最优化理论与方法 试题2006

合集下载

(精选)最优化方法复习题

(精选)最优化方法复习题

《最优化方法》复习题第一章 概述(包括凸规划)一、 判断与填空题1)].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2{}{}.:)(min :)(max n n R D x x f R D x x f ⊆∈-=⊆∈ ⨯3 设.:R R D f n →⊆ 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ⨯4 设.:R R D f n →⊆ 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合n R D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯9 函数R R D f n →⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →⊆:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T ⨯11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。

√12 设{}kx 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{} ,2,1,0∈∀k ,恒有 )()(1k k x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。

14 凸规划的全体极小点组成的集合是凸集。

《最优化方法》复习题.pdf

《最优化方法》复习题.pdf

《最优化方法》复习题
一、简述题
1、怎样判断一个函数是否为凸函数.
(例如:判断函数212
2
212151022)(x x x x x x x f-=是否为凸函数)2、写出几种迭代的收敛条件.
3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M法及二阶段法).
见书本61页(利用单纯形表求解);
69页例题(利用大M法求解、二阶段法求解);4、简述牛顿法和拟牛顿法的
优缺点.简述共轭梯度法的基本思想.
写出Goldstein、Wolfe非精确一维线性搜索的公式。

5、叙述常用优化算法的迭代公式.
(1)0.618法的迭代公式:(1)(),
().k k k k k
k k k a b a a b aλτμτ=--??=-?
(2)Fibonacci法的迭代公式:111(),(1,2,,1)()
n k k
k k k n k n k k k k k n k F a b a F k n F a b a Fλμ-----? =-??
=-?
?=-??
L.(3)Newton一维搜索法的迭代公式:1
1k k k。

最优化理论试题及答案

最优化理论试题及答案

最优化理论试题及答案一、单项选择题(每题2分,共20分)1. 最优化问题中,目标函数的极值点可能是()。

A. 最小值点B. 最大值点C. 鞍点D. 所有选项答案:D2. 线性规划问题中,目标函数和约束条件都是线性的,以下说法错误的是()。

A. 线性规划问题有最优解B. 线性规划问题的最优解可能在可行域的边界上C. 线性规划问题的最优解一定在可行域的边界上D. 线性规划问题的最优解可能在可行域的内部答案:D3. 以下哪个算法不是用于解决非线性规划问题的()。

A. 梯度下降法B. 牛顿法C. 单纯形法D. 共轭梯度法答案:C4. 在约束优化问题中,拉格朗日乘数法用于()。

A. 求解无约束问题B. 求解有约束问题C. 求解线性规划问题D. 求解整数规划问题答案:B5. 以下哪个条件不是KKT条件的一部分()。

A. 梯度为零B. 可行方向C. 对偶可行性D. 互补松弛性答案:B二、填空题(每题2分,共10分)1. 一个最优化问题的可行域是指满足所有_________的解的集合。

答案:约束条件2. 目标函数在点x*处取得极小值,当且仅当在该点处的_________为零。

答案:梯度3. 线性规划问题的标准形式通常包括_________和_________两部分。

答案:目标函数;约束条件4. 拉格朗日乘数法中,拉格朗日函数是原目标函数和_________的和。

答案:约束条件的线性组合5. 非线性规划问题中,牛顿法的迭代公式是x_{k+1} = x_{k} -H(x_{k})^{-1}_________。

答案:∇f(x_{k})三、简答题(每题5分,共20分)1. 简述什么是凸优化问题,并给出一个例子。

答案:凸优化问题是一类特殊的最优化问题,其中目标函数是凸函数,可行域是凸集。

例如,二次规划问题就是凸优化问题的一个例子。

2. 解释什么是局部最优解和全局最优解。

答案:局部最优解是指在目标函数的邻域内比所有其他点都更优的解,但不一定在整个可行域内最优。

最优化原理和方法(试题+答案)

最优化原理和方法(试题+答案)

《最优化原理与算法》试卷一、填空题(每空5分,共40分)1.若()()⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=212121312112)(x x x x x x x f ,则=∇)(x f ,=∇)(2x f .2.设f 连续可微且0)(≠∇x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。

3.向量T )3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 .4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 .5.举出一个具有二次终止性的无约束二次规划算法: .6.以下约束优化问题:)(01)(..)(min 212121≥-==+-==x x x g x x x h t s x x f的K-K-T 条件为:. 7.以下约束优化问题:1..)(min 212221=++=x x t s x x x f的外点罚函数为(取罚参数为μ) .二、证明题(7分+8分)1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下面的约束问题:},,1{,0)(},1{,0)(..)(min 1112m m E j x h m I i x g t s x x f j i nk k+=∈==∈≥=∑=是凸规划问题。

