厦门大学结构化学习题集答案
(完整版)结构化学课后答案第一章

(完整版)结构化学课后答案第⼀章01.量⼦⼒学基础知识【1.1】将锂在⽕焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原⼦由电⼦组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产⽣的,试计算该红光的频率、波数以及以k J ·mol -1为单位的能量。
解:811412.99810m s 4.46910s 670.8m cνλ--??===? 41711 1.49110cm 670.810cm νλ--===??%3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N sν--===?【1.2】实验测定⾦属钠的光电效应数据如下:波长λ/nm 312.5365.0404.7546.1光电⼦最⼤动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν0)。
解:将各照射光波长换算成频率v ,并将各频率与对应的光电⼦的最⼤动能E k 列于下表:λ/nm 312.5 365.0 404.7 546.1v /1014s -19.59 8.21 7.41 5.49 E k /10-19J 3.412.561.950.75由表中数据作图,⽰于图1.2中E k /10-19Jν/1014g-1图1.2 ⾦属的k E ν-图由式 0k hv hv E =+ 推知0k kE E h v v v ?==-?即Planck 常数等于k E v -图的斜率。
选取两合适点,将k E 和v 值带⼊上式,即可求出h 。
例如: ()()19341412.70 1.0510 6.60108.5060010J h J s s ---?==?-?g图中直线与横坐标的交点所代表的v 即⾦属的临界频率0v ,由图可知,1410 4.3610v s -=?。
结构化学 习题答案 1-10章习题及答案

其中,1 kcal = 4.184 J,E 是以 10 为底的指数。
kJ/mole 2.62550E+03 4.18400E+00 9.64853E+01 1.19627E-02 1.00000E+00
第二章习题
kcal/mole 6.27510E+02 1.00000E+00 2.30605E+01 2.85914E-03 2.39006E-01
eV 2.721138E+01 4.33641E-02 1.00000E+00 1.23984E-04 1.03643E-02
cm-1 2.1947463137E+05
sin n 2
1, wmax
1 1 4 6
(3) w 1 4
8 根据态叠加原理,(x) 是一维势箱中粒子一个可能状态。
能量无确定值。平均值为 25 h2 104 ml 2
9
和
2 的本征函数,其相应的本征值分别为 dx2
-m2和-1。11
Dˆ Xˆ XˆDˆ 1
值。
(a) eimx (b) sinx (c) x2+ y2 (d) (a-x)e-x 11有算符 Dˆ d dx, Xˆ X , 求 DˆXˆ XˆDˆ 。 参考答案
1 象电子等实物粒子具有波动性被称作物质波。物质波的
波动性是和微粒行为的统计性联系在一起的。对大量粒子
而言,衍射强度(即波的强度)大的地方,粒子出现的数
现在 2h 2 的概率?(c) 角动量 z 分量的平均值?
2.4 已知类氢离 子 He+的某 一状态波函 数为: =
结构化学章节习题(含答案!)

