压缩机防喘振控制方案

合集下载

大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用大型透平式压缩机是工业领域中常见的压缩设备,常用于石油化工、电力、冶金等行业。

在运行过程中,压缩机容易出现喘振现象,严重影响压缩机的工作效率和安全性。

为了有效控制和预防喘振,需要在透平压缩机的设计和使用过程中考虑一系列的防喘振措施。

喘振是指压缩机由于外界扰动、流量脉动或系统参数波动等原因,引起压缩机内部压力和流量发生不稳定的现象。

喘振有时表现为高密度压缩机背压的跳动,有时表现为冷却水温度的跳动,甚至可能引发严重的机械振动和震动,造成设备的损坏。

为了防止喘振,需要从动态特性、结构设计、控制系统和操作维护等方面进行综合考虑。

对于透平式压缩机的动态特性分析非常重要。

通过对压缩机的传递函数进行建模,可以得到压缩机的振动特性和稳定性,进而确定设计参数和控制策略。

对压缩机的敏感性分析也非常重要,可以通过扰动试验和频率响应试验等方法获取敏感性矩阵和敏感频率范围,为防喘振控制提供有效的依据。

在结构设计方面,需要注意减小压缩机结构的共振频率,增加压缩机的刚度和阻尼,以提高压缩机的稳定性。

常见的措施包括增加支撑结构的刚度和阻尼、采用阻尼材料和阻尼器、改变结构形式等。

还可以通过优化叶轮、控制叶片等方式改善压缩机的稳定性。

在控制系统方面,可以采用主动控制和被动控制相结合的策略来防止喘振。

主动控制是指通过控制策略和控制器来主动消除或抑制喘振现象。

常见的控制策略包括PID控制、模糊控制、自适应控制等。

被动控制是指通过结构设计和改进来被动地减小压缩机结构的共振频率和提高稳定性。

在操作维护方面,需要加强对压缩机的监测和维护,及时发现和处理可能引起喘振的故障和问题。

定期对压缩机进行振动监测、润滑油分析、叶片磨损检测以及定期检查和维护,可以有效地延长压缩机的使用寿命并提高压缩机的可靠性和稳定性。

大型透平式压缩机防喘振控制需要综合考虑动态特性、结构设计、控制系统和操作维护等多个方面的因素。

通过合理的设计和有效的控制策略,可以有效地预防和控制喘振现象,保证压缩机的安全稳定运行。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。

喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。

1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。

2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。

3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。

4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。

1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。

2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。

3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。

4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。

5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。

6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。

7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。

通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。

压缩机防喘振的3种控制方法

压缩机防喘振的3种控制方法

压缩机防喘振的3种控制方法
压缩机喘振是一种有害的现象,因为喘振可能导致压缩机损坏或减少其寿命。

因此,为了防止压缩机喘振,可以采取以下三种控制方法:
1. 变频控制方法
变频控制方法是通过改变压缩机的转速来防止喘振。

具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。

这种方法的好处是不会产生噪音和振动,而且可以在喘振之前避免发生。

但是,这种方法的缺点是成本较高,需要购买变频设备。

2. 放气控制方法
放气控制方法是通过对不合格气体进行放气来防止喘振。

具体来说,当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。

这种方法的好处是成本较低,但缺点是会产生一定的噪音和振动,而且需要人工干预。

3. 自动控制方法
自动控制方法是通过对压缩机的转速和气体浓度进行监测和自动调整来防止喘振。

具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。

当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。

这种方法的好处是既不会产生噪音和振动,又可以在喘振之前避免发生,而且成本相对较低。

综上所述,变频控制方法、放气控制方法和自动控制方法是防止压缩机喘振的三种有效方法。

根据具体情况选择合适的方法可以有效地避免喘振的发生,保证压缩机的正常运转。

大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用大型透平式压缩机是工业生产中常见的设备,其运行过程中可能会出现喘振现象,严重时甚至会对设备造成损坏。

