高二理科数学期末复习卷(2-2+2-3+选考内容)

合集下载

高二年级数学理科2-2、2-3综合测试题

高二年级数学理科2-2、2-3综合测试题

高二年级数学(理科)试题一、选择题1.设复数z 满足关系式2z z i +=+,那么z 等于( ) (A )34i -+ (B )34i - (C )34i -- (D )34i + 2.从0,1,2,…,9这10个数字中,任取两个不同数字作为(平面直角坐标系中)点的横坐标和纵坐标,能够确定不在x 轴上的点的个数是( )A .100B .90C .81D .723.由曲线xy e =,xy e -=以及1x =所围成的图形的面积等于( )A .2B .22e -C .12e-D .12e e+- 4.A ,B ,C ,D ,E 五人并排站成一排,若B 必须站在A 的右边(A ,B 可以不相邻),则不同的排法有( )A .24种B .60种C .90种D .120种5.在62)1(x x -+的展开式中5x 的系数为( )A .4B .5C .6D .76.32()32f x x x =-+在区间[11]-,上的最大值是( )A .2-B .0C .2D .47.如图,函数)(x f y =的图象在点P 处的切线是l ,则(2)(2)f f '+=( )A .29B .0C .89 D .不确定8.曲线ln(21)y x =-上的点到直线230x y -+=的最短距离是( )AB.C.D .09.设1nx ⎛⎫+ ⎪⎝⎭的展开式的各项系数的和为P ,所有二项式系数的和为S ,若P+S=272,则n 为( )A .4B .5C .6D .810.设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为( )A.p B.2(1)p p -C.(1)p p -- D.(1)p p -11.袋中有5个红球,3个白球,不放回地抽取2次,每次抽1个.已知第一次抽出的是红球,则第2次抽出的是白球的概率为( )(第7题图)A37 B 38 C 47 D 1212.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A .2人或3人B .3人或4人C .3人D .4人 二、填空题13.设随机变量ξ的概率分布列为()1cP k k ξ==+,0123k =,,,,则(2)P ξ== . 14.从10件产品(含有3件次品)中任取3件,则取出的3件产品中次品数的数学期望为 ,方差为 .15.若∆ABC 的内切圆半径为r ,三边长为a 、b 、c ,则∆ABC 的面积S =12 r (a +b +c ) 类比到空间,若四面体的内切球半径为R ,四个面的面积为S 1、S 2 、S3 、S 4,则四面体的体积V = .16.已知ξ~N 2(4,)σ,且(26)0.6826P ξ<<=,则σ= ,(24)P ξ-<= .三、解答题17. 用0,1,2,3,4,5这六个数字: (1)能组成多少个无重复数字的四位偶数? (2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字且比1325大的四位数?18.已知()(1)(1)()m n f x x x m n *=+++∈N ,的展开式中x 的系数为19,求()f x 的展开式中2x 的系数的最小值.19.某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.20.如图,四边形ABCD 是一块边长为4km 的正方形地域,地域内有一条河流MD ,其经过的路线是以AB 的中点M 为顶点且开口向右的抛物线(河流宽度忽略不计)的一部分.新世纪公司准备投资建一个大型矩形游乐园PQCN ,问如何施工才能使游乐园面积最大?并求出最大面积.21.今有甲、乙两个篮球队进行比赛,比赛采用7局4胜制.假设甲、乙两队在每场比赛中获胜的概率都是21.并记需要比赛的场数为ξ. (Ⅰ)求ξ大于5的概率; (Ⅱ)求ξ的分布列与数学期望.第20题图高二年级数学(理科)试题答案一、选择题1.设复数z 满足关系式2z z i +=+,那么z 等于( D ) (A )34i -+ (B )34i - (C )34i -- (D )34i + 2.从0,1,2,…,9这10个数字中,任取两个不同数字作为(平面直角坐标系中)点的横坐标和纵坐标,能够确定不在x 轴上的点的个数是( C )A .100B .90C .81D .723.由曲线xy e =,xy e -=以及1x =所围成的图形的面积等于( D )A .2B .22e -C .12e-D .12e e+- 4.A ,B ,C ,D ,E 五人并排站成一排,若B 必须站在A 的右边(A ,B 可以不相邻),则不同的排法有( B )A .24种B .60种C .90种D .120种5.在62)1(x x -+的展开式中5x 的系数为 ( C )A .4B .5C .6D .76.32()32f x x x =-+在区间[11]-,上的最大值是( C )A .2-B .0C .2D .47.如图,函数)(x f y =的图象在点P 处的切线是l , 则(2)(2)f f '+=( C ).A .29 B .0C .89 D .不确定 8.曲线ln(21)y x =-上的点到直线230x y -+=的最短距离是( A )AB.C.D .09.设1nx ⎛⎫+ ⎪⎝⎭的展开式的各项系数的和为P ,所有二项式系数的和为S ,若P+S=272,则n 为( A )A .4B .5C .6D .810.设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为( D )A.p B.2(1)p p -C.(1)p p -- D.(1)p p -13.(第7题图)11.袋中有5个红球,3个白球,不放回地抽取2次,每次抽1个.已知第一次抽出的是红球,则第2次抽出的是白球的概率为( A )A37 B 38 C 47 D 1212.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( A )A .2人或3人B .3人或4人C .3人D .4人 二、填空题13.设随机变量ξ的概率分布列为()1cP k k ξ==+,0123k =,,,,则(2)P ξ== . 答案:42514.从10件产品(含有3件次品)中任取3件,则取出的3件产品中次品数的数学期望为 ,方差为 . 次品数 X概率P (X=0)=C 73 /C 103=35/120 P (X=1)=(C 31*C 72)/C 103 =63/120 P (X=2)=C 32* C 71 /C 103=21/120P (X=3)=C 33 /C 103=1/120数学期望E X =np=35/120*0+63/120*1+21/120*2+1/120*3=0.9方差:(0-0.9)2×35/120+(1-0.9)2×63/120+(2-0.9)2×21/120+(3-0.9)2×1/120=0.4915.