、填空题16.答案:3解析:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴AB•AE=AD•AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=2,∴EF=AE=2,如图,过A作AM⊥EF,∴AM=AE•sin60°=3,23.答案:2解析:∵四边形ABCD是菱形,∴AD=AB。
二次函数专题训练(正方形的存在性问题)含答案

1.如图,已知抛物线y=x 2+bx+c 的图象经过点 A ( l , 0), B(﹣ 3,0),与 y 轴交于点C,抛物线的顶点为 D ,对称轴与x 轴相交于点E,连接 BD .( 1)求抛物线的解析式.( 2)若点 P 在直线 BD 上,当 PE=PC 时,求点P 的坐标.( 3)在( 2)的条件下,作PF⊥ x 轴于 F,点 M 为 x 轴上一动点,N 为直线 PF 上一动点, G 为抛物线上一动点,当以点F, N ,G,M 四点为顶点的四边形为正方形时,求点M 的坐标.22.如图,抛物线y= ﹣x +bx+c 与 x 轴交于点 A 和点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0, 6),点 D 是抛物线的顶点,过点 D 作 x 轴的垂线,垂足为E,连接 BD .( 1)求抛物线的解析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M 作 MN ∥x 轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.3.如图,已知抛物线y=ax2 +bx﹣ 3 过点 A (﹣ 1, 0), B( 3,0),点 M 、 N 为抛物线上的动点,过点M 作MD ∥ y 轴,交直线 BC 于点 D ,交 x 轴于点 E.过点 N 作 NF ⊥ x 轴,垂足为点 F ( 1)求二次函数 y=ax2+bx ﹣ 3 的表达式;( 2)若 M 点是抛物线上对称轴右侧的点,且四边形MNFE 为正方形,求该正方形的面积;( 3)若 M 点是抛物线上对称轴左侧的点,且∠DMN=90°, MD=MN ,请直接写出点M 的横坐标.4.(2015 贵州省毕节地区) 如图,抛物线y=x 2+bx+c 与 x 轴交于 A (﹣ 1,0), B( 3, 0)两点,顶点M 关于 x 轴的对称点是M′.( 1)求抛物线的解析式;( 2)若直线AM′与此抛物线的另一个交点为C,求△ CAB 的面积;( 3)是否存在过A, B 两点的抛物线,其顶点P 关于 x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.5. (2016 辽宁省铁岭市 ) .如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A ,点 B,与 y 轴交于点C,点 B坐标为( 6,0),点 C 坐标为( 0,6),点 D 是抛物线的顶点,过点 D 作 x 轴的垂线,垂足为E,连接 BD .( 1)求抛物线的解析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M作MN∥ x轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在平面内,以线段 MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.6.(2016 广东省茂名市 ) .如图,抛物线 y=﹣ x2+bx+c 经过 A (﹣ 1, 0), B(3,0)两点,且与 y 轴交于点 C,点 D 是抛物线的顶点,抛物线的对称轴DE 交 x 轴于点 E,连接 BD .(1)求经过 A ,B ,C 三点的抛物线的函数表达式;(2)点 P 是线段 BD 上一点,当 PE=PC 时,求点 P 的坐标;( 3)在( 2)的条件下,过点P 作 PF⊥x 轴于点 F, G 为抛物线上一动点,M 为 x 轴上一动点, N 为直线PF 上一动点,当以F、 M 、 G 为顶点的四边形是正方形时,请求出点M 的坐标.二次函数专题训练(正方形的存在性问题)参考答案21.如图,已知抛物线y=x +bx+c 的图象经过点 A ( l , 0), B(﹣ 3,0),与 y 轴交于点C,抛物线的顶点为 D ,对称轴与x 轴相交于点E,连接 BD .( 1)求抛物线的解析式.( 2)若点 P 在直线 BD 上,当 PE=PC 时,求点P 的坐标.( 3)在( 2)的条件下,作PF⊥ x 轴于 F,点 M 为 x 轴上一动点,N 为直线 PF 上一动点, G 为抛物线上一动点,当以点F, N ,G,M 四点为顶点的四边形为正方形时,求点M 的坐标.【解答】解:( 1)∵抛物线y=x2+bx+c 的图象经过点 A ( 1, 0), B(﹣ 3,0),∴,∴,∴抛物线的解析式为y=x2+2x ﹣ 3;( 2)由( 1)知,抛物线的解析式为y=x 2+2x ﹣ 3;∴C( 0,﹣ 3),抛物线的顶点 D(﹣ 1,﹣ 4),∴E(﹣ 1, 0),设直线 BD 的解析式为y=mx+n ,∴,∴,∴直线 BD 的解析式为 y= ﹣ 2x ﹣6,设点 P( a,﹣ 2a﹣ 6),∵ C( 0,﹣ 3), E(﹣ 1, 0),根据勾股定理得,PE2=( a+1)2+(﹣ 2a﹣ 6)2,PC2=a2+(﹣ 2a﹣ 6+3 )2,∵PC=PE,∴( a+1)2+(﹣ 2a﹣ 6)2 =a2+(﹣ 2a﹣ 6+3 )2,∴a=﹣ 2,∴ y= ﹣ 2×(﹣ 2)﹣ 6=﹣ 2,∴P(﹣ 2,﹣ 2),(3)如图,作 PF⊥ x 轴于 F,∴ F(﹣ 2, 0),设 M ( d, 0),∴G( d, d2+2d ﹣ 3), N(﹣ 2, d2+2d﹣ 3),∵以点 F, N ,G, M 四点为顶点的四边形为正方形,必有FM=MG ,∴|d+2|=|d2+2d ﹣ 3|,∴ d=或 d=,∴点 M 的坐标为(, 0),(, 0),(, 0),(, 0).2.如图,抛物线 y= ﹣2x +bx+c 与 x 轴交于点 A 和点 B,与 y 轴交于点 C,点 B 坐标为( 6,0),点 C 坐标为( 0, 6),点 D 是抛物线的顶点,过点 D 作 x 轴的垂线,垂足为 E,连接 BD .( 1)求抛物线的解析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M 作 MN ∥ x 轴与抛物线交于点N,点 P 在 x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.【解答】解:( 1)把 B 、C 两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6 ,22∵ y= ﹣x +2x+6= ﹣(x﹣2)+8,∴ D(2,8);设 F( x,﹣x2+2x+6 ),则 FG=|﹣x2+2x+6| ,∵∠ FBA= ∠BDE ,∠ FGB= ∠ BED=90°,∴△ FBG ∽△ BDE ,∴=,∵ B(6,0),D(2,8),∴ E( 2,0), BE=4 ,DE=8 , OB=6 ,∴ BG=6 ﹣ x,∴=,当点 F 在 x 轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点 F 在 x 轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点坐标为(﹣3,﹣);综上可知 F 点的坐标为(﹣1,)或(﹣3,﹣);( 3)如图 2,设对角线MN 、 PQ 交于点 O′,∵点 M 、 N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点 P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q(2, 2n),则 M 坐标为( 2﹣ n,n),∵点 M 在抛物线 y= ﹣ x2+2x+6 的图象上,∴ n=﹣( 2﹣ n)2+2( 2﹣ n)+6,解得 n=﹣ 1+或 n= ﹣1﹣,3.如图,已知抛物线y=ax2 +bx﹣ 3 过点 A (﹣ 1, 0), B( 3,0),点 M 、 N 为抛物线上的动点,过点M 作MD ∥ y 轴,交直线 BC 于点 D ,交 x 轴于点 E.