2.设R R f →2:连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题:},1{,0}2,1{,0..)(min 11m m E i b x a m I i b x a t s x f i T i i Ti +=∈=-=∈≥-设d 是问题1||||,0,0..)(min ≤∈=∈≥∇d E i d a Ii d a t s d x f T i Ti T的解,求证:d 是f 在x 处的一个可行方向。

三、计算题(每小题12分)1.取初始点T x )1,1()0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题(迭代2步):22212)(min x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题:21222121)(min x x x x x f -+=3.用有效集法求解下面的二次规划问题:.0,001..42)(min 2121212221≥≥≥+----+=x x x x t s x x x x x f4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0()0(=x,计算到)2(x 即可):.0,033..221)(min 21211222121≥≥≤+-+-=x x x x t s x x x x x x f参考答案一、填空题1. ⎪⎪⎭⎫ ⎝⎛++++3421242121x x x x⎪⎪⎭⎫⎝⎛4224 2. 0)(<∇d x f T3. T )0,1,2(-,T )1,0,3(-(答案不唯一)。

研究生《最优化理论与方法》试题

研究生《最优化理论与方法》试题

理学院2010级研究生《最优化理论与方法》试题
1. (15分)设函数4:f R R →定义为
()
()()()()22441234231410510210f x x x x x x x x x =++-+-+- 证明:()*0
000T x =是f 的驻点(稳定点),并且*x 是f 在4R 上的严格全局
极小点。

2. (15分)叙述并证明满足wolfe 线搜索条件的下降算法的全局收敛性。

(提示:利用Zoutendijk 条件)
3. (20分)叙述修正的(Modified)Cholesky 分解算法。

用Cholesky 分解强迫
201
1211103231A -⎡⎤⎢⎥=+⎢
⎥⎢⎥⎣⎦正定,即令A A E =+正定,其中E 为修正矩阵。

4. (15分)设()f x =x b Ax x T T -,其中213,123A b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭
(1) 证明010d ⎛⎫= ⎪⎝⎭与112d -⎛⎫= ⎪⎝⎭
关于A 共轭 (2) ()00
0T x =,以0d 和1d 为搜索方向,用精确线搜索求f 的极小点 5. (15分)叙述并证明牛顿法及其二次收敛性
6. (20分)写出拟牛顿法的一般步骤,叙述几种常用的拟牛顿校正公式,包括(SR1,DFP ,BFGS ,Broyden 族,Huang 族)。

《最优化方法》复习题.docx

《最优化方法》复习题.docx

《最优化方法》复习题一、 简述题1、怎样判断一个函数是否为凸函数.(例如:判断函数f(x) =昇+ 2兀內+ 2近一 10州+ 5兀2是否为凸函数)2、 写出几种迭代的收敛条件.3、 熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法).见书本61页(利用单纯形表求解);69页例题(利用大M 法求解、二阶段法求解); 4、 简述牛顿法和拟牛顿法的优缺点.简述共辘梯度法的基木思想.写岀Goldstein> Wolfe 非精确一维线性搜索的公式。

