车灯线光源的优化设计模型

合集下载

数学建模竞赛讲座车灯线光源的优化模型PPT课件

数学建模竞赛讲座车灯线光源的优化模型PPT课件
量被照物上的光强度。如果我们记线光源的长 度为 l,总功率为 W,线光源在测试屏上 B 点 与 C 点的光照度(反射被照物的光强度)分别为 EB(l) 和 EC(l),则设计规范可表示为:EB(l) 2K,EC(l) K。而问题(1)是求出最优的线光源 长度,使得满足设计规范并且功率最小,于是 求解问题(1)就归结为求解如下的优化问题:
(2) 通常,当光源与反射面之间的距离比光 源尺寸大得多时(10倍以上),才能把该光源当
成点光源来处理。而一般的汽车前照灯中,灯 丝 的 长 度 是 3~7mm , 而 反 射 面 的 焦 距 为 15~40mm,因而不能作为点光源来处理。而根 据(1)的假设,我们将灯丝看成是光强均匀分布 的线状光源。如果将灯丝分成若干微小段 dl, 由于 dl 的长度相对于反射面的焦距来说足够小, 所以我们将其作为一个点光源来处理。
在测试屏上B点与C点的总的光照度
光源的光强度 光源产生的光通量
3. 问题(1):计算线光源长度,使 线光源的功率最小
3.1 问题的分析与模型的建立
综合考察本问题,可以看出这是一个几何 光学与非线性优化相结合的问题。
根据题意,车灯的形状为一旋转抛物面, 车灯的对称轴水平地指向正前方,其开口半径 36 毫米,深度 21.6 毫米;经过车灯的焦点 F, 在与对称轴相垂直的水平方向,对称地放置一 定长度的均匀分布的线光源;在焦点 F 正前方 25 米处的 A 点放置一测试屏,屏与 FA 垂直, 用以测试车灯的反射光。简单的示意图参见图 3.1。
(3.2)
求 解 上 述 模 型 (3.1) 或 (3.2) , 关 键 之 处 是 EB(l) 和 EC(l) (即 B 点与 C 点的光照度)的计算。 在假设(4)中我们指出:根据光的叠加性,n 个 点光源共同对测试屏上某一点的作用效果,就 等于各个光源对该点单独作用效果的叠加;如 果把线光源上各点对测试屏的作用效果作和, 即可得线光源在测试屏上的作用效果。因而, 不妨考虑按照如下路线解决 B 点与 C 点的光照 度计算问题(参见图 3.2):

2002年-车灯线光源的优化设计2

2002年-车灯线光源的优化设计2

摘要本文是关于汽车照明灯线光源长度的优化设计问题,即在给定反射镜面为旋转抛物面和给定设计规范的条件下,确定线光源的长度,使其功率最小(见图1)。

本文从光的反射定律和能量分布规律两种视角解决该问题,建立了两个数学模型。

模型一:利用能量、功率与光照强度之间的关系,利用能量积分法建立了反射屏上任意一点光照强度与线光源上光源点之间、光源点与反射镜面上的反射点之间关系的数学模型,计算出了满足光照强度要求和功率最小要求的线光源的最大长度。

并利用计算机程序对以上结果进行了校核。

模型二:根据光线反射定律,建立了测试屏上反射光线的位置、入射光线的光源点及其反射点之间对应关系的数学模型。

在此模型的基础上讨论了反射镜面不同区域的反射规律,计算出了在满足光照强度要求下的线光源长度。

由于模型二中没有考虑功率最小的要求(因为功率与线光源长度成反比,当线光源长度最短时,其功率最大),同时C点的光照强度在模型二中很小,所以满足题目要求的最终线光源的长度为mm。

.4l18max根据所建立的两个数学模型,对满足设计要求的线光源长度在测试屏上所形成的反射光亮区进行了模拟,在有标尺的坐标系中得到了能够反映反射光变化规律的亮区模拟图(见图2)。