若∆ABC 的内切圆半径为r ,三边长为a 、b 、c ,则∆ABC 的面积S =12 r (a +b +c ) 类比到空间,若四面体的内切球半径为R ,四个面的面积为S 1、S 2 、S3 、S 4,则四面体的体积V = .答案:13 R(S 1+S 2+S 3+S 4)提示:以球心为顶点,四面体的侧面为底面将四面体分割成四个三棱锥,四个三棱锥的体积之和即为 13 R(S 1+S 2+S 3+S 4).16.已知ξ~N 2(4,)σ,且(26)0.6826P ξ<<=,则σ= ,(24)P ξ-<= .答案:2;0.8390 三、解答题17. 用0,1,2,3,4,5这六个数字: (1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数? (3)能组成多少个无重复数字且比1325大的四位数?解:(1)符合要求的四位偶数可分为三类: 第一类:0在个位时有35A 个;第二类:2在个位时,首位从1,3,4,5中选定1个(有14A 种),十位和百位从余下的数字中选(有24A 种),于是有1244A A ·个;第三类:4在个位时,与第二类同理,也有1244A A ·个.由分类加法计数原理知,共有四位偶数:3121254444156A A A A A ++=··个. (2)符合要求的五位数中5的倍数的数可分为两类:个位数上的数字是0的五位数有45A 个;个位数上的数字是5的五位数有1344A A ·个.故满足条件的五位数的个数共有413544216A A A +=·个.(3)符合要求的比1325大的四位数可分为三类:第一类:形如2□□□,3□□□,4□□□,5□□□,共1345A A ·个;第二类:形如14□□,15□□,共有1224A A ·个;第三类:形如134□,135□,共有1123A A ·个;由分类加法计数原理知,无重复数字且比1325大的四位数共有:131211452423270A A A A A A ++=···个.18.已知()(1)(1)()m n f x x x m n *=+++∈N ,的展开式中x 的系数为19,求()f x 的展开式中2x 的系数的最小值.解:122122()11m m n nmm m n n n f x C x C x C x C x C x C x =+++++++++112222()()m n m n C C x C C x =+++++.由题意19m n +=,m n *∈N ,.2x ∴项的系数为222(1)(1)1919172224mnm m n n C C m --⨯⎛⎫+=+=-+ ⎪⎝⎭. ∵m n *∈N ,,根据二次函数知识,当9m =或10时,上式有最小值,也就是当9m =,10n =或10m =,9n =时,2x 项的系数取得最小值,最小值为81.19.某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.解:设该工人在2006年一年里所得奖金为X ,则X 是一个离散型随机变量.由于该工人每季度完成任务与否是等可能的,所以他每季度完成任务的概率等于12,所以, 044111(0)2216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,1314111(300)224P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 2224113(750)228P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3134111(1260)224P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,4044111(1800)2216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.∴其分布列为0 3007501260 180014 11620.如图,四边形ABCD 是一块边长为4km 的正方形地域,地域内有一条河流MD ,其经过的路线是以AB 的中点M 为顶点且开口向右的抛物线(河流宽度忽略不计)的一部分.新世纪公司准备投资建一个大型矩形游乐园PQCN ,问如何施工才能使游乐园面积最大?并求出最大面积.解:以M 为原点,AB 所在直线为y 轴建立平面直角坐标系,则(42)D ,.设抛物线方程为22(0)y px p =>.由点D 在抛物线上,得228p =,解得12p =. 所以抛物线方程为2(040)y x x y =,≤≤≥. 设2()(02)P y y y ,≤≤是曲线MD上任一点,则2PQ y =+,24PN y =-,所以矩形游乐园面积232(2)(4)824S PQ PN y y y y y ==+-=--+. ∴2344S y y '=--+,令0S '=,第20题图解得23y =或2y =-(舍去). 当203y ⎛⎫∈ ⎪⎝⎭,,时,0S '>,函数S 为增函数;当223y ⎛⎫∈ ⎪⎝⎭,时,0S '<,函数S 为减函数. 因此,当23y =时,S 有极大值,此时282233PQ y =+=+=,222324439PN y ⎛⎫=-=-= ⎪⎝⎭,2832256(km )3927S =⨯=. 当0y =时,8S =;当2y =时,0S =. 所以当23y =,49x =时,游乐园面积最大,最大面积为2256km 27. 21.今有甲、乙两个篮球队进行比赛,比赛采用7局4胜制.假设甲、乙两队在每场比赛中获胜的概率都是21.并记需要比赛的场数为ξ. (Ⅰ)求ξ大于5的概率; (Ⅱ)求ξ的分布列与数学期望.解:(Ⅰ)依题意可知,ξ的可能取值最小为4.当ξ=4时,整个比赛只需比赛4场即结束,这意味着甲连胜4场,或乙连胜4场,于是,由互斥事件的概率计算公式,可得P (ξ=4)=240441122C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=18.当ξ=5时,需要比赛5场整个比赛结束,意味着甲在第5场获胜,前4场中有3场获胜,或者乙在第5场获胜,前4场中有3场获胜.显然这两种情况是互斥的,于是,P (ξ=5)=234334111222C -⎡⎤⎛⎫⎛⎫⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=14,∴ P (ξ>5)=1-[P (ξ=4)+P (ξ=5)]=1-[18+14]=58. 即ξ>5的概率为58. (Ⅱ)∵ ξ的可能取值为4,5,6,7,仿照(Ⅰ),可得P (ξ=6)=235335111222C -⎡⎤⎛⎫⎛⎫⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=516,P (ξ=7)=236336111222C -⎡⎤⎛⎫⎛⎫⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=516,∴ξ的分布列为:ξ的数学期望为:Eξ=4·18+5·14+6·516+7·516=9316.。