第一章 量子力学基础一、单选题: 13x lπ为一维势箱的状态其能量是:( a ) 22229164:; :; :; :8888h h h hA B C D ml ml ml ml2、Ψ321的节面有( b )个,其中( b )个球面。
A 、3 B 、2 C 、1 D 、03、立方箱中2246ml h E ≤的能量范围内,能级数和状态数为( b ).A.5,20B.6,6C.5,11D.6,174、下列函数是算符d /dx的本征函数的是:( a );本征值为:( h )。
A 、e 2xB 、cosXC 、loge xD 、sinx 3E 、3F 、-1G 、1H 、2 5、下列算符为线性算符的是:( c )A 、sine xB 、d 2/dx 2 D 、cos2x6、已知一维谐振子的势能表达式为V = kx 2/2,则该体系的定态薛定谔方程应当为( c )。
A [-m 22 2∇+21kx 2]Ψ= E ΨB [m 22 2∇- 21kx 2]Ψ= E Ψ C [-m 22 22dx d +21kx 2]Ψ= E Ψ D [-m 22 -21kx 2]Ψ= E Ψ 7、下列函数中,22dx d ,dxd的共同本征函数是( bc )。
A cos kxB e –kxC e –ikxD e –kx2 8、粒子处于定态意味着:( c )A 、粒子处于概率最大的状态B 、粒子处于势能为0的状态C 、粒子的力学量平均值及概率密度分布都与时间无关系的状态.D 、粒子处于静止状态9、氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数?( c )A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5) 10、+He 离子n=4的状态有( c )(A )4个 (B )8个 (C )16个 (D )20个 11、测不准关系的含义是指( d ) (A) 粒子太小,不能准确测定其坐标; (B)运动不快时,不能准确测定其动量(C) 粒子的坐标的动量都不能准确地测定; (D )不能同时准确地测定粒子的坐标与动量12、若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者( b ) (A) 动量相同 (B) 动能相同 (C) 质量相同13、 为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本 身,动量算符应是(以一维运动为例) ( a )(A) mv (B) i x ∂∂ (C)222x ∂-∂14、若∫|ψ|2d τ=K ,利用下列哪个常数乘ψ可以使之归一化:( c )(A) K (B) K 2 (C) 1/K15、丁二烯等共轭分子中π电子的离域化可降低体系的能量,这与简单的一维势阱模型是一致的, 因为一维势阱中粒子的能量 ( b )(A) 反比于势阱长度平方 (B) 正比于势阱长度 (C) 正比于量子数16、对于厄米算符, 下面哪种说法是对的 ( b )(A) 厄米算符中必然不包含虚数 (B) 厄米算符的本征值必定是实数(C) 厄米算符的本征函数中必然不包含虚数17、对于算符Ĝ的非本征态Ψ ( c )(A) 不可能测量其本征值g . (B) 不可能测量其平均值<g >.(C) 本征值与平均值均可测量,且二者相等18、将几个非简并的本征函数进行线形组合,结果 ( b )(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变19. 在光电效应实验中,光电子动能与入射光的哪种物理量呈线形关系:( B )A .波长B. 频率C. 振幅20. 在通常情况下,如果两个算符不可对易,意味着相应的两种物理量( A)A .不能同时精确测定B .可以同时精确测定C .只有量纲不同的两种物理量才不能同时精确测定 21. 电子德布罗意波长为(C )A .λ=E /h B. λ=c /ν C. λ=h /p 22. 将几个非简并的本征函数进行线形组合,结果( A ) A .再不是原算符的本征函数B .仍是原算符的本征函数,且本征值不变C .仍是原算符的本征函数,但本征值改变23. 根据能量-时间测不准关系式,粒子在某能级上存在的时间τ越短,该能级的不确定度程度ΔE (B )A .越小 B. 越大 C.与τ无关24. 实物微粒具有波粒二象性, 一个质量为m 速度为v 的粒子的德布罗意波长为:A .h/(mv)B. mv/hC. E/h25. 对于厄米算符, 下面哪种说法是对的 ( B )A .厄米算符中必然不包含虚数B .厄米算符的本征值必定是实数C .厄米算符的本征函数中必然不包含虚数 26. 对于算符Ĝ的非本征态Ψ (A ) A .不可能测得其本征值g. B .