最后,对设计规范的合理性进行了充分和必要的论证。

图1 投影示意图(单位:毫米)图2 测试屏上所形成的反射光亮区(单位:毫米)(注:黑度反映光照强度的大小,黑度越深,光照越强)1 问题的提出:在汽车的照明装置中,前照灯是核心装置,它的反射镜是主要的光学器件。

经过真空镀铝的反射镜镜面通常制成旋转抛物面形,将灯丝发出的散射光聚合,以集中光束的形状射向汽车前进方向的路面。

灯泡灯丝是照明效果的关键,通常制成螺旋形。

灯丝的长度直接决定着光源功率的大小和照明的效果。

因此,在反射镜尺寸和设计规范一定(见A 题)的情况下,选择一定长度的灯丝就显得尤为重要。

本论文试图从最优化的角度,建立起满足设计要求的线光源光强的数学模型,借助于计算机的高速运算与逻辑判断能力,求出使功率最小的线光源的长度,并画出测试屏上反射光的亮区。

车灯线光源的优化设计模型

车灯线光源的优化设计模型

车灯线光源的优化设计模型摘 要: 本文利用几何光学的原理,从线光源上某一点光源出发作反射;根据能量守恒定律及光传播的球面性,给出直射光和反射光能量之间的关系.从而证明反射光远远强于直射光,故而,在计算测试屏某点的光强度时,可将直射光忽略,只考虑反射光. 根据点光源的反射强度,可计算出点光源到达B 和C 点的光强度,设线光源的长度为2a,则从-a 到a 对点光源积分,可算出B 点和C 点的光强度为:aaB y I I --⋅⋅=250001300arctan25000459.000πa ac y I I --⋅⋅=250002600arctan25000459.000π根据以知B 点的光强度为2单位,C 点的光强度为1单位,利用以上方程可求得:a=2.34mm. 通过点光源在抛物面上任一点处反射光线的计算机模拟,给出了线光源反射线在测试屏上形成的亮区。

关 键 词:光强度,点光源,线源的功率, 亮区光一. 问题的提出:汽车头部的车灯形状为一旋转抛物面,且已经告知开口半径和深度,所以可以得出抛物面的焦距,经过适当建立直角坐标系,可以得到抛物面的方程. 在焦点前放置的测试屏用以测试反射光的光强度,使其两点上的光强度各不小于某一额定值. 在设计规范的条件下,计算线光源长度,使线光源的功率最小. 且在此基础上,精确画出测试屏上反射光的亮区.最后提出对规范合理性的意见. 二. 基本假设:1. 根据题目的要求,我们只考虑反射光的情形。

2. 在车灯内部,只考虑光线的一次反射。

3. 假设光线在抛物面内的每一点上都是镜面反射。

4. 假设线光源上每一个点的光强度都是一样的。

5. 反射光在B 点的光强度不小于一个单位,在C 点的光强度不小于两个单位. 三. 问题的分析和解决 (一).求线光源的长度:1. 旋转抛物面的方程为fz y x 422=+,其中 f 为其焦距,据已知条件,可知道其焦距 f=15mm 。

2. 以F 为球心.以R 为半径,做一球面.如图1.图1 则mm h r R 6.366.6362222=+=+=3.求直射的面积:根据球冠面积公式有()22Hr S +π=直,其中r=36mm,mm h R H 30=-=,则22196mm S π=直4. 求反射的面积:2224.316221964mm R S S S πππ=--==总面积直反5. 不妨假设线光源上的任一点的点光源的光强度为0I ,则其反射光的强度259.04I S R I I ==反反⋅π 6. 下面就线光源上任意一点M 的反射情况讨论,,如图2所示.图2假设12r r >,以2r 为半径作一球面,首先考虑B 点。

车灯线光源的优化设计

车灯线光源的优化设计

车灯线光源的优化设计1问题重述安装在汽车头部的车灯,形状为一旋转抛物面,车灯的对称轴水平地指向正前方,经过车灯的焦点,在与对称轴垂直的水平方向,对称地放置一定长度的均匀分布的线光源。