最新期末高二数学选修2-2、2-3测试题(含答案)

最新期末高二数学选修2-2、2-3测试题(含答案)

高二数学选修2-2、2-3期末检测试题命题:伊宏斌 命题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分)1.过函数x y sin =图象上点O (0,0),作切线,则切线方程为 ( ) A .x y = B .0=y C .1+=x y D .1+-=x y 2.设()121222104321x a x a x a a x x x ++++=+++ ,则=0a ( )A .256B .0C .1-D .13.定义运算a cad bc b d =-,则ii 12(i 是虚数单位)为 ( ) A .3 B .3- C .12-i D .22+i4.任何进制数均可转换为十进制数,如八进制()8507413转换成十进制数,是这样转换的:()1676913818487808550741323458=+⨯+⨯+⨯+⨯+⨯=,十六进制数1444706165164163162)6,5,4,3,2(23416=+⨯+⨯+⨯+⨯=,那么将二进制数()21101转换成十进制数,这个十进制数是 ( )A .12B .13C .14D .155.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为)(n f 部分,则2)1(1)(++=n n n f 。

”在证明第二步归纳递推的过程中,用到)()1(k f k f =++ 。

( ) A .1-k B .k C .1+k D .2)1(+k k6.记函数)()2(x fy =表示对函数)(x f y =连续两次求导,即先对)(x f y =求导得)('x f y =,再对)('x f y =求导得)()2(x fy =,下列函数中满足)()()2(x f x f=的是( )A.x x f =)(B.x x f sin )(=C.xe xf =)( D.x x f ln )(=7.甲、乙速度v 与时间t 的关系如下图,)(b a 是b t =时的加速度,)(b S 是从0=t 到b t =的路程,则)(b a 甲与)(b a 乙,)(b S 甲与)(b S 乙的大小关系是 ( )A .)()(b a b a 乙甲>,)()(b S b S 乙甲>B .)()(b a b a 乙甲<,)()(b S b S 乙甲<C .)()(b a b a 乙甲<,)()(b S b S 乙甲>D .)()(b a b a 乙甲<,)()(b S b S 乙甲< 8.如图,蚂蚁从A 沿着长方体的棱以 的方向行走至B ,不同的行走路线有( )A .6条B .7条C .8条D .9条9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( )A 0B 10073C 20163D 3021310.设{}10,9,8,7,6,5,4,3,2,1=M ,由M 到M 上的一一映射中,有7个数字和自身对应的映射个数是 ( )A .120B .240C .710 D .360B第8题图第Ⅱ卷(非选择题 共100分)二.填空题(本大题4个小题,每小题5分,共25分) 11(15)如果5025001250(12)(1)(1)(1)x a a x a x a x +=+-+-++-,那么1349a a a +++= .12.设复数z 满足条件1z =,那么z i 取最大值时的复数z 为 . 13,02321=+-a a a 0334321=-+-a a a a类似上三行,第四行的结论为__________________________。