不可能测得其平均值<g>.C .本征值与平均值均可测得,且二者相等 27. 下列哪一组算符都是线性算符:( C )A . cos, sinB . x, logC . x d dx d dx,,22二 填空题1、能量为100eV 的自由电子的德布罗依波波长为( 122.5pm )2、函数:①xe ,②2x ,③x sin 中,是算符22dxd 的本征函数的是( 1,3 ),其本征值分别是( 1,—1;)3、Li 原子的哈密顿算符,在( 定核 )近似的基础上是:(()23213212232221223222123332ˆr e r e r e r e r e r e mH +++---∇+∇+∇-= )三 简答题1.计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光子的能量。
厦门大学结构化学答案2

1.9 用测不准原理说明普通光学光栅(间隙约 10-6m)观 察不到 10000V 电压加速的电子衍射。(1 eV = 1.602x10-19 J ) 解:发生电子衍射时,电子动量的不确定度在数量级上 与电子动量是相近的,由测不准原理可知电子位置的不确定 度:
∆ ≈
ℎ ℎ ℎ = = = ∆ ℎ/
显然,光学光栅的宽度要远大于电子的德布罗意波长, 观察不到电子衍射。
1.12 判断下列算符是否是线性厄米算符: (1)d/dx (2)∇2 (3)x1+x2 (4)e x2 解:线性算符的定义为 (φ1 + φ2)= φ1 + φ2 φ
∗
厄米算符的定义为 ∫ φ∗ φ dτ=∫ φ
dτ
线性算符比较好判定,证明是否为厄米算符。 (1) ∫ φ∗ φ d =∫ φ∗ dφ = φ∗ φ | − ∫ φ dφ∗ = φ∗ d φ∗ d
习题 2
1.8 质量0.004kg子弹以500m/s速率运动,原子中的电子以 1000m/s速率运动,试估计它们位置的不确定度,证明子弹有确 定的运动轨道, 可用经典力学处理, 而电子运动需量子力学处理。 解:(注: 因题中为给出速率的不确定度,所以,可以自行 引入此量,可取范围显然在0-100%之间,可以取中间量10%,由此 导出动量的不确定度, 以进一步由测不准原理导出位置的不确定 度的数量级) 若假定速率的不准确度为10%, 对子弹而言:ΔPx=mΔVx=m(10%Vx)=0.2kg·m/s Δx≈h/ΔPx=3.31 × 10−33m 对电子而言:Δx≈h/ΔPx=h/[m(10%Vx)]=7.28 × 10−7m 可以看出,子弹位置的不确定度比子弹小得多,完全可以 忽略,所以子弹可用经典力学处理;而电子位置的不确定度与分 子尺寸(10−10m)相比,根本不能忽略,所以电子运动需要用量子 力学处理。
厦门大学结构化学习题集答案

附录8 习题选答习题11.2 600nm(红), 3.31×10-19J, 199KJ·mol-1 550nm(黄), 3.61×10-19J, 218KJ·mol-1 400nm(蓝), 4.97×10-19J, 299KJ·mol-1 200nm(紫), 9.93×10-19J, 598KJ·mol-1 1.3 6.51×10-34J·s1.4 (1)100eV电子 122.6pm(2)10eV中子 9.03pm(3)1000m/sH原子0.399nm1.5 子弹~10-35m, 电子~10-6m1.6 Dx=1.226×10-11m<< 10-6m1.8 (2),(4) 是线性厄米算符.1.9 (1) exp(ikx)是本征函数, 本征值ik.(2), (4)不是.1.101.12 , 本征值为±√B1.131.16 当两算符可对易, 即两物理量可同时测定时,式子成立.1.18 (1) (2) <x>= l/2, (3) <P x>=01.19 0.4l~0.6l间, 基态出现几率0.387,第一激发态出现几率0.049.1.20 (1) 基态n x=n y=n z=1 非简并(2) 第一激发态211, 121, 112 三重简并(3) 第二激发态221, 122, 212 三重简并1.23 λ=239nm.习题22.1 (1) E0=-13.6eV, E1=-3.4eV.(2) <r>=3a0/2 , <P>=02.4 ψ1s波函数在r=a0, 2a0处比值为2.718ψ2在r=a0, 2a0处比值为7.389.2.6 3d z2 , 3d xy各有2个节面: 3d z2是2个圆锥节面, 3d xy是XZ,YZ面.2.9 (1) 2p轨道能量为-3.4eV 角动量为(2) 离核平均距离为5a0.(3) 极大值位置为4a0.2.102.11 ; He+ a0/2, F8+ a0/9.2.13(1)径向分布函数最大值离核距离a0/3,(2)电子离核平均距离为a0/2.