要求在某一设计规范标准下确定线光源的长度。

该设计规范在简化后可描述如下:在焦点 F 正前方 25 米处的A 点放置一测试屏,屏与FA 垂直,用以测试车灯的反射光。

在屏上过 A 点引出一条与地面相平行的直线,在该直线 A 点的同侧取点B 和点 C,使 AC=2AB=2.6 米。

要求 C 点的光强度不小于某一额定值(可取为 1 个单位),B 点的光强度不小于该额定值的两倍。

请解决下列问题:1)求在该设计规范标准下计算线光源长度,使线光源的功率最小;2)得到的线光源长度,在有标尺的坐标系中画出测试屏上反射光的亮区;3)讨论该设计规范的合理性。

2模型假设1)将线光源看作是只有长度而没有“直径”的发光体,从而可将其理解成一组点光源的集合。

2)均匀分布的线光源的发光强度在每一点恒定,线光源的功率与其长度成正比。

3)光线射到测试屏上的途径只考虑直射和一次反射两种。

4)光在传播过程中与介质的相互作用未改变光的物理特性。

3问题分析这是一个关于车灯线光源的优化设计问题。

根据题意,线光源通过直射和反射(一次反射)至测试屏,由于光的物理特性和车灯结构使得屏上的光照强度因位置的不同而不同。

根据实际需要,车灯前方较亮的区域只需集中于某一适当范围内。

问题要求车灯设计既能满足实际需要,又不会浪费能源(功率最小)。

我们采用光照强度的概念,根据物理学知识可知:被照射物体的亮度依赖于它与光源之间的距离和光线的投射角度。

光线强度 I 只与光源的亮度 P 和光源与被照射点的距离r 有关,即I P 2 ,但车灯的r照明效果是通过照在物体上的实际效果来衡量,这个代表实际效果的量即光照强度 C,光照强度 C 还与光线的投射角度有关,如图所示,P 为光源的光亮度, r 为光源到被照射点x 的距离,θ为光线的投射角度 ,则光照强度C( x)P sin r 2.图 1. 光照强度求解示意4模型的建立与求解4.1 建模初探:光亮度可以通过照射到的光线的疏密来简单表示。

车灯线光源的优化设计数学建模

车灯线光源的优化设计数学建模

高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车灯线光源的优化设计摘要车灯作为汽车的一个重要部件,不仅影响车子造型的美观,而且是夜间行车时必要的照明工具。

§3车灯优化数学模型

§3车灯优化数学模型

§3 车灯线光源的优化设计数学建模问题:安装在汽车头部的车灯的形状为一旋转抛物面,车灯的对称轴水平地指向前方,其开口半径为36毫米,深度为21.6 毫米。

经过车灯的焦点,在与对称轴相垂直的水平方向,对称地放置一定长度的均匀分布的线光源。

要求在某一设计规范标准下,确定光源的长度。

该设计规范在简化后描述为:在焦点F 的正前方25米处的A 点放置一测试屏,屏与FA 垂直,用于测试车灯的反射光。

在屏上A 点处引出一条与地面平行的直线,在该直线A 点的同侧取B 点和C 点,使得AC=2AB=2.6米。

要求C 点的光强度不小于某一额定值(可取为一个单位),B 点的光强度不小于该额定值的两倍(只需考虑一次反射)。

请解决如下问题:(1)在满足该设计规范的前提下,计算线光源的长度,使得线光源的功率最小 (2)对得到的线光源,在有标尺的坐标系中,划出测试屏上反射光的亮区。

(3)讨论该设计规范的合理性提示:在点P 处的单位能量的点光源经过Q 点反射到C 点的能量密2__________)(4cos QC PQ L +=πβ, 其中角为反射向量与垂直于测试屏所在平面的直线的夹角。