高中数学人教A版选修2-1-2-2--2-3综合测试(含答案)高二数学理科

高中数学人教A版选修2-1-2-2--2-3综合测试(含答案)高二数学理科

高二下学期数学期末考试试卷(理)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的. 1.在某项测量中,测量结果X 服从正态分布)0)(,1(2>σσN ,若X 在)2,0(内取值的概率为8.0,则X 在),0[+∞内取值的概率为A .9.0B .8.0C .3.0D .1.0 2.曲线x y sin =与x 轴在区间]2,0[π上所围成阴影部分的面积为 A . 4- B .2- C .2 D .4 3. 若复数z 满足 (1)i z i +⋅=,则z 的虚部为 A . 2i -B .12C .2iD . 12- 4.用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的反设为A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,, 中至少有两个偶数D .自然数 c b a ,,中至少有两个偶数或都是奇数 5.已知在一次试验中,()0.7P A =,那么在4次独立重复试验中,事件A 恰好在前两次发生的概率是A .0441.0B .2646.0C .1323.0D .0882.06.某单位为了制定节能减排的目标,先调查了用电量y (单位:度)与气温x (单位:c ︒)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:x (单位:c ︒) 17 14 10 1- y (单位:度)24 343864由表中数据得线性回归方程:a x y +-=2.当气温为c ︒20时,预测用电量约为 A.20 B. 16 C.10 D.57.从6,5,4,3,2,1这六个数字中,任取三个组成无重复数字的三位数,但当三个数字中有2 和3时,2必须排在3前面(不一定相邻),这样的三位数有 A.108个 B.102个 C.98个 D.96个 8.在吸烟与患肺病这两个事件的统计计算中,下列说法正确的是A.若2χ的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误; D.以上三种说法都不正确.9.有6个座位连成一排,安排3个人就座,恰有两个空位相邻的不同坐法有A.36种B.60种C.72种D.80种10.一个袋子里装有编号为12,,3,2,1K 的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回到袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是A .163B . 41C .167D .4311.若函数x cx x x f +-=232)(有极值点,则实数c 的范围为A .),23[+∞ B .),23(+∞ C .),23[]23,(+∞--∞Y D .),23()23,(+∞--∞Y 12.下列给出的命题中:①如果三个向量,,不共面,那么对空间任一向量,存在一个唯一的有序数组z y x ,,使c z b y a x p ++=.②已知)1,1,1(),0,1,0(),0,0,1(),0,0,0(C B A O .则与向量和都垂直的单位向量只有)36,66,66(-=n . ③已知向量,,可以构成空间向量的一个基底,则向量可以与向量+和向量-构成不共面的三个向量.④已知正四面体OABC ,N M ,分别是棱BC OA ,的中点,则MN 与OB 所成的角为4π. 是真命题的序号为A .①②④B .②③④C .①②③D .①④二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中相应题的横线上. 13.函数52)(24--=x x x f 在]2,1[-上的最小值为_____________________.14.等差数列}{n a 的前n 项和为n S ,已知0,01514><S S ,则=n _____时此数列的前n 项和取得最小值.15.已知长方体1111D C B A ABCD -中,E AD AA AB ,2,11===为侧面1AB 的中心,F 为11D A 的中点,则=⋅1FC EF .16.在数列}{n a 中,2,121==a a 且)()1(12*+∈-+=-N n a a n n n ,则=50S .三、解答题:本大题共6小题,共70分. 把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知n x x )2(32+的展开式中,第5项的二项式系数与第3项的二项式系数之比是2:7. (Ⅰ)求展开式中含211x 项的系数; (Ⅱ)求展开式中系数最大的项.18.(本小题满分12分)为培养高中生综合实践能力和团队合作意识,某市教育部门主办了全市高中生综合实践知识与技能竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的团队按照抽签方式决定出场顺序.通过预赛,共选拔出甲、乙等六个优秀团队参加决赛. (Ⅰ)求决赛出场的顺序中,甲不在第一位、乙不在第六位的概率;(Ⅱ)若决赛中甲队和乙队之间间隔的团队数记为X ,求X 的分布列和数学期望.19.(本小题满分12分)观察下列等式11= 第一个式子 9432=++ 第二个式子 2576543=++++ 第三个式子 4910987654=++++++ 第四个式子照此规律下去(Ⅰ)写出第6个等式;(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.20. 已知点B (2,0),)22,0(=,O 为坐标原点,动点P 满足34=++.(Ⅰ)求点P 的轨迹C 的方程;(Ⅱ)当m 为何值时,直线l :m x y +=3与轨迹C 相交于不同的两点M 、N ,且满足BN BM =?(Ⅲ)是否存在直线l :)0(≠+=k m kx y 与轨迹C 相交于不同的两点M 、N ,且满足BN BM =?若存在,求出m 的取值范围;若不存在,请说明理由.21.(本小题满分12分)如图,直四棱柱1111ABCD A B C D - 的底面ABCD 是平行四边形,45DAB ∠=o,12AA AB ==,AD =,点E 是 11C D 的中点,点F 在11B C 上且112B F FC =.(Ⅰ)证明:1AC ⊥平面EFC ;(Ⅱ)求锐二面角E FC A --平面角的余弦值.22.(本小题满分14分)已知函数)1()(2+-+=a ax x e x f x,其中a 是常数.(Ⅰ) 当1=a 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若)(x f 在定义域内是单调递增函数,求a 的取值范围;(Ⅲ)若关于x 的方程k e x f x+=)(在[0,)+∞上有两个不相等的实数根,求k 的取值范围.高二下学期数学期末考试试卷(理)参考答案ABCC 1ED 1A 1DFB 1一.选择题: 每小题5分共60分 DD AACCA ADBDA ,, 二.填空题:13. 6- 14. 7 15.2116. 