(3) 因无电子相关, 2s, 2p态能量相同., 磁矩为2.15 轨道角动量为12.17 (1) N 原子价电子层半充满, 电子云呈球状分布.(2)基态谱项为4S, 支项为4S3/2(3)2p23s1光谱项: p2—3P,1D,1S, s1—2S, 偶合后4P, 2P, 2D, 2S.2.19 Al S K Ti Mn基态谱项2P 3P 2S 3F 6S光谱支项2P1/23P22S1/2 3F2 6S5/22.20 C(2p13p1): 3D, 1D, 3P, 1P, 3S, 1S.Mg(3s13p1): 3P,1PTi(3d34s1): 5F,3F,5P,3P,3H,1H,3G,1G,3F,1F,3D,1D,3P,1P2.21 3d84s2态含3F4谱项2.22 I1=5.97eV , I2=10.17eV .习题33.2 CO: C∞, ∞个σv ;CO2: C∞, ∞个C2, ∞个σv, σh.3.3 顺丁二烯: C2, σv, σv/;反丁二烯: C2, σh, I3.4 (1)菱形: C2, C2', C2”, σh " D2h;(2) 蝶形: C2, σv, σv' "C2v(3) 三棱柱: C3,3C2,3σv, σh" D3h;(4) 四方锥: C4, 4σv" C4v(5) 圆柱体: C∞, ∞个C2, ∞个σv, σh. "D∞h(6) 五棱台: C5,5σv" C5v3.53.6 E,{C31, C32},{C2,C2',C2”},σh, {S31,S32}, {σv, σv', σv”} 3.73.8 苯D6h; 对二氯苯D2h ; 间二氯苯C2v; 氯苯C2v; 萘D2h3.9 SO2 C2v, P4 T d, PCl5 D3h, S6(椅式) D3d,S8 D4d, Cl2 D∞h3.10 ①D2h②C2v ③D3h④C2v⑤D2h3.14 CoCl4F23+分子有2种异构体, 对二氟异构体为D4h, 邻二氟异构体为C2v3.15 ①C s②C2v③C s④C4v⑤D2h⑥C2v⑦C i⑧C2h3.16 (1) C60 I h子群: D5d, D5, C5v, C5, D3h, D3, C3v, C3等.(2) 二茂铁D5d,子群D5, C5v等.(3)甲烷T d, 子群C3v, C3, D2d, D2等.3.17 ①C3O2直线形D∞h②双氧水C2③NH2NH2鞍马型C2V ④F2O V形C2v ⑤NCCN 线形D∞h3.18 8.7(邻), 5.0×10-30C﹒m (间), 0 (对)3.20 ①~⑧均无旋光性; ①、③船式、⑦、⑧有偶极矩, 其余无。
结构化学第一章习题答案

《结构化学》第一章习题答案1001 (D)1002 E =h ν p =h /λ1003,mvhp h ==λ 小1004 电子概率密度1005 1-241-9--34s kg m 10626.6s kg m 100.1106.626⋅⋅⨯=⋅⋅⨯⨯==-λhpT = m p 22 = 3123410109.92)10626.6(--⨯⨯⨯ J = 2.410×10-17 J1006 T = h ν- h ν0=λhc -λhcT = (1/2) mv 2v =)11(20λλ-m hc = 6.03×105 m ·s -11007 (1/2)mv 2= h ν - W 0 = hc /λ - W 0 = 2.06×10-19Jv = 6.73×105 m/s1008 λ = 1.226×10-9m/10000= 1.226×10-11 m1009 (B)1010 A,B 两步都是对的, A 中v 是自由粒子的运动速率, 它不等于实物波的传播速率u , C中用了λ= v /ν, 这就错了。
因为λ= u /ν。
又D 中E =h ν是粒子的总能量, E 中E =21mv 2仅为v <<c 时粒子的动能部分,两个能量是不等的。
所以 C, E 都错。
1011 ∆x ·∆p x ≥π2h微观物体的坐标和动量不能同时测准, 其不确定度的乘积不小于π2h 。
1013 ∆E =π2h/∆t = ∆(h ν) = h ∆ν∆ν = 1/(2π∆t ) = 1/(2π×10-9) = 1.59×108 s -1∆ν~ = ∆ν/c = 1.59×108 s -1/3×1010 cm ·s -1= 5.3×10-3 cm -11014 不对。
1015 (1) 单值的。
结构化学习题(含答案)

25.
立方势箱中的粒子,具有 E
12h 2 8ma 2
的状态量子数,nxnynz 是(
)
A.211 B.231 C.222 D.213
26. 一个在一维势箱中运动的粒子,其能量随着量子数 n 的增大( ),其能级差 En+1-En 随着势箱长度的增大( )
A.越来越小 B.越来越大 C.不变
27. 下列算符中不属于线性算符的是( )
6.