过点 N 作 NF ⊥ x 轴,垂足为点 F ( 1)求二次函数 y=ax2+bx ﹣ 3 的表达式;( 2)若 M 点是抛物线上对称轴右侧的点,且四边形MNFE 为正方形,求该正方形的面积;( 3)若 M 点是抛物线上对称轴左侧的点,且∠DMN=90°, MD=MN ,请直接写出点M 的横坐标.【解答】解:( 1)把 A (﹣ 1, 0),B ( 3, 0)代入 y=ax 2+bx ﹣ 3,得:,解得,故该抛物线解析式为:y=x 2﹣2x﹣ 3;22( 2)由( 1)知,抛物线解析式为:y=x ﹣2x﹣ 3=( x﹣ 1)﹣ 4,如图,设点M 坐标为( m, m2﹣2m﹣ 3),其中 m> 1,∴ME=| ﹣ m2+2m+3|,∵M 、 N 关于 x=1 对称,且点 M 在对称轴右侧,∴点 N 的横坐标为 2﹣ m,∴MN=2m ﹣ 2,∵四边形MNFE 为正方形,∴ME=MN ,∴|﹣ m2+2m+3|=2m ﹣ 2,分两种情况:①当﹣ m2+2m+3=2m ﹣ 2 时,解得: m1=、 m2=﹣(不符合题意,舍去),当 m=时,正方形的面积为(2﹣2)2=24﹣ 8;②当﹣ m 2, m4=2﹣(不符合题意,舍去),+2m+3=2 ﹣ 2m 时,解得: m3=2+当 m=2+时,正方形的面积为[2 (2+)﹣ 2]2=24+8;综上所述,正方形的面积为24+8或 24﹣8 .( 3)设 BC 所在直线解析式为y=px+q ,把点 B (3, 0)、C( 0,﹣ 3)代入表达式,得:,解得:,∴直线 BC 的函数表达式为y=x﹣ 3,设点 M 的坐标为( t, t2﹣ 2t﹣ 3),其中 t <1,则点 N( 2﹣ t, t2﹣2t﹣ 3),点 D ( t, t﹣ 3),∴MN=2 ﹣ t﹣t=2 ﹣2t, MD=|t 2﹣ 2t﹣ 3﹣ t+3|=|t2﹣3t|.∵ MD=MN ,∴ |t2﹣ 3t|=2﹣ 2t,分两种情况:①当 t2﹣ 3t=2﹣ 2t 时,解得 t 1=﹣ 1, t2=2 (不符合题意,舍去).②当 3t﹣ t2=2﹣ 2t 时,解得 t 3=, t2=(不符合题意,舍去).综上所述,点 M 的横坐标为﹣ 1 或.4.(2015 贵州省毕节地区) 如图,抛物线y=x 2+bx+c 与 x 轴交于 A (﹣ 1,0), B( 3, 0)两点,顶点M 关于 x 轴的对称点是M′.( 1)求抛物线的解析式;( 2)若直线AM′与此抛物线的另一个交点为C,求△ CAB 的面积;( 3)是否存在过A, B 两点的抛物线,其顶点P 关于 x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.分析:(1)根据待定系数法,可得函数解析式;( 2)根据轴对称,可得M′的坐标,根据待定系数法,可得AM′的解析式,根据解方程组,可得B点坐标,根据三角形的面积公式,可得答案;( 3)根据正方形的性质,可得P、 Q 点坐标,根据待定系数法,可得函数解析式.解答:解:( 1)将 A 、 B 点坐标代入函数解析式,得,解得,抛物线的解析式y=x 2﹣ 2x﹣ 3;( 2)将抛物线的解析式化为顶点式,得y= ( x﹣1)2﹣ 4,M 点的坐标为(1,﹣ 4), M′点的坐标为(1, 4),设AM′的解析式为 y=kx+b ,将 A 、M′点的坐标代入,得,解得,AM′的解析式为y=2x+2 ,联立 AM′与抛物线,得,解得,C点坐标为( 5,12). S△ABC = ×4×12=24;( 3)存在过 A ,B 两点的抛物线,其顶点 P 关于 x 轴的对称点为 Q,使得四边形 APBQ 为正方形,由ABPQ 是正方形, A (﹣ 1, 0) B ( 3, 0),得P( 1,﹣ 2), Q( 1, 2),或 P(1, 2), Q( 1,﹣ 2),①当顶点 P( 1,﹣ 2)时,设抛物线的解析式为y=a( x﹣1)2﹣ 2,将A 点坐标代入函数解析式,得a(﹣ 1﹣ 1)2﹣ 2=0 ,解得 a= ,抛物线的解析式为 y= (x﹣ 1)2﹣ 2,②当 P( 1, 2)时,设抛物线的解析式为y=a( x﹣ 1)2+2,将A 点坐标代入函数解析式,得2a(﹣ 1﹣ 1) +2=0 ,解得 a=﹣,抛物线的解析式为y=﹣(x﹣ 1)2+2,综上所述: y= ( x﹣ 1)2﹣ 2 或 y= ﹣( x﹣ 1)2+2,使得四边形APBQ 为正方形.5. (2016 辽宁省铁岭市 ) .如图,抛物线y= ﹣x2 +bx+c 与 x 轴交于点 A ,点 B ,与 y 轴交于点 C,点 B坐标为( 6,0),点 C 坐标为( 0,6),点 D 是抛物线的顶点,过点 D 作 x 轴的垂线,垂足为E,连接 BD .( 1)求抛物线的解析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠ FBA=∠ BDE时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M作MN∥ x轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在平面内,以线段 MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.分析( 1)由点 B 、C 的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;( 2)设线段 BF 与 y 轴交点为点 F′,设点 F′的坐标为( 0, m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF 的解析式,联立直线 BF 和抛物线的解析式成方程组,解方程组即可求出点 F 的坐标;( 3)设对角线 MN 、 PQ 交于点 O′,如图 2 所示.根据抛物线的对称性结合正方形的性质可得出点P、 Q 的位置,设出点Q 的坐标为( 2, 2n),由正方形的性质可得出点M 的坐标为( 2﹣n, n).由点 M 在抛物线图象上,即可得出关于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解答解:( 1)将点 B ( 6,0)、 C( 0, 6)代入 y=﹣x2+bx+c 中,得:,解得:,∴抛物线的解析式为y= ﹣x2+2x+6 .∵y= ﹣ x2+2x+6= ﹣( x﹣ 2)2+8,∴点 D 的坐标为( 2, 8).(2)设线段 BF 与 y 轴交点为点 F′,设点 F′的坐标为( 0,m),如图 1 所示.∵∠ F′BO=∠ FBA= ∠ BDE ,∠ F′OB=∠ BED=90°,∴△ F′BO∽△ BDE ,∴.∵点 B (6, 0),点 D( 2, 8),∴点 E( 2, 0),BE=6 ﹣ 4=4 , DE=8 ﹣ 0=8 ,OB=6 ,∴OF′=?OB=3,∴点 F′( 0, 3)或( 0,﹣ 3).设直线 BF 的解析式为y=kx±3,则有 0=6k+3 或 0=6k﹣ 3,解得: k= ﹣或k=,∴直线 BF 的解析式为y=﹣x+3 或 y= x﹣3.联立直线 BF 与抛物线的解析式得:①或②,解方程组①得:或(舍去),∴点F的坐标为(﹣1,);解方程组②得:或(舍去),∴点F的坐标为(﹣3,﹣).综上可知:点 F 的坐标为(﹣ 1,)或(﹣3,﹣).( 3)设对角线 MN 、 PQ 交于点 O′,如图 2 所示.∵点 M 、 N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点 P 为抛物线对称轴与x 轴的交点,点 Q 在抛物线对称轴上,设点 Q 的坐标为( 2, 2n),则点 M 的坐标为( 2﹣ n, n).∵点 M 在抛物线 y= ﹣x2 +2x+6 的图象上,∴ n=﹣+2( 2﹣ n) +6,即 n2+2n ﹣ 16=0,解得: n1=﹣ 1,n2=﹣﹣1.∴点 Q 的坐标为( 2,﹣ 1)或( 2,﹣﹣ 1).6. (2016 广东省茂名市 )】.如图,抛物线 y= ﹣ x2 +bx+c 经过 A (﹣ 1,0), B( 3,0)两点,且与 y 轴交于点 C,点 D 是抛物线的顶点,抛物线的对称轴DE 交 x 轴于点 E,连接 BD .(1)求经过 A ,B ,C 三点的抛物线的函数表达式;(2)点 P 是线段 BD 上一点,当 PE=PC 时,求点 P 的坐标;( 3)在( 2)的条件下,过点P 作 PF⊥x 轴于点 F, G 为抛物线上一动点,M 为 x 轴上一动点, N 为直线PF 上一动点,当以F、 M 、 G 为顶点的四边形是正方形时,请求出点M 的坐标.