675 三:17解:(Ⅰ)解由题意知4272n n C C = ,整理得42(2)(3)n n =--,解得9n =… 2分∴ 通项公式为6279912r rr r xC T +-+⋅= 4分 令211627=+r ,解得6=r . ∴展开式中含211x 项的系数为67226969=⋅-C . ……………6分 (Ⅱ)设第1+r 项的系数最大,则有⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅-+----r r r r r r r r C C C C 819991019992222 ……………8分⎪⎪⎩⎪⎪⎨⎧≥≤∴37310r r ,390=∴≤≤∈r r N r 且Θ. ……………10分∴展开式中系数最大的项为55639453762x x C T =⋅=. ……………12分18(本小题满分12分)解:(Ⅰ)设“甲不在第一位、乙不在第六位”为事件A , 1分则1072)(66445566=+-=A A A A A P …………3分 所以甲不在第一位、乙不在第六位的概率为107. …………4分(Ⅱ)随机变量X 的可能取值为4,3,2,1,0 …………………5分 31)0(665522===A A A X P , 154)1(66442214===A A A C X P 51)2(6633222224===A A A A C X P ,152)3(6633222234===A A A A C X P 151)4(664422===A A A X P , (每个式子1分)…………………………10分随机变量X 的分布列为:因为 31541535215130=⨯+⨯+⨯+⨯+⨯=EX ,所以随机变量X 的数学期望为34. ……………………12分 19.解:(Ⅰ)第6个等式21116876=++++K …………2分(Ⅱ)猜测第n 个等式为2)12()23()2()1(-=-+++++n n n n n K …………4分 证明:(1)当1=n 时显然成立; (2)假设),1(+∈≥=N k k k n 时也成立,即有2)12()23()2()1(-=-+++++k k k k k K …………6分 那么当1+=k n 时左边)13()3()13()23()2()1(+++-+-++++=k k k k k k K2222]1)1(2[)12(8144)13()3()12()12(133)12()23()2()1(-+=+=++-=+++-+-=+++-+-++++++=k k k k k k k k k k k k k k k k K而右边2]1)1(2[-+=k这就是说1+=k n 时等式也成立. …………10分 根据(1)(2)知,等式对任何+∈N n 都成立. …………12分20解:(Ⅰ)设点),(y x P ,则)22,(+=+y x ,)22,(-=-y x . 由题设得34)22()22(2222=-++++y x y x .………(3分)即点P 到两定点(0,22)、(0,-22)的距离之和为定值34,故轨迹C 是以(0,22±)为焦点,长轴长为34的椭圆,其方程为112422=+y x .……(6分) (Ⅱ)设点M ),(11y x 、N ),(22y x ,线段MN 的中点为),(000y x M ,由BN BM =得0BM 垂直平分MN . 联立⎪⎩⎪⎨⎧=++=.123,322y x m x y 消去y 得01232622=-++m mx x .由0)12(24)32(22>--=∆m m 得6262<<-m .………(10分)∴322210m x x x -=+=,2)32(30m m m y =+-=.即)2,32(0mm M -. 由0BM ⊥MN 得1323220-=⋅--=⋅m m k k MN BM .故32=m 为所求.(14分) (Ⅲ)若存在直线l 与椭圆C 相交于不同的两点M ),(11y x 、N ),(22y x ,且满足BN BM =,令线段MN 的中点为),(000y x M ,则0BM 垂直平分MN .联立⎪⎩⎪⎨⎧=+=+.123,12322222121y x y x 两式相减得))(())((321212121y y y y x x x x -+-=-+.∴k y x y y x x x x y y k MN=-=++-=--=0021*******)(3. 又由0BM ⊥MN 得k x y k BM 12000-=-=.∴10-=x ,k y 30=.即)3,1(0kM -.又点0M 在椭圆C 的内部,故1232020<+y x .即12)3()1(322<+-⋅k.解得1>k .又点)3,1(0kM -在直线l 上,∴m k k +-=3.∴3233≥+=+=k k k k m (当且仅当3=k 时取等号).故存在直线l 满足题设条件,此时m 的取值范围为),∞+⋃--∞32[]32,(.21(本小题满分12分)解:(Ⅰ)以A 为坐标原点,射线AB 为x 轴的正半轴,建立如图所示空间直角坐标系A xyz -.则依题意,可得以下各点的坐标分别为1(0,0,0),(4,20)(4,2,2),(32,2),A C C E ,,,10(,2)3F 4,3. ………………3分∴ 112(42,2)(,0),(1,0,2),33AC EF EC ==-=-u u u u r u u u r u u u r ,,,∴ 112(42,2)(,0)0.33AC EF ⋅==⋅-=u u u u r u u u r ,, 1(42,2)(1,0,2)0AC EC ⋅==⋅-=u u u u r u u u r ,∴1AC EF ⊥,1AC EC ⊥.又EFC EC EF 平面⊆, ∴ 1AC ⊥平面EFC . ………………6分(Ⅱ)设向量),,(z y x n =是平面AFC 的法向量,则 AF n AC n ⊥⊥,,而)2,34,310(),0,2,4(==∴ 0234310,024=++=+z y x y x , 令1=x 得)31,2,1(--=. ………………9分又∵1AC u u u u r是平面EFC 的法向量,∴ 13869441691413244,cos 111-=++⋅++--=>=<AC n .… 11分1A所以锐二面角E FC A --平面角的余弦值为13869.………………12分 22.(本小题满分14分)解:(Ⅰ)由)1()(2+-+=a ax x e x f x 可得 ]1)2([)(2+++='x a x e x f x.…2分 当1a =时,e f e f 5)1(,2)1(='=所以 曲线()y f x =在点(1,(1))f 处的切线方程为)1(52-=-x e e y 即035=--e y ex ……………………………4分 (Ⅱ) 由(Ⅰ)知]1)2([)(2+++='x a x e x f x,若)(x f 是单调递增函数,则0)(≥'x f 恒成立, ……………………5分即01)2(2≥+++x a x 恒成立,∴04)2(2≤-+=∆a ,04≤≤-a ,所以a 的取值范围为]0,4[-. ………………………7分(Ⅲ)令)()()(2a ax x e e x f x g x x -+=-=,则关于x 的方程k x g =)(在[0,)+∞上有两个不相等的实数根.令0))2(()(2=++='x a x e x g x,解得(2)x a =-+或0x =.……………9分 当(2)0a -+≤,即2a ≥-时,在区间[0,)+∞上,0)(≥'x g ,所以)(x g 是[0,)+∞上的增函数.所以 方程k x g =)(在[0,)+∞上不可能有两个不相等的实数根.…………10分当(2)0a -+>,即2a <-时,)(),(x g x g '随x 的变化情况如下表由上表可知函数)(x g 在[0,)+∞上的最小值为2))2((+=+-a ea g . …………12分 因为 函数)(x g 是(0,(2))a -+上的减函数,是((2),)a -++∞上的增函数, 且当+∞→x 时,+∞→)(x g所以要使方程k x g =)(即k e x f x+=)(在[0,)+∞上有两个不相等的实数根,k 的取值范围必须是],4(2a ea a -++.…………14分。