5、叙述常用优化算法的迭代公式.心=务+吕—%),化-知1仏二务+召一色)(3) Newton —维搜索法的迭代公式:x k+i = x k -G~'g k ・ (4) 推导最速下降法用于问题min/(x) = —++ c 的迭代公式:耳+1 二无一-VfgS k G k gx k(5) Newton 法的迭代公式:x k+] = x k -[V 2/(^)]_l V/*(x A )・ (6) 共轨方向法用于问题min/(x)=丄x rQx+b 1x + c 的迭代公式:2忑+1 =J二、计算题双折线法练习题 课本135页 例3.9.1FR 共辘梯度法例题:课本150页 例4.3.5(1) 0.618法的迭代公式:A- =ak +(1-厂)(勺一务),(2) Fibonacci 法的迭代公式: 伙= 1,2,…,一1)二次规划有效集:课本213页例6.3.2,所有留过的课后习题.三、练习题:1、 设A G R ,iXn是对称矩阵,bwR”,cwR,求/(%) =丄*心+戻兀+ c 在任意点x 处 的梯度和Hesse 矩阵.解 V/*(x) = Ar + /?, V 2/(x) = A ・2、 设0(/) = /(兀 + 力),其屮/:/?" T R 二阶可导,XG R\de R\te R ,试求0"(/)・解 0(/) = W(x + /d) 丁4,矿⑴=dF f(x~Hd)d .3、 证明:凸规划min f(x)的任意局部最优解必是全局最优解.xeS证明 用反证法.设住S 为凸规划问题min /(x)的局部最优解,即存在丘的某xeS个5邻域N s (x),使f(x)<f(x)yxeN 6(x)C\S ・若元不是全局最优解,则存在花S,使/(i) < /(x)・由于/(兀)为S 上的凸函数,因此VA G (0,1),有/(Ax + (1-2)x) < 2/(x) + (1-2)/(x) < f(x)・当2充分接近1时,可使2元+(1 — 2)农 皿(元)「IS,于是/(x)</(2x + (l-/i)x), 矛盾.从而元是全局最优解.min f(x) = 2x t -x 2 +x 3; s.t. 3兀]+ x 2 + x 3 < 60,x l - 2X 2 + 2X 3 <10,%! + x 2 - x 3 < 20, (1)用单纯形法求解该线性规划问题;(2)写出线性规划的对偶问题;解 (1)引进变量兀,兀5,兀6,将给定的线性规划问题化为标准形式:min /(%) = 2x t -x 2 +x 3; s.t. 3x ( + 兀 + 耳 + % = 60,%j - 2X 2 + 2X 3 + 冯=10,所给问题的最优解为x = (0,20,0)r ,最优值为/ = -20・4、已知线性规划:(2)所给问题的对偶问题为:max g(y) = -60^-10^ - 20%;皿_3”_旳_儿52,< _必+2旳_儿S_l,一开_2旳 + %<1,儿力*3»°・5、用0.618法求解min 0(f) = (f-3尸,要求缩短后的区间长度不超过0.2,初始区间取[0,10]・解第一次迭代:取y [0,10],£ = 0.2.确定最初试探点人,“分别为入=^+0.382(^-^,) = 3.82, M =坷+0.618(勺一马)=6・18 .求目标函数值:°(人)=(3.82— 3)2 =0.67, °(“)= (6.18 — 3)2 =10.11.比较目标函数值:0(人)< 0(")・比较 //| —6f| = 6.18 — 0 > 0.2 = E ・第二次迭代:a2 = a x = 0,Z?2= “| = 6.18,/ =人=3.82,。

最优化方法试卷及答案5套

最优化方法试卷及答案5套

《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中___________称为目标函数,___________称为约束函数,可行域D 可以表示为_____________________________,若______________________________,称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。

2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶方向导数为___________________,几何意义为____________________________________________________________。

3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。

24.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。

最优化方法试题及答案

最优化方法试题及答案

最优化方法试题及答案一、选择题1. 下列哪项不是最优化方法的特点?A. 目标性B. 可行性C. 多样性D. 随机性答案:D2. 在最优化问题中,约束条件的作用是什么?A. 限制解的可行性B. 增加问题的复杂性C. 提供额外的信息D. 以上都是答案:A3. 线性规划问题中,目标函数与约束条件之间的关系是什么?A. 无关B. 相等C. 线性D. 非线性答案:C二、简答题1. 简述最优化问题的基本构成要素。

答案:最优化问题的基本构成要素包括目标函数、决策变量、约束条件和解的可行性。

目标函数是衡量最优化问题解的质量的函数,决策变量是问题中需要确定的参数,约束条件是对决策变量的限制,解的可行性是指解必须满足所有约束条件。

2. 什么是局部最优解和全局最优解?请举例说明。

答案:局部最优解是指在问题的邻域内没有其他解比当前解更优的解,而全局最优解是指在整个解空间中最优的解。

例如,在山峰攀登问题中,局部最优解可能是到达了一个小山丘的顶部,而全局最优解是到达了最高峰的顶部。

三、计算题1. 假设一个农民有一块矩形土地,长为100米,宽为80米,他想在这块土地上建一个矩形的养鸡场,但只能沿着土地的长边布置。

如果养鸡场的一边必须靠在土地的长边上,另一边与土地的宽边平行,求养鸡场的最大面积。

答案:为了使养鸡场的面积最大,养鸡场的一边应该靠在土地的宽边上,另一边与土地的长边平行。

这样,养鸡场的长将是80米,宽将是100米,所以最大面积为80米 * 100米 = 8000平方米。

2. 一个工厂需要生产三种产品A、B和C,每种产品都需要使用机器X 和机器Y。

生产一个单位的产品A需要机器X工作2小时和机器Y工作1小时;产品B需要机器X工作3小时和机器Y工作2小时;产品C需要机器X工作1小时和机器Y工作3小时。

工厂每天有机器X总共300小时和机器Y总共200小时的使用时间。

如果工厂每天需要生产至少100单位的产品A,50单位的产品B和20单位的产品C,请问工厂应该如何安排生产以最大化产品的总产量?答案:设生产产品A的单位数为x,产品B的单位数为y,产品C的单位数为z。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006级硕士生《最优化理论与方法》试题 姓名:学号:成绩:
注意:请将答案全部写在答题纸上。