分析( 1)利用待定系数法求出过A, B,C 三点的抛物线的函数表达式;( 2)连接 PC、PE,利用公式求出顶点 D 的坐标,利用待定系数法求出直线BD 的解析式,设出点P 的坐标为( x,﹣ 2x+6 ),利用勾股定理表示出PC2和 PE2,根据题意列出方程,解方程求出x 的值,计算求出点 P 的坐标;( 3)设点 M 的坐标为( a, 0),表示出点G 的坐标,根据正方形的性质列出方程,解方程即可.解答解:( 1)∵抛物线 y= ﹣x2+bx+c 经过 A (﹣ 1, 0), B ( 3, 0)两点,∴,解得,,∴经过 A , B, C 三点的抛物线的函数表达式为y= ﹣ x2+2x+3 ;( 2)如图 1,连接 PC、PE, x= ﹣=﹣=1,当x=1 时, y=4 ,∴点 D 的坐标为( 1, 4),设直线 BD 的解析式为: y=mx+n ,则,解得,,∴直线 BD 的解析式为 y= ﹣ 2x+6,设点 P 的坐标为( x,﹣ 2x+6),222222则 PC =x +(3+2x ﹣6),PE =( x﹣ 1) +(﹣ 2x+6),∵ PC=PE,∴x2+( 3+2x ﹣6)2=( x﹣ 1)2+(﹣ 2x+6 )2,解得, x=2,则 y= ﹣2×2+6=2 ,∴点 P 的坐标为( 2, 2);2( 3)设点 M 的坐标为( a, 0),则点G 的坐标为( a,﹣ a +2a+3),∴ FM=MG ,即 |2﹣ a|=|﹣ a2 +2a+3|,当 2﹣ a=﹣ a2+2a+3 时,整理得,a2﹣ 3a﹣1=0 ,解得, a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得, a2﹣ a﹣5=0 ,解得, a=,∴当以 F、M 、G 为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(, 0).。
中考数学冲刺:几何综合问题--巩固练习(基础)

中考冲刺:几何综合问题—巩固练习(基础)【巩固练习】一、选择题1.(2014•菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.2.如图,将直角三角形ABC沿着斜边AC的方向平移到△DEF的位置(A、D、C、F四点在同一条直线上).直角边DE交BC于点G.如果BG=4,EF=12,△BEG的面积等于4,那么梯形ABGD的面积是()A.16B.20C.24D.28二、填空题3.(2015秋•东城区期末)如图,某校数学兴趣小组利用自制的直角三角形小硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,则旗杆的高度为米.4.如图,线段AB=8cm,点C是AB上任意一点(不与点A、B重合),分别以AC、BC为斜边在AB的同侧作等腰直角三角形(△AMC和△CNB),则当BC=_____________cm时,两个等腰直角三角形的面积和最小.三、解答题5.有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合;将直尺沿AB方向平移(如图②),设平移的长度为xcm(0≤x≤0 ),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm2.(1)当x=0时(如图①),S=________;(2)当0<x≤4时(如图②),求S关于x的函数关系式;(3)当4<x<6时,求S关于x的函数关系式;(4)直接写出S的最大值.6. 问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE 是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.7.如图正三角形ABC的边长为63cm,⊙O的半径为rcm,当圆心O从点A出发,沿着线路AB-BC-CA 运动,回到点A时,⊙O随着点O的运动而移动.⑴若r=3cm,求⊙O首次与BC边相切时,AO的长;⑵在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下r的取值范围及相应的切点的个数;⑶设⊙O在整个移动过程中,在△ABC内部,⊙O未经过的部分面积为S,在S>0时,求关于r的函数解析式,并写出自变量r的取值范围.A(O)OB C8.(2015•德州)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB 相切时,求t的值.9.如图,直角梯形ABCD中,AD∥BC,∠B=90°,AB=12 cm,BC=9 cm,DC=13 cm,点P是线段AB上一个动点.设BP为x cm,△PCD的面积为y cm2.(1)求AD 的长;(2)求y与x之间的函数关系式,并求出当x为何值时,y有最大值?最大值是多少?(3)在线段AB上是否存在点P,使得△PCD是直角三角形?若存在,求出x的值;若不存在,请说明理由.10.如图,平行四边形ABCD中,AB=10,AD=6,∠A=60°,点P从点A出发沿边线AB—BC以每秒1个单位长的速度向点C运动,当P与C重合时停下运动,过点P作AB的垂线PQ交AD或DC于Q.设P运动时间为t秒,直线PQ扫过平行四边形ABCD的面积为S.求S关于t的函数解析式.【答案与解析】一、选择题1.【答案】A.【解析】当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选:A.2.【答案】B.二、填空题3.【答案】11.5 .4.【答案】4.三、解答题5.【答案与解析】6.【答案与解析】特例探究:证明:∵△ABC 是等边三角形,∴AB=AC ,∠DBA=∠EAC=60°,在△ABD 与△CAE 中,AB CA DBA EAC BD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CAE (SAS );归纳证明:△ABD 与△CAE 全等.理由如下:∵在等边△ABC 中,AB=AC ,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD 与△CAE 中,AB CA DBA EAC BD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (SAS );拓展应用:∵点O 在AB 的垂直平分线上,∴OA=OB ,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC .在△ABD 与△CAE 中,AB CA DBA EAC BD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (SAS ),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA-∠BDA=18°.7.【答案与解析】(1).设⊙O 首次与BC 相切于点D ,则有OD ⊥BC .在直角三角形BDO 中,∵∠OBD=60°,∴AO=AB-OB=6-2=4(厘米);(3)如图,易知在S>0时,⊙O在移动中,在△ABC内部为经过的部分为正三角形.记作△A′B′C′,这个正三角形的三边分别于原正三角形三边平行,且平行线间的距离等于r.连接AA′,并延长AA′,分别交B′C′,BC于E,F两点.则AF⊥BC,A′E⊥B′C′,且EF=r.又过点A′作A′G⊥AB于G,则A′G=r.∵∠GAA′=30°,∴AA′=2x.∴△A′B′C′的高A′E=AF-3r=9-3r,8.【答案与解析】解:(1)如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍然成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)如图3,过点D作DE⊥AB于点E.∵AD=BD=5,AB=6,∴AE=BE=3.由勾股定理可得DE=4.∵以点D为圆心,DC为半径的圆与AB相切,∴DC=DE=4,∴BC=5﹣4=1.又∵AD=BD,∴∠A=∠B,∴∠DPC=∠A=∠B.由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t),解得:t1=1,t2=5,∴t的值为1秒或5秒.9.【答案与解析】(1)如图1,作DE⊥BC于点E.据题意知,四边形ABED是矩形,AB=DE,AD=BE.在Rt△DEC中,∠DEC=90°,DE=12,CD=13,∴ EC=5.∴AD=BE=BC-EC=4.(2)若BP为x,则AP=12-x.S△BPC=BP·BC=x. S△APD=AP·AD=24-2x.