学高二第二学期期末考试理科数学试题及答案

学高二第二学期期末考试理科数学试题及答案

试卷类型:A高二数学(理科)试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。

2.答题前,考生务必在答题卡上用直径毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚,并粘好条形码。

请认真核准条形码上的准考证号、姓名和科目。

3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在本试卷上无效。

4.答第Ⅱ卷时,请用直径毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答。

答在本试卷上无效。

5.第(22)、(23)小题为选考题,请按题目要求从中任选一题作答,并用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。

6.考试结束后,将本试卷和答题卡一并收回。

附:回归方程ˆˆˆybx a =+中斜率与截距的最小二乘估计公式分别为: ∑∑∑∑====--=---=ni ini ii ni ini iixn xy x n yx x x y yx x b1221121)())((ˆ,x b y aˆˆ-= 第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知复数iiz +-=122,其中i 是虚数单位,则z 的模等于 (A )2- (B) 3 (C) 4 (D) 2(2)用反证法证明某命题时,对结论:“自然数c b a ,,中恰有一个偶数”正确的反设为(A) c b a ,,中至少有两个偶数 (B)c b a ,,中至少有两个偶数或都是奇数 (C) c b a ,,都是奇数 (D) c b a ,,都是偶数(3)用数学归纳法证明:对任意正偶数n ,均有41212111 (41)31211+++=--++-+-n n n n ( )21...n++,在验证2=n 正确后,归纳假设应写成 (A )假设)(*N k k n ∈=时命题成立 (B )假设)(*N k k n ∈≥时命题成立(C )假设)(2*N k k n ∈=时命题成立 (D )假设))(1(2*N k k n ∈+=时命题成立(4)从3男4女共7人中选出3人,且所选3人有男有女,则不同的选法种数有(A )30种 (B) 32 种 (C) 34种 (D) 35种(5)曲线xey =在点()22e ,处的切线与坐标轴所围三角形的面积为(A)22e (B)2e (C) 22e (D) 492e(6)已知随机变量X服从正态分布()2,3σN ,且)3(41)1(>=<X P X P ,则)5(<X P 等于(A)81 (B) 85 (C) 43 (D) 87 (7)已知⎰≥3sin 2πxdx a ,曲线)1ln(1)(++=ax aax x f 在点())1(,1f 处的切线的斜率为k ,则k 的最小值为(A)1 (B)23(C)2 (D) 3 (8)甲、乙、丙三人独立参加体育达标测试,已知甲、乙、丙各自通过测试的概率分别为p ,4332,,且他们是否通过测试互不影响.若三人中只有甲通过的概率为161,则甲、丙二人中至少有一人通过测试的概率为(A)87 (B) 43 (C) 85 (D) 76 (9)函数)1(2)(3-'+=f x x x f ,则函数)(x f 在区间[]3,2-上的值域是 (A) ]9,24[- (B) ]24,24[- (C) ]24,4[ (D)[]9,4 (10)设()()5522105)1(...1)1(1x a x a x a a x +++++++=-,则420a a a ++等于 (A) 242 (B) 121 (C) 244 (D)122(11)已知函数)()()(2R b x bx x e x f x ∈-=.若存在⎥⎦⎤⎢⎣⎡∈2,21x ,使得0)()(>'+x f x x f ,则实数b 的取值范围是(A) ⎪⎭⎫ ⎝⎛∞-65, (B) ⎪⎭⎫ ⎝⎛∞-38, (C) ⎪⎭⎫ ⎝⎛-65,23 (D) ⎪⎭⎫⎝⎛∞+,38(12)中国南北朝时期的着作《孙子算经》中,对同余除法有较深的研究.设)0(,,>m m b a 为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为)(mod m b a =.如9和21被6除得的余数都是3,则记)6(mod 219=.若20202022201200202...22⋅++⋅+⋅+=C C C C a ,)10(mod b a =,则b 的值可以是(A) 2011 (B) 2012 (C) 2013 (D) 2014第II 卷本卷包括必考题和选考题两部分。

高二数学下期期末考试题(选修2-2,选修2-3 )

高二数学下期期末考试题(选修2-2,选修2-3 )

高二数学下期期末考试题(选修2-2,选修2-3 )一、选择题(本大题共10小题,每小题5分,共50分)1、i 是虚数单位,复数1-2i 的共轭复数的虚部为( )A -2iB -2C 2iD 22、一点沿直线运动,如果由始点起经过t 秒后的位移是4321394S t t t =-+,那么速度为0的时刻是( )A 0秒,6秒B 0秒,3秒C 3秒,6秒D 0秒,3秒,6秒3、有一段演绎推理是这样的,“直线平行于平面,则平行于平面内所有直线,已知直线b //平面α,直线a ⊂平面α,则直线b//a ”的结论显然是错误的,这是因为( )A 大前提错误B 小前提错误C 推理形式错误D 非以上错误 X 的方差D (X )为( )A 2 B45 C 35 D 5、2532()x x-的展开式中的常数项为( ) A 80 B -80 C 40 D -406、设随机变量X 服从正态分布N (4,9)若p (x 2c 1)p (x 21)c >+=<-,则c 等于( )A 9B 4C 3D 27、若甲、乙、丙随机的站成一排,则甲在乙的左侧(甲、乙可不相邻)的站法有( )种A 2B 3C 4D 68、对于R 上可导的任意函数(x)f ,若满足'10(x)x f -≤,则必有( ) A (0)(2)(1)f f f +> B (0)(2)(1)f f f +≤C (0)(2)(1)f f f +<D (0)(2)(1)f f f +≥9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( ) A 0 B 10073 C 20163 D 3021310、将正整数从小到大排成一个数列,按如下规则删除一些项,先删除1,再删除1后面的最邻近的2个连续偶数2,4,再删除4后面最邻近的3个连续奇数5、7、9,再删除9后面最邻近的4个连续偶数10,12,14,16,再删除16后面最邻近的5个连续奇数17,19,21,23,25,…….按此规则一直删除下去,将得到一个新的数列3,6,8,11,13,15,…….则此新数列的第65项是( )A 141B 142C 143D 144二、填空题(本大题共5小题,每小题5分,共25分)11、函数32y x x x a =--+的单调递增区间为 。

高二数学下期期末理科考试题(选修2-2,选修2-3 )

高二数学下期期末理科考试题(选修2-2,选修2-3 )

高二数学下期期末理科考试题(选修2-2,选修2-3 )一、选择题(本大题共10小题,每小题5分,共50分)1、复数Z=2+i 在复平面内的对应点在( )A 第一象限B 第二象限C 第三象限D 第四象限2、定积分dx x +⎰1110的值为( ) A 1 B ln2 C2122- D 212ln 21- 3、10)1(xx +展开式中的常数项为( ) A 第5项 B 第6项 C 第5项或第6项 D 不存在4、设随机变量ξ服从B (21,6),则P (ξ=3)的值是( ) A 165 B 163 C 85 D 83 5、曲线232+-=x x y 上的任意一点P 处切线的斜率的取值范围是( )A ⎪⎪⎭⎫⎢⎣⎡+∞,33B ⎪⎪⎭⎫ ⎝⎛+∞,33C ()+∞-,3D [)+∞-,36、某班一天上午安排语、数、外、体四门课,其中体育课不能排在每一、每四节,则不同排法的种数为( )A 24B 22C 20D 127、将骰子(骰子为正方体,六个面分别标有数字1,2...,6)先后抛掷2次,则向上的点数之和为5的概率是( )A 154B 92C 91D 181 8、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )9、某个命题与正整数有关,若当n=k(*N k ∈)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=5时该命题不成立,那么可推得( )A 当n=6时,该命题不成立B 当n=6时,该命题成立C 当n=4时,该命题成立D 当n=4时,该命题不成立x y O 图1 x y O A x y O Bx y O C y OD x10、等比数列}{n a 中,4,281==a a ,函数))...()(()(821a x a x a x x x f ---=,则=)0(,f ( )A 62B 92C 122D 152二、填空题(本大题共5小题,每小题5分,共25分)11、已知231010-=x x C C ,则x= 。