在边长为
a
的立方势箱中运动的粒子,其能级 E
3h 2 4ma 2
的简并度是______,
E 27h2 的简并度是_______。 8ma 2
7. 质 量 为 m 的 粒 子 被 局 限 在 边 长 为 a 的 立 方 箱 中 运 动 。 波 函 数 211(x,y,z)=
_________________________;当粒子处于状态211 时,概率密度最大处坐标是
第二章 原子的结构和性质
一. 填空题
1.
氢原子中电子的一个状态为:
1 81 2
Z a0
3
/
2
Zr a0
2
e
Zr 3a0
sin 2 sin 2 ,则
量子数 n 为____,l 为____,m 为____,轨道名称为____。
2. 氢原子的 3d z2 状态的能量为______eV。角动量为______,角动量在磁场方向的分
___________;若体系的能量为
7h2 4ma
2
,
其简并度是_______________。
二. 选择题
1. 若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者( )
A. 动量相同
2020年厦门大学结构化学习题集精品版

结构化学习题集习题1:1.1 某同步加速器,可把质子加速至具有100×109eV的动能,试问此时质子速度多大?1.2 计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光子的能量。
1.3 在黑体辐射中,对一个电热容器加热到不同温度,从一个针孔辐射出不同波长的极大值,试从其推导Planck常数的数值:T/℃1000 1500 2000 2500 3000 3500l max/nm 2181 1600 1240 1035 878 7631.4 计算下列粒子的德布洛意波长(1) 动能为100eV的电子;(2) 动能为10eV的中子;(3) 速度为1000m/s的氢原子.1.5 质量0.004kg子弹以500ms-1速度运动,原子中的电子以1000ms-1速度运动,试估计它们位置的不确定度, 证明子弹有确定的运动轨道, 可用经典力学处理, 而电子运动需量子力学处理。
1.6 用测不准原理说明普通光学光栅(间隙约10-6m)观察不到10000V 电压加速的电子衍射。
1.7 小球的质量为2mg,重心位置可准确到2μm,在确定小球运动速度时,讨论测不准关系有否实际意义?1.8 判断下列算符是否是线性\厄米算符:(2)(3)x1+x2(4)(1)1.9 下列函数是否是的本征函数?若是,求其本征值:(1)exp(ikx)(2)coskx (3)k (4)kx1.10 氢原子1s态本征函数为(a0为玻尔半径),试求1s 态归一化波函数。
1.11 已知一维谐振子的本征函数为其中a n和α都是常数,证明n=0与n=1时两个本征函数正交。
1.12 若是算符的本征函数(B为常数), 试求α值,并求其本征值。
1.13 计算Poisson 方括,1.14 证明Poisson 方括的下列性质:(1)(2)1.15 角动量算符定义为:, ,证明: (1) (2)1.16 在什么条件下?有无定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录8 习题选答习题11.2 600nm(红), 3.31×10-19J, 199KJ·mol-1 550nm(黄), 3.61×10-19J, 218KJ·mol-1 400nm(蓝), 4.97×10-19J, 299KJ·mol-1 200nm(紫), 9.93×10-19J, 598KJ·mol-1 1.3 6.51×10-34J·s1.4 (1)100eV电子 122.6pm(2)10eV中子 9.03pm(3)1000m/sH原子0.399nm1.5 子弹~10-35m, 电子~10-6m1.6 Dx=1.226×10-11m<< 10-6m1.8 (2),(4) 是线性厄米算符.1.9 (1) exp(ikx)是本征函数, 本征值ik.