∴S△PCD=S梯形ABCD-S△BPC-S△APD=78-x-24+2x=-x+54.即 y=-x+54,0≤x≤12.当x=0时,y取得最大值为54 cm2.(3)若△PCD是直角三角形,∵∠BCP<90°,∴∠PCD≠90°∴分两种情况讨论,如图2.①当∠DPC=90°时∵∠APD+∠BPC=90°,∠BPC+∠PCB=90°,∴∠APD=∠PCB.∴ △APD∽△BCP.∴.即.解得x=6.∠APD=∠BPC=45°的情况不存在,不考虑.②当∠P1DC=90°时,在Rt△P1BC中,P1C2=BP12+BC2=x2+92,在Rt△P1AD中,P1D2=P1A2+AD2=(12-x)2+42,∵∠P1DC=90°,CD2+P1D2=P1C2.即132+(12-x)2+42=x2+92.解得.综上,当x=6或,△PCD是直角三角形.10.【答案与解析】当Q点与D点重合时,AQ=AD=6,此时AP=AQ=3=t当P与B点重合时,t=10,当P点运动到C时,t=16,∴分三类情况讨论(1)当0≤t≤3时,如图:AP=t,PQ=t,∴S=AP·PQ=t2(2)当3<t≤10时,示意图:过D作DH⊥AB于H,AD=t,则DH=AD sinA=6·=3,AH=ADcosA=3∴DQ=PH=AP-AH=t-3∴S=(AP+DQ)·DH=(t+t-3)·3=3t-(3)当10<t≤16时,如图:AB+BP=tCP=AB+BC-(AB+BP)=16-t∴CQ=CP=8-QP=·CQ=8-t∴S=S□ABCD-S△CPQ=AB·h -·CQ·PQ=10·3-·(8-)·(8-)=30-(64-8t+)=综上,.11。
2020中考数学 几何难点突破:正方形 (含详解版)

2020中考数学 几何难点突破:正方形 (含答案)1. 如图,在正方形纸片ABCD 中,对角线AC ,BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE分别交AB ,AC 于点E ,G . 下列结论:①05.112=∠AGD ;②2=AEAD;③OGD AGD S S ∆∆=;④四边形AEFG 是菱形;⑤OG BE 2=其中,正确结论的序号是______________........................ ........2. 如图1,操作:把正方形CGEF 的对角线CE 放在正方形ABCD 的边BC 的延长线上)(BC CG >,取线段AE 的中点M 连MD ,MF ....(1)探究线段MD ,MF 的关系,并加以证明. ...(2)将正方形CGEF 绕点C 旋转任意角后(如图2),其他条件不变. ....探究线段MD ,MF 的关系,并加以证明.................................3. 如图,正方形ABCD 中,E ,F 是AB ,BC 边上两点,且FC AE EF +=,EF DG ⊥于G ,求证:DA DG =..................................................................................................................图2图1EEBA B A E.................................4. 如图,正方形ABCD 被两条与边平行的线段EF 、GH 分割成四个小矩形,P 是EF 与GH 的交点,若矩形PFCH 的面积恰是矩形AGPE 面积的2倍,试确定HAF ∠的大小,并证明你的结论................................................................5. 如图,在正方形ABCD 中,E ,F 分别是边BC ,CD 上的点,满足DF BE EF +=, AF AE ,分别与对角线BD 交于点N M ,..............求证:(1)045=∠EAF ;.....(2)222DN BM MN +=.......................... .....................................................................BAFA BCD E FGHP6. 已知.:正方形ABCD 中,045=∠MAN ,MAN ∠绕点A 顺时针旋转,它的两边分别交CB ,DC (或它们的延长线)于点N M ,..当MAN ∠绕点A 旋转到DN BM =时(如图1),易证MN DN BM =+.(1)当MAN ∠绕点A 旋转到DN BM ≠时(如图2),线段DN BM ,和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段DN BM ,和MN 之间又有怎样的数量关系?请直接写出你的猜想..............................................................................基础巩固1 .如图,若四边形ABCD 是正方形,CDE ∆是等边三角形,则EAB ∠的度数为__________. 2 .四边形ABCD 的对角线BD AC 、相交于点O ,给出以下题设条件: ①DA CD BC AB ===;②BD AC DO CO BO AO ⊥===,; ③BD AC DO BO CO AO ⊥==,,; ④DA CD BC AB ==,.其中,能判定它是正方形的题设条件是______________ .. (把你认为正确的序号都填在横线上)........... ................3.如图,边长为1的两个正方形互相重合,按住一个不动,将另一个绕顶点A 顺时针旋转030,则这两个正方形重叠部分的面积是__________ ..ABCDMN图3ABCD MN图2ABCD MN图1..第1题图....第3题图..第4题图4 如图,P 是正方形ABCD 内一点,将ABP ∆绕点B 顺时针方向旋转至能与'CBP ∆重合,若3=PB ,则'PP =__________ ....................................................................5 将n 个边长都为cm 1的正方形按如图所示摆放,点n A A A ,,21分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为(.....)A.241cm ........B .24cm n .........C .241cm n -........D .2)41(cm n ......................BA EABCDPP ''B'D '......第5题图 第6题图....6 .如图,以BCA Rt ∆的斜边BC 为一边在BCA ∆的同侧作正方形BCEF ,设正方形的中心为O ,连接AO ,如果26,4==AO AB ,则AC 的长为(.....) A. .12............B .8.............C 34..............D .28...........................7.如图,正方形ABCD 中,035,=∠=MCE MN CE ,那么ANM ∠是(......) A. 045............B .055.............C .065..............D .075.............8.如图,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,CEF Rt ∆的面积为200,则BE 的值是(.....)A .15.............B .12...............C .11...............D .10........................................................9.如图,在正方形ABCD 中,E 是AD 边的中点,BD 与CE 交于F 点,求证:BE AF ⊥...........................................................................第8题图第7题图ABAD E FB A10 .如图,在正方形ABCD 中,E 是AB 边的中点,F 是AD 上的一点,且AD AF 41=.. 求证:CE 平分BCF ∠.........................................................11 .