模型假设和简化:(1)假设线光源是透明的,即对反射过来的光没有阻挡;(2)假设只考虑一次反射。

(3)不考虑光源本身对于测试板的直接照射。

(4)设一个单位功率的点光源对B 、C 两点的照射强度为, 总照射强度为 )()l h c 和(l h B )()(l wh l wh c B 和 模型的建立:由题意分析 ,所建立的模型应当为优化模型。

故需要建立目标变量的表达式。

目标为光线的照射强度,它应当由线光源上每个点光源发出的光线经反射后,到达B 、C 两点的强度的迭加。

因此首先要计算线光源上任意一单位能量源光源发出的光线到达B 、C 两点的照射强度。

为了利用有关数值,统一表达各种数量关系,需要建立空间直角坐标系。

如图所示。

一 有关数据的计算:(1)有关数据:在建立的坐标系中,车灯反射面的方程为:6022y x z +=,焦点的坐标为(0,0,15); 点C 的坐标为(0,2600,25015)(2) 任取线光源上的一点p(0,w,15),首先应求出反射点的坐标。

车灯线光源的优化设计模型

车灯线光源的优化设计模型
转 化 方法 如下 :
把测试屏上的 B ( c 或 )点与抛 物面上 的 各个离散点直接相连 。得 到直线 方程 ,与线光 源线段去交 ,( 方法 同上)
若有交点,则认为线光源上有一份光线对
B( c 或 )点的光强有贡献。 若无 , 检测抛物面上的下一点 ,重复上述 步骤.直到遍历完抛物线上所有点。( 记录个数
率P 恒定 ,电阻 R= l p S也恒 定。在此不考 虑 /
热效 应 。
( 假设 4 由 P= R ) U / ,推出 P= ( l U/ p , / S )即 :P 1=U S p由上 1 ,3 / ,2 ,可 设 U S p 2/ 为常量 C ,即:P I=C 。故要 使功 率尽 可能 的 小 ,线光源得尽可能 的大 ,且 要满足在测试屏 上 B和 C点的光强 比要求 。
由计算原理 中的公式 ( ) 1 ,可求 出反射光 的测 试屏 相 交 ,可 得 交 点 坐 标 。 同 时 ,用 双 重 线 ,该反射光线方程与线光源所在的直线去交。 取值范 围就是 线光源 的长度.若有 交 循环 ,遍历线光源上和抛 物面上的所有点 ,记 并且 ,Y
该抛物面上点的法向量。由反射光线与 2 米处 5 或 )处 的光强有贡献 。 录测试屏上通过 B ,c点 ( 在误差 范围 内,也 点 ,则认为光线对 B ( c 遍历抛物面上的所 有离散点 ,记 录下这些对 B 可以是 B ,c附近的点)处光线的数量 N 。 或 记 第二步计算直射光强度 为使直射光线 与反 ( c)有贡献 的光线 的个 数。 ( 录个数 N 射光线含相同的光强量 ( 也就是跟反射 的光线 统一单位 ,只有这样才能考虑叠加效果 ) ,只要 把直射的光强也按反射光线 同样的离散 度转化 为光线 ,这样就能统一单位 了。而反射光线 是 根据抛物面 的离散程度来转化 的,所 以直 射光 线也需要经过抛物面来转化 。转化方法如下 : 把测试屏上的 B ( c 或 )点与抛物 面上的 各个离散点相连 ,得直线方程 ,与线 光源线段 去交 ,若有交点 ,则认 为线光源上有一 份光线 对 B( c 或 )点的光强有 贡献。若无 ,检测抛 物面上的下一点 ,重复上述步骤.直到遍历完 抛物线上所有点 ( 记录个数 M ( 直射 ) 。 ) ( 反射 ) ) ( )考虑直射效果 2 只要把直射的光强也按反 射光线同样 的离 散度转化 为光线 ,这样就能统一单 位了。而反 射光线是根据抛物面的离散程度 来转化 的,所 以直射光线也需要经过抛物面来转化。