(2), (4)不是.1.101.12 , 本征值为±√B1.131.16 当两算符可对易, 即两物理量可同时测定时,式子成立.1.18 (1) (2) <x>= l/2, (3) <P x>=01.19 0.4l~0.6l间, 基态出现几率0.387,第一激发态出现几率0.049.1.20 (1) 基态n x=n y=n z=1 非简并(2) 第一激发态211, 121, 112 三重简并(3) 第二激发态221, 122, 212 三重简并1.23 λ=239nm.习题22.1 (1) E0=-13.6eV, E1=-3.4eV.(2) <r>=3a0/2 , <P>=02.4 ψ1s波函数在r=a0, 2a0处比值为2.718ψ2在r=a0, 2a0处比值为7.389.2.6 3d z2 , 3d xy各有2个节面: 3d z2是2个圆锥节面, 3d xy是XZ,YZ面.2.9 (1) 2p轨道能量为-3.4eV 角动量为(2) 离核平均距离为5a0.(3) 极大值位置为4a0.2.102.11 ; He+ a0/2, F8+ a0/9.2.13(1)径向分布函数最大值离核距离a0/3,(2)电子离核平均距离为a0/2.(3) 因无电子相关, 2s, 2p态能量相同., 磁矩为2.15 轨道角动量为12.17 (1) N 原子价电子层半充满, 电子云呈球状分布.(2)基态谱项为4S, 支项为4S3/2(3)2p23s1光谱项: p2—3P,1D,1S, s1—2S, 偶合后4P, 2P, 2D, 2S.2.19 Al S K Ti Mn基态谱项2P 3P 2S 3F 6S光谱支项2P1/23P22S1/2 3F2 6S5/22.20 C(2p13p1): 3D, 1D, 3P, 1P, 3S, 1S.Mg(3s13p1): 3P,1PTi(3d34s1): 5F,3F,5P,3P,3H,1H,3G,1G,3F,1F,3D,1D,3P,1P2.21 3d84s2态含3F4谱项2.22 I1=5.97eV , I2=10.17eV .习题33.2 CO: C∞, ∞个σv ;CO2: C∞, ∞个C2, ∞个σv, σh.3.3 顺丁二烯: C2, σv, σv/;反丁二烯: C2, σh, I3.4 (1)菱形: C2, C2', C2”, σh " D2h;(2) 蝶形: C2, σv, σv' "C2v(3) 三棱柱: C3,3C2,3σv, σh" D3h;(4) 四方锥: C4, 4σv" C4v(5) 圆柱体: C∞, ∞个C2, ∞个σv, σh. "D∞h(6) 五棱台: C5,5σv" C5v3.53.6 E,{C31, C32},{C2,C2',C2”},σh, {S31,S32}, {σv, σv', σv”} 3.73.8 苯D6h; 对二氯苯D2h ; 间二氯苯C2v; 氯苯C2v; 萘D2h3.9 SO2 C2v, P4 T d, PCl5 D3h, S6(椅式) D3d,S8 D4d, Cl2 D∞h3.10 ①D2h②C2v ③D3h④C2v⑤D2h3.14 CoCl4F23+分子有2种异构体, 对二氟异构体为D4h, 邻二氟异构体为C2v3.15 ①C s②C2v③C s④C4v⑤D2h⑥C2v⑦C i⑧C2h3.16 (1) C60 I h子群: D5d, D5, C5v, C5, D3h, D3, C3v, C3等.(2) 二茂铁D5d,子群D5, C5v等.(3)甲烷T d, 子群C3v, C3, D2d, D2等.3.17 ①C3O2直线形D∞h②双氧水C2③NH2NH2鞍马型C2V ④F2O V形C2v ⑤NCCN 线形D∞h3.18 8.7(邻), 5.0×10-30C﹒m (间), 0 (对)3.20 ①~⑧均无旋光性; ①、③船式、⑦、⑧有偶极矩, 其余无。
3.21 (1) 2.68D, (2) 3.95D, (3) 2.40D, (4) 3.45D, (5) 0 .3.22 C8H6Cl2二氯原子可有邻、间、对3种关系,分别对应C2v,C2v,D3d对称性C8H5Cl3三氯原子也有3种排列方式, 分别属于C3v,C s,C s点群.3.23 H2O23.25(1)CS2:直线形,D∞h; (2)SO2:V形,C2v; (3)PCl5: 三角双锥,D3h ;(4)N2O C¥v(5)O2N-NO2 :平面形,D2h; (6)NH2-NH2, 锥形,C2v.3.26 (1)有极性及旋光性: 乳酸(2)无极性无旋光性: C60, CH4,B(OH)3,丁二烯,NO2+ .