如图,已知P 是正方形ABCD 对角线BD 上一点,F E BC PF DC PE ,,,⊥⊥分别是垂足.求证:EF AP =..................................................................12 (1)如图1,已知正方形ABCD 和正方形)(BC CG CGEF >,G C B ,,在同一条直线上,M 为线段AE 的中点.探究:线段MF MD ,的关系.(2)如图2,若将正方形CGEF 绕点C 顺时针旋转045,使得正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上,M 为AE 的中点.试问:(1)中探究的结论是否成立?若成立,请证明;若不成立,请说明理由..............图1 图2BAEEBAABCDEFGMABCDEFGM参考答案例1 ①④⑤ 提示:在AD 上取AH =AE ,连EH ,则∠AHE =45°,∴∠HED =∠HDE =22.5°,则HE =HD .又∵HE =HD >AE ,故②不正确.又AGD FGD CGD S S S ∆∆∆=> ,故③不正确.例2 提示:(1)延长DM 交CE 于N ,连DF ,NF ,先证明△ADM ≌△ENM ,再证明△CDF ≌△ENF 得FD =FN ,∠DFN =∠CFE =90°,故MD ⊥MF 且MD =MF .(2)延长DM 到N 点,使DM =MN ,连FD ,FN ,先证明△ADM ≌△ENM ,得AD =EN ,∠MAD =∠MEN ,则AD ∥EN .延长EN ,DC 交于S 点,则∠ADC =∠CSN =90°.在四边形FCSE 中,∠FCS +∠FEN =180°,又∵∠FCS +∠FCD =180°,故∠FEN =∠FCD ,再证△CDF ≌△ENF .∴(1)中结论仍成立.例3 提示:延长BC 至点H ,使得CH =AE ,连结DE ,DF ,由Rt △DAE ≌Rt △DCH 得,DE =DH ,进而推证△DEF ≌△DFH ,Rt △DGE ≌Rt △DCH . 例4 设AG =a ,BG =b ,AE =x ,ED =y ,则,2. a b x y ax by +=+⎧⎨=⎩①②由①得a -x =y -b ,平方得a 2-2ax +x 2=y 2-2by +b 2. 将②代入得a 2-2ax +x 2=y 2-4ax +b 2, ∴(a +x )2=b 2+y 2,得a +x∵b 2+y 2=CH 2+CF 2=FH 2, ∴a +x =FH ,即DH +BF =FH .延长CB 至M ,使BM =DH ,连结AM ,由Rt △ABM ≌Rt △ADH ,得AM =AH ,∠MAB =∠HAD .∴∠MAH =∠MAB +∠BAH =∠BAH +∠HAD =90°.A D CFHB MGEP再证△AMF ≌△AHF .∴∠MAF =∠HAF . 即∠HAF =12∠MAH =45°. 例5 (1)如图,延长CD 至点E 1,使DE 1=BE ,连结AE 1,则△ADE 1≌△ABE . 从而,∠DAE 1=∠BAE ,AE 1=AE ,于是∠EAE 1=90°.在△AEF 和△AE 1F 中,EF =BE +DF =E 1D +DF =E 1F ,则△AEF ≌△AE 1F . 故∠EAF =∠E 1AF =12∠EAE 1=45°. (2)如图,在AE 1上取一点M 1,使得AM 1=AM ,连结M 1D ,M 1N .则 △ABM ≌△ADM 1,△ANM ≌△ANM 1, 故∠ABM =∠ADM 1,BM =DM 1,MN =M 1N .∵∠NDM 1=90°,从而M 1N 2=M 1D 2+ND 2,∴MN 2=BM 2+DN 2.例6 (1)BM +DN =MN 成立.如图a ,把△AND 绕点A 顺时针旋转90°,得到△ABE ,E 、B 、M 三点共线,则△DAN ≌△BAE ,∴AE =AN ,∠EAM =∠NAM =45°,AM =AM ,得△AEM ≌△ANM ,∴ME =MN . ∵ME =BE +BM =DN +BM ,∴DN +BM =MN . (2)DN -BM =MN .如图b ,对于图2,连BD 交AM 于E ,交AN 于F ,连EN ,FM 可进一步证明:①△CMN 的周长等于正方形边长的2倍;②EF 2=BE 2+DF 2;③△AEN ,△AFM 都为等腰直角三角形; ④2AMN AEF S S ∆∆=.基础巩固图b图aEE FADCBM N NMBCD AFEAD CB MNM E 111.75°2.②3.34.5.C6.B7.B8.B 9.提示:△ABE≌△DCE,△ADF≌△CDF,证明∠ABE+∠BAF=90°.10.提示:延长CE交DA的延长线于G,证明FG=FC.11.提示:连PC,则PC=EF.12.(1)延长DM交EF于N,由△ADM≌△ENM,得DM=NM,MF=12DN,FD=FN,故MD⊥MF,且MD=MF.(2)延长DM交CE于N,连结DF,FN,先证明△ADM≌△ENM,再证明△CDF≌△ENF,(1)中结论仍成立.。
中考数学总复习《正方形》专项提升训练(带答案)

中考数学总复习《正方形》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________ 1. 如图,在四边形ABCD中,对角线AC,BD相交于点O .第1题图(1)若四边形ABCD是平行四边形,请添加条件__________,使四边形ABCD是正方形;【判定依据】__________________________;(2)若四边形ABCD是矩形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________;(3)若四边形ABCD是菱形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________.2. 如图,在正方形ABCD中,对角线AC,BD相交于点O.(1)∠ABC=________,∠BAC=________,∠COD=________;(2)若AB=3,则BC=________,CD=________;(3)若OA=2,则AC=________,BD=________,AD=________;(4)若OA=4,则正方形ABCD 的面积是________,周长是________.第2题图知识逐点过考点1 正方形的性质及面积边四条边都相等,对边平行角四个角都是直角1.对角线相等且互相①________;对角线2.每一条对角线平分一组对角对称性既是轴对称图形,又是中心对称图形,有4条对称轴,对称中心是两条②________的交点面积公式S=a2=12l2【温馨提示】正方形的两条对角线把正方形分成四个全等的等腰直角三角形考点2 正方形的判定边1.有一组邻边相等,并且有一个角是③________的平行四边形是正方形(定义);2.有一组邻边④________的矩形是正方形角有一个角是⑤________的菱形是正方形对角线1.对角线⑥________的矩形是正方形;2.对角线⑦________的菱形是正方形;3.对角线互相⑧__________的四边形是正方形考点3 平行四边形、矩形、菱形、正方形的关系从边、角的角度看从对角线的角度看考点4 中点四边形概念依次连接任意一个四边形各边中点所得的四边形原图形任意四边形矩形菱形正方形对角线相等的四边形对角线垂直的四边形对角线垂直且相等的四边形中点四边形形状平行四边形菱形矩形正方形菱形矩形正方形【温馨提示】连接特殊四边形中点的四边形面积是原图形的一半教材原题到重难考法与正方形有关的证明与计算例如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF.你能找出图中的全等三角形吗?选择其中一对进行证明.例题图变式题1. 结合角度求线段长如图,正方形ABCD的边长为4,点F为对角线AC上一点,连接BF,当∠CBF=22.5°时求AF的长.第1题图2. 过点F作AB边的垂线如图,在正方形ABCD中,F是对角线AC上一点,作EF⊥AB于点E,连接DF,若BC=6,BE=2,求DF的长.第2题图3. 过点F分别作AB,BC边的垂线如图,F是正方形ABCD对角线AC上一点,过点F分别作FE⊥AB,FG⊥BC,垂足分别为点E,G,连接DF,EG.(1)求证:EG=DF;(2)若正方形的边长为3+3,∠BGE=30°,求DF的长.第3题图真题演练命题点正方形性质的相关计算1. 如图,正方形ABCD的边长为4,延长CB至点E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K .