车灯设计数学建模实例

车灯设计数学建模实例

然后代入
x 0 z 0
得到交点坐标为 (0,y0+c,0)
,推得该线光源的范围为[-0.03, 0.03]m。
将开口半径及深度等数据代入(1)式,得出焦 距 c/2=15mm=0.015(m) 然后代入,y=0.015,推得该线光源的范围为[-0.03, 0.03]m。
建立模型
(1)计算线光源长度 首先说明一点:以下我们将对B点进行分析,对于C点, 所用方法及运算过程完全类似。
而此时线光源所消耗的功率 p=kL
④ 求反射光的强度 为了便于分析,我们将 图一抽象出来,并旋转一 定角度后得右图。 D—线光源上任一点 N—对应于D点的反射点 G—法线与中轴线的交点

对于线光源上的任意一点D(设坐标为 (t,0.015,0)),假设从它发出的光 线经旋转抛物面上的点N反射后,可以射 到B点上。下面利用向量来推导旋转抛物 面上满足此条件的所有反射点N的坐标。

可以看出此量与距离有关,也就是说,不同的 点光源在B点所对应的照度值不同。但注意到 所有的差别太小,因此在实际计算中,我们对 作近似处理,令它为一个常数:
r 252 1.32 =25.034(米)
于是得出此线光源的直射光在B点辐射出的总照度为
kL kL E直 cos cos 2 S 4 r
2)点G、B、N、D四点共面,所以:
BN DN GN 0
x 1.3 x x t y 25.015 z c y 0.015
z 0 z
(4)
3)点N在抛物面上,所以应该满足抛物线方程:
x z 2cy
2 2
(5)
联立方程(3)、(4)、(5),即可求解出与线光 源上一点D对应的所有的反射点N。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这样要求线光源发出的光线经旋转抛物面某一点反射到B ,C点的问题就转化为求线光源发出的光线经水平抛物线的某一点反射后照到B,C点的问题.那么空间中立体的问题就转化为平面图上的问题.
5.2非线性规划数学模型
下面建立线光源一点m经抛物面上点q反射到达B点时,t、y的关系:
在抛物线y =60x(如图3)上一点q 在线光源上取点m(15,t)
线光源 在范围内发生的光源经抛物线 =60x上y 反射后到达B点.
当y=36时,t=8.045235675;当y=30时,t=30
线光源 在范围内发生的光源经抛物线 =60x上y 反射后到达B点.
当y=-36时,t=15.31443969;当y=-33.62时,t=29.8713133
线光源在t (15.31443969,29.87813133)范围内发生的光源经抛物线 =60x上y 反射后到达B点.
图1图2
两点的直线的方向矢量为 = =
通过点 的法矢量为
则 ,使 ,且| |=| |

于是
则反射光线 的方向矢量为: ,即:
-15
则 的参数方程为:
该方程经过B点,即:
-------------------- (3)
解得: .
当 时有z=60 ,也就是说线光源的光线经旋转抛物面反射到B点时,任何情况下都有z=0,即n点只在抛物面(y )的一个抛物线(y =60x)上,同理可证得线光源的光线只有经y =60x的抛物线反射后才会经过C点,至此,命题得证.
a-----AB的长度;a=1.3m;
R-----抛物面开口半径,R=36mm;
d-----抛物面深度,d=21.6mm;
-----单位长度线光源在单位平面角内发出的光流常数;
-----线光源在B点的光照度(相当题目中的光强度概念);
-----线光源在C点的光照度;
P-----线光源的光功率;
K-----线光源的光学特性;
易得:
t 0
设mq两点的距离为 ,则有
=
矢量 =
则 的单位向量 = =
|qF| ,|mF| .
由余弦定理,得
t