(3)无极性有旋光性: 交叉CH3-CH3;(4)有极性无旋光性: (NH2)2CO3.27 A1UA2=A2 ; A1UB1=B1 ;B1UB2=A2 ; E1UE2=E1ÅB1Å习题44.24.3 Cl2比Cl2+弱4.4 CN-基态的电子组态: 键级3, 未成对电子0 .4.5 SO价层电子结构: ,2个不成对4.6 得电子成为AB- : C2, CN失电子成为AB+ : NO, O2, F2, N2, CO4.7 (1) OH:(2)(3) 定域于氧原子4.8 或4.10 j σ k δ l π m 不能4.11 B2+ O-4.12 B24.134.14 CO的电子组态为, (5s)2为孤对电子占据的非键轨道(弱反键), 电离1个电子后, 成键加强, C-O之间距离缩短.4.16 OF:OF-:OF+:键级: 1.5/ 1 / 2键长: OF- > OF > OF+4.18(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)4.19 Cl2:O2+:CN-:4.21 CF+键较短(因无反键)习题55.3 CS2, NO2+, sp ; NO3-, CO32-, BF3, sp2 ; CBr4, PF4+, sp3; IF6+ d2sp3 5.6 SCl3+sp3ICl4- d2sp35.75.85.10 C2H2: C作sp杂化, 三重键,直线型分子BF3: B作sp2杂化, 除s键外, 形成P46 平面三角形 NF3: N作sp3杂化, 三角锥分子C6H6: C作sp2杂化形成s骨架, 还有P66平面六边形SO3: S作sp3杂化, 与O形成双键,三角锥5.11 (1)CO2: C与O除s键外,还形成2个P34 直线形分子(2)H2S: s键, V形分子(3)PCl3: s键. 三角锥分子(4)CO32-: C与O除s键外,还形成P46平面三角形(5)NO3-:N与O除s键外,还形成P46平面三角形(6)SO42-: S-O间形成s, p 双键,四面体5.145.16 酸性RCOOH >C6H5OH >ROH5.17 C-O 键长CO< CO2< RCOH5.18 椅式C2h, 船式C2v,5.19 (1)氟化物: XeF2 D¥h, XeF4 D4h, XeF6 C3, XeF8 D4d(2)氧化物: XeO C¥v, XeO2 C2v,XeO3 C3v,XeO4 T d(3)氟氧化物: XeOF2 C2v, XeO2F2 C2v, XeO3F2 D3h XeOF4 C4v,XeO2F4 D4h, XeOF6 C3习题66.2 B4H10可能的styx数(4012), (3103)6.3 B5H11: (5021), (4112), (3203)B6H10: (4220), (3311), (2402)6.4 线型, 折线型(5种), W型, V型, T型, Y型,´型, 方形带心, 梯形, 五边形, 四棱锥, 三角形带叉(2种), 菱形带把(2种), 三角双锥, 四面体含心6.5 Sn44- 20e , Sn3Bi2 22e 三角双锥, Sn3Bi3+ 26e 八面体,Sn5Bi4 40e 带帽四方反棱柱6.9()6.10 六边形3种异构体反三棱柱2种异构体6.13 X- < NH3 < CN-6.15 反尖晶石6.176.226.24 (1)四面体(2)(3) 不能6.26 NiCl42-四面体Ni(CN)42-正方形习题77.4 (1) (112)面(2) (323)面(3) (111)面7.6 d111=249pm, d211=176pm, d100=432pm7.8 R(C-C)=154.4pm, ρ=3.51g·cm-37.9 若有一个四方底心格子, 定能用底心与顶点画出一个体积更小的简单四方格子7.10 用四方面心格子, 可画出一个体积更小的体心四方格子7.12 ρ=3.37g×cm-37.13 (1) 体心立方点阵7.14 (1) 立方面心点阵的衍射指标奇偶混杂则系统消光, 111,200, 220, 222衍射允许(2) a=570.5pm(3) θ=13.54°7.15 (2) SnF4为四方体心点阵金红石型结构, h+k+l=奇数系统消光 (3) R(Sn-F)=188pm, Sn填在F6形成的畸变八面体中7.18 