则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN∶S△ADM =1∶4.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个第1题图2. 边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为________.第2题图基础过关1. 正方形具有而菱形不具有的性质是()A. 对角线平分一组对角B. 对角线相等C. 对角线互相垂直平分D. 四条边相等2. 若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等3.如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第3题图4. 如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A. 2αB. 90°-2αC. 45°-αD. 90°-α第4题图5.在矩形ABCD中,对角线AC,BD相交于点O,试添加一个条件_________________________ 使得矩形ABCD为正方形.6. 如图,在边长为2的正方形ABCD中,点E在AD上,连接EB,EC,则图中阴影部分的面积是__________.第6题图7. 七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板,如图所示,由5个等腰直角三角形,1个正方形和1个平行四边形组成,则图中阴影部分的面积为__________dm2.第7题图8. 如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为__________.第8题图9. 如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=7,点F为DE的中点,若△CEF的周长为32,则OF的长为__________.第9题图10. 如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.第10题图综合提升11. 如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A. 23B. 352 C. 5+1 D. 10第11题图12. 如图,在正方形ABCD 中,点E 为BD 上一点,DE =3BE ,连接AE ,过点E 作AE 的垂线,交CD 于点F ,连接AF 交BD 于点G .下列结论:①sin ∠BAE =13 ;②∠EAF =45°;③点F 为CD 的中点;④BE +DG =GE .其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个第12题图13. 第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE ,△ABF ,△BCG ,△CDH )和中间一个小正方形EFGH 拼成的大正方形ABCD 中,∠ABF >∠BAF ,连接BE .设∠BAF =α,∠BEF =β,若正方形EFGH 与正方形ABCD 的面积之比为1∶n ,tan α=tan 2β,则n =( ) A. 5 B. 4 C. 3 D. 2第13题图参考答案1. (1)AC =BD ,且AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直且相等的平行四边形是正方形(答案不唯一); (2)AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直的矩形是正方形; (3)∠ABC =90°(答案不唯一)【判定依据】有一个角是直角的菱形是正方形.2. (1)90°,45°,90°;(2)3,3;(3)4,4,22 ;(4)32,162 . 教材原题到重难考法例 解:△ABC ≌△ADC ,△ABF ≌△ADF ,△CDF ≌△CBF ,理由如下: ∵四边形ABCD 是正方形∴AB =AD =BC =CD ,∠DAC =∠BAC =∠DCA =∠BCA =45° 在△ABC 和△ADC 中 ⎩⎪⎨⎪⎧AB =AD ∠BAC =∠DAC AC =AC∴△ABC ≌△ADC (SAS) 在△ABF 和△ADF 中 ⎩⎪⎨⎪⎧AB =AD ∠BAF =∠DAF AF =AF∴△ABF ≌△ADF (SAS) 在△DCF 和△BCF 中 ⎩⎪⎨⎪⎧DC =BC ∠DCF =∠BCF CF =CF∴△DCF ≌△BCF (SAS).(选择其中任意一对证明即可) 1. 解:在正方形ABCD 中,∠ABC =90°,AB =BC ∴∠BAC =∠BCA =45° ∵∠CBF =22.5°∴∠ABF =∠ABC -∠CBF =90°-22.5°=67.5°∴∠AFB =180°-∠BAC -∠ABF =180°-45°-67.5°=67.5° ∴∠ABF =∠AFB ∴AF =AB =4.2. 解:如解图,连接BF第2题解图∵四边形ABCD是正方形∴AB=BC=6,∠EAF=45°∵EF⊥AB∴EF=AE=AB-BE=6-2=4∴BF=BE2+EF2=25∵正方形ABCD关于AC对称∴DF=BF=25.3. (1)证明:如解图,连接FB.∵四边形ABCD为正方形∴DA=AB,∠DAC=∠BAC∵AF=AF∴△DAF≌△BAF∴DF=BF∵四边形ABCD为正方形∴∠ABC=90°∵FG⊥BC,FE⊥AB∴∠FGB=∠FEB=90°∴∠FGB=∠FEB=∠ABC=90°∴四边形FEBG是矩形∴EG=FB∴EG=DF;(2)解:∵正方形的边长为3+3,∠BGE=30°∴BC=3+3∴BG=BC-CG=3+3-CG∵∠BGE=30°∴BG=3BE∵AC为正方形ABCD的对角线∴∠DCF=∠BCF=45°∵FG⊥BC∴∠FGC=∠FGB=90°∴∠CFG=45°∴FG=CG∵四边形FEBG是矩形∴EB=FG∴FG=CG=EB设FG=CG=EB=x∴GE=2x∴BG=3BE=3x∵BG=BC-CG=3+3-x∴3+3-x=3x∴x=3∴GE=2x=23∴DF=BF=GE=23.第3题解图知识逐点过①垂直平分②对角线③直角④相等⑤直角⑥互相垂直⑦相等⑧垂直平分且相等真题演练1. C 【解析】∵四边形EFGB 是正方形,EB =2,∴FG =BE =2,∠FGB =90°,∵四边形ABCD 是正方形,H 为AD 的中点,∴AD =4,AH =2,∠BAD =90°,∴∠HAN =∠FGN ,AH =FG ,∵∠ANH =∠GNF ,∴△ANH ≌△GNF (AAS),故①正确;∴∠AHN =∠HFG ,∵AG =FG =2=AH ,∴AF =2 FG =2 AH ,∴∠AFH ≠∠AHF ,∵AD ∥FG ,∴∠AHF =∠HFG ,∴∠AFN ≠∠HFG ,故②错误;∵△ANH ≌△GNF ,∴AN =12 AG =1,∵GM=BC =4,∴AH AN =GM AG=2,∵∠HAN =∠AGM =90°,∴△AHN ∽△GMA ,∴∠AHN =∠AMG ,∠MAG =∠HNA ,∴AK =NK ,∵AD ∥GM ,∴∠HAK =∠AMG ,∴∠AHK =∠HAK ,∴AK =HK ,∴AK =HK =NK ,∵FN =HN ,∴FN =2NK ;故③正确;∵延长FG 交DC 于M ,∴四边形ADMG 是矩形,∴DM =AG =2,∵S △AFN =12 AN ·FG =12 ×2×1=1,S △ADM=12 AD ·DM =12×4×2=4,∴S △AFN ∶S △ADM =1∶4,故④正确. 2. 15 【解析】如解图,∵四边形ABCD ,ECGF ,IGHK 均为正方形,∴CD =AD =10,CE =FG =CG =EF =6,∠CEF =∠F =90°,GH =IK =4,∴CH =CG +GH =10,∴CH =AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ (AAS),∴CJ =DJ =5,∴EJ =1,∵GL ∥CJ ,∴△HGL ∽△HCJ ,∴GL CJ =GH CH =25,∴GL =2,∴FL =4,∴S阴影=S梯形EJLF=12 (EJ +FL )·EF =12(1+4)×6=15.