高二数学选修2-2与2-3综合试卷含答案

高二数学选修2-2与2-3综合试卷含答案

一选择题1:若()()22132i x x x -+++是纯虚数,则实数x 的值是 。

A. 1- B.1 C. 1± D. 以上都不对2:复数z =i1+i在复平面上对应的点位于 。

A .第一象限B .第二象限C .第三象限D .第四象限 3:若220(3)10,x k dx k +==⎰则 。

A.1B.2C.3D.4 4:函数f(x)=(x -3)e x 的单调递增区间是 。

A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 。

A.280种 B.240种 C.180种 D.96种6:有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有 。

A.88A 种 B.48A 种C.44A ·44A 种D.44A 种7:从甲袋中摸出1个红球的概率为13,从乙袋中摸出1个红球的概率为12,从两袋中各摸出一个球,则23等于 。

A. 2个球都不是红球的概率B.2个球都是红球的概率 C. 至少有1个红球的概率 D.2个球中恰有1个红球的概率 8:已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 。

A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D.0.08 1.23y x =+ 9:正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为 。

A.0,8 B .0,4 C.0,2 D.0,210:已知f(x)=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c 。

A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152二:填空题11:由直线21=x ,x=2,曲线xy 1=及x 轴所围图形的面积是 。

高二下学期理科数学综合测试题选修2-2,2-3(带详细答案)

高二下学期理科数学综合测试题选修2-2,2-3(带详细答案)
故答案为: .
第16题答案
或 (其他化简式不扣分)
第16题解析
由题意, 时,左边为 ; 时,左边为 ;从而增加两项为 ,且减少一项为 ,故填写
第17题答案
(I) ;(II) .
第17题解析
(I) 由已知,则 在 上恒成立,
即 在 上恒成立,设 ,则 ,
由 得 ,∴ 当 时 , 单调递减,
当 时 , 单调递增,则 最小值为 ,从而 ;
∴实数k的取值范围是(-1,1).
第11题答案
A
第11题解析
可分为两类,第一类:甲、乙两个盒子恰有一个被选中,有 种;第二类:甲、乙两个盒子都被选中,有 种,所以共有12+4=16种不同的情况.
第12题答案
D
第12题解析
因为 所以 故 在 上为单调递减函数,又 所以 解得 .
第13题答案
24
第13题解析
第7题答案
C
第7题解析
即 由 对任意的 恒成立,知 对任意的 恒成立,令 ,只需 即可.由 得 或 (不符合题意舍去), 在 上单调递增,在 上单调递减, 在 上的最大值为 .故应选C.
第8题答案
C
第8题解析
令 ,可得 ,所以 ,所以 ,则展开式中常数项为 .
第9题答案
D
第9题解析
因为随机变量 ,所以正态曲线关于 对称,又 ,则 ,所以 ,所以 正确;随机变量 ,且 所以 解得 ,所以 也正确.
B.在犯错误的概率不超过 的前提下,认为“爱好游泳运动与性别无关”
C.有 以上的把握认为“爱好游泳运动与性别有关”
D.有 以上的把握认为“爱好游泳运动与性别无关”
7、已知函数 若 的最小值为 ,且 对任意的 恒成立,则实数 的取值范围是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二理科数学期末复习卷81.复数31iz i-=-等于 ( ) A .i 21+ B .i 21- C .i +2 D .i -2 2.如果复数)2)(1(i bi ++是纯虚数,则biib ++132的值为 ( )A .2B .5C .5D .15 3.已知函数1-=x y ,则它的导函数是 ( )A .121/-=x y B .)1(21/--=x x y C .112/--=x x y D .)1(21/---=x x y 4.=+⎰-dx ex x)(cos 0π ( )A .1e π-- B .1eπ-+ C .eπ-- D .1eππ--5. 设函数na x x f )()(+=,其中⎰+=πππ2)sin(3dx x n ,3)0()0(-='f f ,则)(x f 的展开式中2x 的系数为( )A .240-B .60-C .240D .606.设1nx ⎛⎫ ⎪⎝⎭的展开式的各项系数的和为P ,所有二项式系数的和为S ,若P +S =272,则n 为( )A .4B .5C .6D .87.设一随机试验的结果只有A 和A ,()P A p =,令随机变量10A X A =⎧⎨⎩,出现,,不出现,,则X 的方差为( ) A.p B.2(1)p p -C.(1)p p -- D.(1)p p -8.设随即变量ξ服从正态分布)1,0(N ,p P =>)1(ξ,则)01(<<-ξP 等于 ( )A .p 21B .p -1C .p 21-D .p -219.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序C B ,实施时必须相邻,请问实验顺序的编排方法共有 ( ) A .24种 B .96种 C .120种 D .144种10.某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是7.0 则在这段时间内吊灯能照明的概率是 ( ) A .343.0 B .833.0 C .973.0 D .029.1 11.已知)(x f 是定义在),0(+∞上的非负可导函数,且满足()0)(/≤+x f x xf ,对任意正数b a ,,若b a <,则必有 ( )A. )()(a bf b af ≤B. )()(b af a bf ≤C. )()(b f a af ≤D. )()(a f b bf ≤ 12.函数cos xxy e =的图像大致是 ( )二、填空题(本大题共4小题,每小题5分,共20分) 13. (2x+x )4的展开式中x 3的系数是14.曲线1,0,2===y x x y ,所围成的图形的面积可用定积分表示为__________.15.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n 个等式为_________. 16.已知函数)0(1)1(3)(223>+-+-=k k x k kx x f ,若)(x f 的单调减区间是 (0,4),则在曲线)(x f y =的切线中,斜率最小的切线方程是_________________. 三、解答题:(17题10分,18~22每题12分)17. 在直角坐标系xoy 中,直线l 的参数方程为2325x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρθ=. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于,A B .若点P 的坐标为(3,求||||PA PB +.18.已知函数()()12,0fx x x a a =+-->(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图像与x 轴围成的三角形面积大于6,求a 的取值范围。