cos ……… (4)
由反射定律知∠DqB= ,
且 …………………………………………………………….. (5)
由(4)(5)两式连解得:
cos =

于是,可化简为
………………..(6)
由(6)解得t关于y的函数:
关键词:光功率;线光源;光照度
1问题的提出
汽车的车灯为一旋转抛物面,现以抛物面的焦点F为中心对称地放置一与抛物面的对称轴垂直的水平线光源,线光源发出的光线通过抛物面反射到距焦点正前方25m远的一个屏幕上.通过屏幕与抛物面对称轴的交点A点作一与水平面平行的直线,并在A的同侧取点B.C,要求AC=2AB,且C点的光强度不小于某一额定值,B点的光强度不小于该额定值的两倍.在满足设计规范的情况下请设计线光源长度,使线光源的功率最小,得到线光源长度后,在有坐标尺的坐标系中画出屏幕上的亮区.并讨论该设计规范的合理性.
t= =6000 (-36 ) ………... (7)
同理对C得到t关于y的函数:
t= (-36 ) …… (8)
对(7)进行函数分析,我们可由 范围内,分别作出由点m发出的光线经抛物线上一点q反射到达B点的光路图(如图4),而这个划分依据是由y的值来划分,即以下四个区域:
A区域: B区域: C区域: D区域:
车灯线光源的优化设计模型
柯文锋、欧杰泉、赖金花
[摘要]:本文应用光学知识与空间解析几何知识,对提出的车灯线光源的优化设计问题进行了分析,把空间立体问题转变成平面问题,找到了照到B点和C点抛物面光区区域,对抛物面上按照照到B点和C点的可能性划分成了4个区域,并给出了B、C点的光照度函数,建立了线光源功率问题的非线性规划模型和离散分析模型。应用数学软件Maple编程进行近似求解得出了线光源长度,分别为3.316mm和3.5mm.并对此线光源长度在有标度的测试屏上画出了近似于椭圆的亮区区域。
当y=-30时,t=-30;当y= 0时,t=0.7795322806
2模型的假设
抛物面为白体,即光射向抛物面时,它不会吸收光,全部反射到屏幕上.
2光在空气中的传播没有损失.
3射到屏幕上的光只考虑经过抛物面一次反射而得.
3符号的约定
dt-----线光源上的点微元;
d -----抛物面的线微元;
ds-----屏幕上的面微元;
h------线光源长度的一半;
b-----AC的长度, b=2a, b=2.6m;
-------------------------------------------- (2)
其中 为参数.
下面我们得出下面的一个重要结论:
5.1 命题线光源上任一点发出的光流经过与水平面成夹角 的旋转抛物面的切面(即一个抛物线)后不会反射到B,C点.
证明如图2,设m(15,t,0)是线光源上任意一点, q(60 是旋转抛物面的任意一点:
各个区域的光路图如图4
A区域
B区域
图4
C区域
D区域
而对于C点,光路图是一样,故不再作图,但是B点与C点各个区域的(y-t)函数的曲线合成为如图5:
(a) B点的(y-t)函数的曲线图(b) C点的(y-t)函数的曲线图
图5
对式(5)进行分析,并结合图5(a)中B点的(y-t)函数的曲线图,得出
当y=0时, t= -0.7795322806;当y=27Байду номын сангаас2时,t= -29.59927288.
4问题的分析
本题是一个非线性规划问题,现要确定线光源长度,使其功率最小.由于单位长度线光源在单位平面角内发出的光流常数(由立体角的类似意义)与功率正比,所以此问题的目标函数由光流数决定,而这又与线光源的长度成正比,所以最终要解决的问题就是对线光源长度的优化.
5模型的建立与求解
以旋转抛物面(如图1)的顶点为原点,建立三维直角坐标系o-xyz,设旋转抛物面的方程为
y +z =2px(p>0)---------------------------------------------------------------- (1)
焦点的坐标为F( ,0,0).
把y=36,x=21.6,z=0代入上式解得:p=30,则F的坐标为(15,0,0).
即旋转抛物面的方程为y +z =60x,把旋转抛物面的方程式写成参数方程,则有:
相关文档
最新文档