第2题解图基础过关1. B2. D 【解析】如解图,点E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12 BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第2题解图3. C 【解析】 ∵边长为3的正方形OBCD 两边与坐标轴正半轴重合,∴OB =BC =3,∴C (3,3).4. A 【解析】如解图,将△ADF 绕点A 顺时针旋转90°得到△ABG ,则AF =AG ,∠DAF =∠BAG .∵∠EAF =45°,∴∠BAE +∠DAF =45°,∴∠GAE =∠EAF =45°.在△GAE 和△F AE 中,⎩⎪⎨⎪⎧AG =AF ∠GAE =∠F AE AE =AE ,∴△GAE ≌△F AE (SAS),∴∠AEF =∠AEG .∵∠BAE =α,∴∠AEB =90°-α,∴∠AEF =∠AEB =90°-α,∴∠FEC =180°-∠AEF -∠AEB =180°-2(90°-α)=2α.第4题解图5. AB =BC (答案不唯一,符合条件即可,如:AC ⊥BD ) 【解析】∵邻边相等的矩形是正方形,∴可添加条件AB =BC ;∵对角线互相垂直的矩形是正方形,∴还可以添加条件AC ⊥BD .6. 2 【解析】如解图,过点E 作EF ⊥BC 于点F .∵四边形ABCD 是正方形,∴AB =BC =2,AD ∥BC ,∴EF =AB =2,∴S △BCE =12 BC ·EF =12×2×2=2.∵S 正方形ABCD =BC 2=22=4,∴S阴影=S 正方形ABCD -S △BCE =4-2=2.第6题解图7. 2 【解析】如解图,依题意得OD =22 AD =22 ,OE =12OD =2 ,∴图中阴影部分的面积为OE 2=(2 )2=2(dm 2).第7题解图8. 3 【解析】如解图,过点P 作PF ⊥AB 于点F .∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第8题解图9.172【解析】∵CE =7,△CEF 的周长为32,∴CF +EF =32-7=25.∵点F 为DE 的中点,∴DF =EF .∵四边形ABCD 为正方形,∴∠BCD =90°,BC =CD ,∴CF =EF =DF =252,∴DE =25,∴在Rt △DCE 中,CD =DE 2-CE 2 =24,∴BC =CD =24.∵点O 为BD 的中点,∴OF 是△BDE 的中位线,∴OF =12 (BC -CE )=12 (24-7)=172 .10. (1)证明:∵四边形ABCD 为正方形 ∴AB =AD ,∠A =∠D =90°. ∵MF ∥AD ∴∠DFM =90° ∴四边形ADFM 为矩形 ∴MF =AD =AB . ∵MN 垂直平分BE ∴∠BOM =90° ∴∠ABE +∠BMO =90°. ∵∠FMN +∠BMO =90° ∴∠ABE =∠FMN . 在△ABE 和△FMN 中⎩⎪⎨⎪⎧∠A =∠MFN AB =FM ∠ABE =∠FMN∴△ABE ≌△FMN (ASA); (2)解:如解图,连接ME . ∵MN 垂直平分BE ∴ME =BM .设BM =x ,则AM =8-x ,ME =x .在Rt △AME 中,由勾股定理得ME 2=AE 2+AM 2,即x 2=62+(8-x )2. 解得x =254 ,即BM =254.在Rt △ABE 中,由勾股定理得BE =62+82 =10. ∵∠MBO =∠EBA ,∠MOB =∠A ∴△BOM ∽△BAE ∴OM AE =BMBE∴OM =AE ·BM BE =6×25410 =154 .由(1)知△ABE ≌△FMN ∴MN =BE =10∴ON =MN -OM =10-154 =254.第10题解图11. B 【解析】∵四边形ABCD 是正方形,∴BC ⊥AB ,CD ∥AB ,CD =AB .∵EF ⊥AB ,∴EF ∥BC ,∴AE EC =AF FB .∵AF =2,FB =1,∴AE EC =21 .∵CD ∥AB ,∴CD ∥AG ,∴∠DCE=∠GAE ,∠CDE =∠AGE ,∴△DCE ∽△GAE ,∴AG CD =AE CE =21,∴AG =2CD ,∴CD =AB =BG .∵∠DCM =∠GBM =90°,∠DMC =∠GMB ,∴△DCM ≌△GBM (AAS),∴DM=GM =12 DG .∵AF =2,FB =1,∴AB =3.∵AD =AB =3,∴AG =6,∴在Rt △DAG 中,DG =32+62 =35 ,∴MG =352.12. B 【解析】 如解图,延长AE 交BC 于点H .∵四边形ABCD 是正方形,∴AD =AB ,AD ∥BC ,∴△ADE ∽△HBE ,∴AD HB =DEBE ,∵DE =3BE ,∴AD =3HB ,∴AB =3HB ,在Rt △ABH 中,由勾股定理得AH =AB 2+HB 2 =10 HB ,∴sin ∠BAE =HB AH =1010 ,①错误;如解图,过点E 分别作AB ,CD 的垂线,交AB ,CD 于点M ,N ,∴∠AME =∠ENF =90°,∴∠AEM +∠MAE =90°,∵∠AEF =90°,∴∠AEM +∠NEF =90°,∴∠MAE =∠NEF ,∵∠MBE =45°,∴MB =ME ,∵AB =MN ,∴AM =EN ,∴△AME ≌△ENF ,∴AE =EF ,∵∠AEF =90°,∴∠EAF =45°,②正确;∵△AME ≌△ENF ,∴ME =NF =MB ,∵BE =2 ME ,∴CF =2ME =2 BE ,∵DE =3BE ,∴BD =4BE ,∴CD =22BD =22 BE ,∴CD =2CF ,∴点F 为CD 的中点,③正确;∵点F 为CD 的中点,∴DF =12 CD =12 AB ,∵AB ∥CD ,∴△FDG ∽△ABG ,∴DG BG =DF AB =12 ,∴DG =13 BD ,GB =23 BD ,设BE =x ,则DE =3x ,BD =4x ,∴DG =43 x ,GB =83 x ,∴GE =GB -BE =53 x ,∴BE +DG =73 x ≠GE ,④错误.第12题解图13. C 【解析】设BF =a ,AF =b ,则AB =a 2+b 2 ,EF =b -a ,∴tan α=tan ∠BAF =BFAF=a b ,tan β=tan ∠BEF =BF EF =a b -a .∵正方形EFGH ∽正方形ABCD ,∴S 正方形EFGH S 正方形ABCD =(EFAB )2=EF 2AB 2 =(b -a )2a 2+b 2 =1n .∵tan α=tan 2β,∴a b =a 2(b -a )2 .∴(b -a )2=ab ,b 2+a 2-2ab =ab ,∴a 2+b 2=3ab ,∴n =a 2+b 2(b -a )2=a 2+b 2ab =3abab =3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方形存在性问题巩固练习(基础)1.如图,在直角梯形乂8CQ中,, JD=24厘米,厘米,8C=30厘米,动点尸从,4开始沿乂。
边向D以每秒1厘米的速度运动,动点。
从点C开始沿CB边向3以每秒3厘米的速度运动,尸,。
分别从点工、C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为,秒.(7)当r在什么时间范围时,CQ>PD?(2)存在某一时刻f,使四边形a产@是正方形吗?若存在,求出/值;若不存在,请说明理由.【解答】3)当SVfWJO时,CQ>PDx(2)不存在【解析】3)•••CQ=3f, 24 7,,由C0>尸。
有3>24-f,解得又。
尸、。
点的运动时间只能是30+3=10 (s),:.6<W10.即当6VfWI0 时,CQ>PD.(2)若四边形是正方形,则,〃>=乂3且3。
=,始,••JXr=8 且30-3r=8,显然无解,即不存在,的值使得四边形.小。
是正方形.2.如图,在矩形X3CZ)中,X8=16c〃,,3=如〃,动点尸、。
分别从工、C同时出发,点尸以每秒3CM 的速度向8移动,一直达到8止,点。
以每秒2s〃的速度向。
移动.3)产、。
两点出发后多少秒时,四边形P8C。
的面积为36“/?(2)是否存在某一时刻,使P8C。
为正方形?若存在,求出该时刻;若不存在,说明理由.A D【解答】3)产、。
两点出发后4秒时,四边形尸BC。
的面积为36s/;(2)不存在【解析】3)设尸、。
两点出发f秒时,四边形尸BC0的而积为36c〃上由矩形得NB=NC=90° , XB〃CD,所以四边形尸B C。