19.已知a 为实数,函数23()()()2f x x x a =++.(I )若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围;(II )若(1)0f '-=, (ⅰ) 求函数()f x 的单调区间; (ⅱ) 证明对任意的12,(1,0)x x ∈-,不等式125()()16f x f x -<恒成立20.设在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片,标号分别记为y x ,,设随机变量x y x -+-=2ξ. (1)写出y x ,的可能取值,并求随机变量ξ的最大值; (2)求事件“ξ取得最大值”的概率; (3)求ξ的分布列和数学期望与方差.21.某学校为响应省政府号召,每学期派老师到各个民工子弟学校支教,以下是该学校50名老师上学期在某一个民工子弟学校支教的次数统计结果:根据上表信息解答以下问题: (Ⅰ)从该学校任选两名老师,用η表示这两人支教次数之和,记“函数2()1f x x x η=--在区间(4,5)上有且只有一个零点”为事件A ,求事件A 发生的概率1P ;(Ⅱ)从该学校任选两名老师,用ξ表示这两人支教次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.22.(Ⅰ)讨论函数()22xx f xe x -=+的单调性,并证明当x>0时()x x-2e +x+2>0;(Ⅱ)证明:当()a ∈0,1时,函数()()x 2e -ax-ag x =x>0x有最小值。

设()g x 的最小值为()h x ,求函数()h x 的值域。

答案1.C 2.B 3.B 4.A 5. C 6.A 7. D 8.D 9.B 10.C 11.A 12.A 13.24 14.32 15.)321()1()1(16941121n n n n ++++-=⋅-++-+-++ΛΛ 16.1280x y +-=17.将l 的参数方程代入圆C的直角坐标方程,得240t -+=由24420∆=-⨯=>,故可设12,t t是上述方程的两根,所以12124t t t t ⎧+=⎪⎨⋅=⎪⎩,又直线l过点,故结合t 的几何意义得||||PA PB +=1212||||t t t t +=+=18.(1)f(x)>1的解集是}223x x ⎧<<⎨⎩;(2)a 的取值范围是()2,+∞ 19.解:(Ⅰ) ∵3233()22f x x ax x a =+++,∴23()322f x x ax '=++.∵函数()f x 的图象上有与x 轴平行的切线,∴()0f x '=有实数解. ∴2344302a D =-⨯⨯≥, ∴292a ≥. 因此,所求实数a的取值范围是(,)-∞+∞U . (Ⅱ) (ⅰ)∵(1)0f '-=,∴33202a -+=,即94a =.∴231()323()(1)22f x x ax x x '=++=++.由()0f x '>,得1x <-或12x >-; 由()0f x '<,得112x -<<-.因此,函数()f x 的单调增区间为(,1]-∞-,1[,)2-+∞;单调减区间为1[1,]2--.(ⅱ)由(ⅰ)的结论可知,()f x 在1[1,]2--上的最大值为25(1)8f -=,最小值为149()216f -=; ()f x 在1[,0]2-上的的最大值为27(0)8f =,最小值为149()216f -=. ∴()f x 在[1,0]-上的的最大值为27(0)8f =,最小值为149()216f -=. 因此,任意的12,(1,0)x x ∈-,恒有1227495()()81616f x f x -<-=. 20.解:(1)y x ,的可能取值都为1,2,3.2,12≤-≤-x y x ,∴3≤ξ,∴当3,1==y x 或1,3==y x 时,ξ取最大值3. ………………3分 (2)有放回地先后抽得两张卡片的所有情况的种数933=⨯=n ,∴92)3(==ξP (3)ξ的所有取值为0,1,2,3,当0=ξ时,只有2,2==y x 这1种情况,∴91)0(==ξP ; 当1=ξ时,只有1,1==y x 或1,2==y x 或3,2==y x 或3,3==y x , 共4种情况,∴94)1(==ξP ; 当2=ξ时,只有2,32,1====y x y x 或这2种情况,∴92)2(==ξP ; 当3=ξ时,2)3(==ξP ; ∴ 随机变量ξ的分布列为: ∴ 数学期望993929190=⨯+⨯+⨯+⨯=ξE方差98)9143(92)9142(94)9141(92)9140(912222=-+-+-+-=ξD ………9分21.解:(1) 函数()21f x x x η=--过(0,1)-点,在区间45)(,上有且只有一个零点, 则必有(4)<0(5)>0f f ⎧⎨⎩即:16-4-1<025-5-1>0ηη⎧⎨⎩,解得:1524<<45η,所以,4η=…………3分当4η=时,211201015125068245C C C P C +==,…………6分 (2) 从该学校任选两名老师,用ξ表示这两人支教次数之差的绝对值, 则ξ的可能取值分别是0,1,2,3, …………7分 于是()22225102015250207C C C C P C ξ+++===,1111115101020152025022(1)49C C C C C C P C ξ++=== 1111520101525010(2)49C C C C P C ξ+=== ,115152503(3)49C C P C ξ=== 从而ξ的分布列:222103510123749494949E ξ=⨯+⨯+⨯+⨯=。

相关文档
最新文档