Si的原子量28.08547.19 a=360.8pm, 面心立方点阵7.20 Na2B4O7×10H2O7.21 (1) 16 (2) θ=13.12°7.22 M=146127.23 834pm, 606pm, 870pm习题88.1 (1) 352.4pm(2) 8.91g·cm-38.2 a=b=292pm, c=477pm8.4 68.02%8.5 (1) 面心立方(2) d111=233.34pm, d200=202.08pm(3) V*=0.055528.6立方体心点阵, 110,200,211,220,310,222, 321,400,330 a=330.5pm 8.8 a=286.65pm Fe(0,0,0, ; 1/2,1/2,1/2)8.10 16.7g×cm-3 (110)晶面间距233pm8.11 R(Zn-Zn)=291.18pm8.12 (1) a=185.8pm(2) ρ=0.967g×cm-3(3)d110=303.3pm8.13 可能出现衍射指标:111, 200, 220, 311, 222, 400, 331¼8.14 (1) 0,0,0; 1/2,1/2,0; 1/2,0,1/2;0,1/2,1/2; 1/4,1/4,1/4;3/4,3/4,1/4;3/4,1/4,3/4;1/4,3/4,3/4(2) r Sn=140.5pm(3) 原子量118.3(4) 体积膨胀(5) 白锡配位数高8.15 (1) 21°41', 25°15', 37°06' ¼(2) 8.97g×cm-38.16 (1) R(Cu-Cu)=254.8pm(2) 六方最密堆积(3) 八面体空隙8.17 (1) Cu 75.5% Zn 24.5%(2) 4.25´10-22g(3) V=5.0´10-23(4) r=130pm8.18 (1) 无序结构面心立方结构基元为Cu1-x Au x, 是个统计原子(2)有序结构为简单四方,可用图中顶点与底心Au原子构成更小的四方晶胞, Cu位于体心位置,一个Cu与一个Au构成结构基元Au(0,0,0) Cu(1/2,1/2,1/2)(3)无序结构是fcc, 最小衍射指标(111),22.3°有序结构简单四方, 最小衍射指标(001),11.5°习题99.3 四面体r+/r- =0.225 八面体r+/r-=0.4149.4 CaS: NaCl型; CsBr: CsCl型9.5 (1) 立方面心点阵(2) a=421pm(3) 24.239.8 R(Ti-O)=201pm9.9 (1)立方面心点阵(2)ρ=3.218g×cm-3(3) R(C-Si)=189pm r(Si)=112pm9.10 (1) r(Na+)=100pm(2) ρ=2.41g×cm-39.12 Br-»194.5pm, K+»134.5pm,F-»132.5~142pm, Li +< 68pm.9.14(1)AB3C(2) A:(0,0,0) B(1/2,0,0; 0,1/2,0; 0,0,1/2) C(1/2,1/2,1/2)(3)A周围6个B, C周围12个B9.15(1)简单立方点阵(2)R(I-O)=223pm, R(K-O)=315.4pm9.16(2)ρ=0.917g×cm-3(3) R(O-H…)=276.4pm9.17(1)立方体心点阵a=308pm(2)F-作堆积, K+填F-的立方体空隙, 则a=310pm.9.19 晶胞中8个Mg, 16个Al, 32个O9.20 MgO是典型的共价晶体,NaF是离子晶体.9.21 K3C60晶胞中4个C60形成4个八面体空隙和8个四面体空隙. 根据化学式晶胞中有12个K, 两种空隙100%被占满.K+: 1/2,1/2,1/2;1/2,0,0;0,1/2,0; 0,0,1/2;1/4,1/4,1/4;1/4,1/4,3/4; 1/4,3/4,1/4; 3/4,1/4,1/4;1/4,3/4,3/4; 3/4,3/4,1/4; 3/4,1/4,3/4; 3/4,3/4,3/4.9.23 (1) 6个O与6个Si形成六角星型, O在凹角顶点, Si在凸角顶点 (2)Be四面体配位, Al八面体配位9.24 (1) 立方体心点阵, h+k+l=奇数时系统消光(3) R(F…F)=299pm, R(Xe…F)=340pm。