为直角梯形,故S ^-PBCQ=;(CO+PB )*BC.又S ^-PBCQ=36,所以9(2t+16- 3t>6=36,解得r=4(秒);(2)不存在.因为要使四边形产BC0为正方形,则尸3=BC=C0=6,所以P点运动的时间为电U 二¥秒,Q点运动的时间是3秒,J O尸、。
的时间不一样,所以不存在该时刻.3.如图,正比例函数y = ax与反比例函数y= A (x>0)的图象交于点时(通,/)J(7)求这两个函数的表达式:(2)如图,若NAMB=90° ,且其两边分别于两坐标轴的正半轴交于点,4、8.求四边形。
外四的面积. (3)如图2,点尸是反比例函数歹=& (£>0)的图象上一点,过点尸作x轴、y轴的垂线,垂足分别为£x F,尸尸交直线。
呸于点H,过作x轴的垂线,垂足为G.设点尸的横坐标为机,当血>通时,是否存在点尸,使得四边形尸EG〃为正方形?若存在,求出尸点的坐标;若不存在,请说明理由.Z?【解答】3)y=x, y=_;(2) 6; (3) P (2/,收)【解析】3)将点分别代入与v=上得:=a\/Z6,解得:a = l, k=6,.••这两个函数的表达式分别为:y=x, y=^.(2)如图,过点M分别做,x轴、y轴的垂线,垂足分别为C、D.则, /AMC= NBMD=90' - ZAMD. MC=AfD= ,:AlMgABMD,•、S,边形0cM D=S 边形。
4M8=6.(3)设P 点坐标为G,-),则PE=HG=GE=9, OE=X,x x•:4MOE=45° ,:.OG=GH=-, x:.OE=OG+GH= —.解得、=2遍,••.尸点坐标为(2代,避).4.如图,在平而直角坐标系中且,4 (-1, 0), B(0, 2)抛物线y=aS+ax - 2经过点C.(7)求抛物线的解析式;(2)在抛物线(对称轴的右侧)上是否存在两点尸、Q,使四边形ABPQ为正方形?若存在,求点P、0 的坐标;若不存在,请说明理由.【解答】3) y=1一+ 1x-2: (2) P (2, 1)、O(1, - 7)【解析】3)由得。
=2+1 = 3, CD=1・・・C点坐标为(-3, 7),・•・抛物线经过点C:.l=a( -3)、( -3) -2, ._ 1••。
一"・••抛物线的解析式为Jx-2:(2)在抛物线(对称轴的右侧)上存在点尸、。
,使四边形,空尸。
是正方形.以33为边在月8的右侧作正方形乂8尸。
过尸作PE_L03于E, 0G,x轴于G,可证△2班•乌:.PE=AG=B0=2, BE=QG=AO=1,・•・尸点坐标为(2, 1), Q点坐标为a, -n.由(1)抛物线、=,/+ [x - 2,当x=2时,y=1;当x=1时,y=・1:.p.。
在抛物线上.故在抛物线(对称轴的右侧)上存在点尸(2, 1). O (A -1),使四边形.如。
是正方形. 5.已知:〃,&是方程/+2「24=0的两个实数根,且门72,抛物线+以+c 的图象经过点H (〃, 0), B (0, &).(7)求这个抛物线的解析式:(2)设点产G, y )是抛物线上一动点,且位于第三象限,四边形OE40是以0.4为对角线的平行四边形, 求平行四边形。
融。
的而积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,当平行四边形。
以。
的面积为24时,是否存在这样的点尸,使平行四边形。
用。
为正方形?若存在,求出产点坐标:若不存在,说明理由.o y' ■BA 0 kp【解答】⑺y=鼠2+4升央(2) S= -4 (x+,?+25 ( - 6<x< - 7); (?)不存在【解析】3)/+2f-24=0, (f+d) (f-4) =0, ・ 6, t2=4,乂 < - 6, 0), B (0. 4);抛物线产看/+云+c 经过$8两点."=•!/+4 v +4 J M(2) ;点尸(x, y )在抛物线上,位于第三象限,又,:S=2S :APO =2X ;:.S= - 6y 24-66 + c = 0' 解得 ,14 6=T ,c = 4«5 o=-4 (S+Zx+6)•••抛物线与无轴的交点坐标为(-6, 0), ( -1, 0), •••X 的取值范围为YVxV-L(3)当 S=24 时,得 24=-4 (什])?+25,解得:x 尸-3, X2- - 4代入解析式得:yi= - 4,y2= - 4.,点尸的坐标为(-3, -4), (-4, -4)当点尸为(-3, -4)时,满足尸O=EL 此时,平行四边形。
目0是菱形.当点尸为(-4, -4)时,不满足尸。
=EL 此时,平行四边形。
口。
不是菱形.而要使平行四边形。
口。
为正方形,那么,一定有Od_LP 。
,乂。
=产。
,此时,点尸的坐标为(-3, -3),而(-3, -3)不在抛物线尸 焉1+?/4上, J J故不存在这样的点尸,使四边形。
口。
为正方形.6.如图,抛物线y=-a/+6x+5过点(1, 2)、(4, 5),交y 轴于点8,直线,43经过抛物线顶点$交、 轴于点C,请解答下列问题:(7)求抛物线的解析式:(2)点。
在平面内,在第一象限内是否存在点P ,使以,4, B, P,。
为顶点的四边形是正方形?若存在, 直接写出点尸的坐标:若不存在,请说明理由.【解答】3)y=--4x+5: (2) P (6, 3)或(4, 7)【解析】3) :抛物线y=-。
/+&+5过点(1, 2)、(4, 5),一解得Ir ;令y=0时,2 <14 A 门 尸+丁、+4=0,-16a + 46+ 5 = 5 [6 = -4・ ••抛物线解析式为- 4x+5:(2)在y=/-4x+5 中,令 x=0 可得y=5,:.B (0, 5),・ •?=1-4升5= (x-2) 2+1,:.A (2,,),・ ,. AB = ^22+ (1-5) 2 = 2巡,2 〃 -4- 7? = 1( k - 7 ,解得《一 n = o I n・•・直线,曲解析式为y= - 2x+5, ①当时,如图,可设直线ET 解析式为)u4x+m,把乂(2, 1)代入可得"冶=1,解得加=优•••宜线E4解析式为y= Jx,,可设点尸坐标为G, 1x ),‘R4 ='(3:_2)2+—1),•・•四边形E 』B 。
为正方形,,E4=,15,即-2/+6鸳-1) =2,§,解得x=-2或x=6•••点产在第一象限内.-2不符合题意,舍去,故x=6,此时尸点坐标为(6, 3);②当产8L 访时,如图2,{可设直线尸8解析式为p=2x+s,把3 (0, 5)代入可得s=5,・••直线尸瓦解析式为y= Jx+5,•••可设尸点坐标为G, ix+5),・•.?〃= ,/+ 伶/ + 5—5)2,同理可得\%2+($。
+ 5 — 5『=2/,解得x=-4 (舍去)或x=4,此时尸点坐标为(4, 7):综上可知存在满足条件的点尸,其坐标为(6, 3)或(4, 7).7.如图,在平面直角坐标系中,点M是动点且纵坐标为6,点8是线段。
4上一动点,过点8作直线MN 〃'轴,设MV分别交射线。
4与x轴所成的两个角的平分线于点E、F.3)求证:EB=BF;(2)当*为何值时,四边形XEOF是矩形?证明你的结论;(3)是否存在点.4、B,使四边形,4EOF为正方形?若存在,求点*与8的坐标;若不存在,说明理由.【解答】3)见解析:(2)是,见解析:(3)A(0, 6), B(0, 3)【解析】3)证明:尸平分。
T与x轴正方向的夹角,如图所示:•,WV〃x 轴,=,N2=N3,:・BO=BF.同理可得88二8。
,:.BE=BF:(2)当黑的值为a时,四边形XEOF是矩形.理由如下:•.,需=4,即5。
=切,而BE=BF、••・四边形AEOF为平行四边形,分别交射线。
只与x轴所成的两个角的平分线于点E、F.:.ZEOF= i X180°=90° ,二四边形XEOF 是矩形:(3)存在.•・•四边形JEO产是矩形,...当Q4_LEF时,四边形.1£。
产为正方形,而E尸〃x轴,.•.CU_L.x 轴,.••点X 在y 轴上,•••点。
的坐标为(。
,6),•:BO=BA, .'.B 点坐标为(0, 3).8.如图,已知二次函数j,=a/+c图象的顶点为点“(0, -9),且经过点H (3, 0).(7)求此二次函数的关系式:(2)设点。
(x, y)是此二次函数图象上一动点,且位于第三象限,点C的坐标为(-5, 0),四边形,曲CD 是以为对角线的平行四边形.①求平行四边形."CD的面积S与x之间的函数关系式,并写出自变量x的取值范闱:②当点8在此二次函数图象的对称轴上时,求平行四边形,488的面积:③当平行四边形.铝8的面积为64时,请判断平行四边形.曲CD是否为菱形?④是否存在点使平行四边形为正方形?若存在,求出点。