1、填空题(5分)
(1)最优化设计问题的三要素是、和。

(2)函数值的最大下降率的方向是函数在该点的方向。

(3)线性规划问题是指的最优化问题。

2、判断题(5分)
(1)黄金分割法(0.618法)的区间缩短率随问题性质的不同而改变。

(2)虽然利用拉格朗日乘子法可以将约束最优化问题变成无约束最优化问题进行求解,但是要付出增加变量维数的代价。

(3)在求解约束优化设计问题时,可以将约束函数通过一定方式变为目标函数的一部分,从而将问题化为无约束问题进行求解。

(4)性态约束是在优化设计中由结构的某种性能和设计要求推导出来的一种约束条件,因此它通常为显约束。

(5)从消元法的观点看,等式约束的实质是使原最优化问题的的实际维数降低。

3、简答题(10分)
(1)写出4种求解一维优化问题的主要方法。

(2)写出4种求解无约束多维最优化问题的主要方法。

(3)写出4种求解约束多维最优化问题的主要方法。

(4)写出2种用到目标函数的导数(梯度)的优化方法。

(5)写出1种用到目标函数的二次导数(Hessian 矩阵)的优化方法。

4、用单纯形法求解以下线性规划问题。

(10分)
()2134x x f −−=X min
s.t. 50321=++x x x
802421=++x x x
14023521=++x x x
0≥j x
j = 1, 2, 3, 4 ,5
5、利用Kuhn-Tucker 条件,判断点[2,0]T 是否为下面约束问题的极值点。

(10分)
()9612
221+−+=x x x F X min
s.t. ()()()022 2111≤+−+=x x x g X
()012≤−=x g X
()023≤−=x g X
6、用黄金分割法求解目标函数()2
1
2−−=x x f X 的极小值,用表格形式列出前四步计算过程,计算区间为[ 0, 1.2 ]。

(10分)
7、简要说明A *算法。

图1中起始节点S 和终止节点E 所给出的8数码问题,以离家将牌数Misplaced(n )为启发函数,用A *算法构造搜索图。

(7分)
⎥⎥⎥⎦

⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=56748321 45761382E S
图1 已知8数码问题的起始布局和目标布局
8、用二进制编码的遗传算法解决如下数值优化问题。

求下面优化问题的最优解:
min f (x )=x 1+x 2+x 3
s.t. 8≤x 1≤15
3≤x 2≤7 5≤x 3≤11
已知三个初始个体(x 1, x 2, x 3)为(8, 6, 7)
、(11, 4, 10)与(10, 5, 9), 并给出三个初始个体按二进制编码分别为(1 0 0 0,0 1 1 0,0 1 1 1), (1 0 1 1,0 1 0 0,1 0 1 0),(1 0 1 0 ,0 1 0 1,1 0 0 1),请通过进行交叉,变异,选择遗传操作来求解上述的优化问题,要进行两轮进化操作即可。

(10分)
9、给定双积分系统的状态方程如下:
u x x
⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=100010
设初始条件和边界条件为:x 1(0)=1,x 2(0)=1;终端约束条件:x 1(1)=0;x 2(1)=0
求使性能泛函:()∫=1
02
dt t u J 为极小值时的最优控制u *(t )及最有轨线
x *(t )。

(10分)
10、设有5个城市1, 2, 3, 4, 5相互的距离如下图2所示,试用函数空间迭代法,求各城市到城市5的最短路线和最短路程。

(7分)
图 2 城市路线图
11、简述模拟退火算能够全局优化爬出极小值的原理。

(5分) 12、试叙述霍氏网神经元满足李亚普诺夫函数(Lyapunov function)的条件。

(6分)
13、已知霍普费尔德网络的基本结构如图3所示。

(5分)
图3 霍氏网的基本结构
设双极硬限器为:
(1)
这里取T i =0。

在同步进行时,网络中所有神经元的更新同时进行,也就是
(2)
其中初始值⎥⎦⎤⎢⎣⎡−=2.07.00I ;⎥⎦

⎢⎣⎡+−=110S
;权系数为:⎥⎦

⎢⎣
⎡−=01
11
W 。

试用霍氏神经网进行更新迭代过程计算,要求迭代2步以上。

相关文档
最新文档