对大型透平式压缩机进行喘振控制至关重要。

本文将从大型透平式压缩机的喘振原因、喘振控制方法和应用实例等方面进行探讨。

一、大型透平式压缩机的喘振原因1. 受力不平衡:透平式压缩机在运行过程中,由于零部件的磨损或装配不良等原因,会导致叶片、轴承等部件受到不平衡的力,从而引起喘振。

2. 流体动态影响:透平式压缩机在高速旋转时,叶片与流体之间的相互作用会导致流体的波动和压力的变化,若流体动态影响不稳定则容易引起喘振。

3. 控制系统不良:大型透平式压缩机的控制系统,包括调速装置、润滑系统等,如果调控不当或存在故障,也会导致喘振的发生。

1. 结构设计优化:在透平式压缩机的设计阶段,可以通过优化结构设计来降低叶轮、轴承等部件的受力不平衡,减少喘振的发生概率。

2. 流体动态分析:通过数值模拟或实验手段,对透平式压缩机叶片与流体的相互作用进行研究,找出流体动态影响不稳定的原因,并采取相应措施来稳定流场,减少喘振的可能性。

3. 控制系统优化:对于透平式压缩机的调速装置、润滑系统等控制系统,进行优化设计和严格的质量控制,确保其正常运行,避免因控制系统问题引起的喘振。

4. 振动监测与诊断:对大型透平式压缩机进行振动监测,并建立相应的诊断系统,及时发现喘振现象并采取措施进行控制。

以某大型化工装置中采用的透平式压缩机为例,通过对其喘振问题的控制,取得了良好的应用效果。

该透平式压缩机采用了先进的结构设计和流体动态分析技术,通过优化叶轮结构和流道形状等手段,降低了受力不平衡和流体动态影响,极大地减少了喘振的发生概率。

控制系统方面,采用了先进的调速装置和智能化的润滑系统,保证了设备在高速旋转时的平稳运行,有效地避免了因控制系统不良引起的喘振。

该透平式压缩机还配备了振动监测与诊断系统,对设备的振动进行实时监测,一旦发现异常振动就可以及时采取措施进行处置,避免喘振对设备造成损害。

压缩机防喘振控制

压缩机防喘振控制

压缩机防喘振控制方法
压缩机防喘振的控制方法大致可分为固定极限 流量法和可变极限流量法,
1 . 固定极限流量法
固定极限流量是使压 缩机的入口流量保持控制线大于源自高转速下的临界流量,从而避免进
入喘振区运行,但在
低转速下效率太低,
能量浪费太大,
2 . 可变极限流量法
可变极限流量法是为 了减少压缩机的能量 损耗,在压缩机负荷 经常波动的场合采用,
4. 喘振的原因
当压缩机入口气体流量小于压缩机的最小流量 时,会导致压缩机排气管压力比机组内部压力 高,这时气体会发生瞬间倒流,压缩气体倒流又 使得排出侧气体压力降低,机组内部压力升高, 使气体流量恢复,直到出口压力升高,又重复上 述过程,这就是压缩机的喘振,
压缩机性能曲线的最高点就是喘振点,
离心压缩机特性
2. 喘振 当压缩机的负荷降低到一定程度时,气体排送会 发生往复运动的强烈振荡,从而导致机身的剧 烈振动,称为喘振,这是气体动力装置的一种特 性,
离心式压缩机与轴流式压缩机的比较
离心压缩机适用于中、小流量和中、高压力的 场合,流量约20~2000Nm3/min,大的可达 10000Nm3/min,单缸压比约 3.5~10,多缸排气 压力可高达90MPa以上,多变效率约为 76~83 %,
3. 压缩机的工作点
因为压缩机是串联在管路中,故当它正常工作 时,必须满足:
1 流过压缩机的气量必须等于流过管路的气量 指换算到同一状态下 ;
2 管端压力pe应与压缩机的排压相等,
因此,压缩机的工作点一定是在该压缩机的性 能曲线与管路特性曲线的交点上,
压缩机的工作点
性能曲线
工作点
管路特性曲线
压缩机的种类
2. 根据压缩机的压缩形式分,可分为往复式压 缩机、回转式压缩机、离心式压缩机和轴流式 压缩机,

大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用随着工业生产的日益发展,大型透平式压缩机在工业生产中扮演着重要的角色。

由于透平式压缩机工作时会产生较大的振动和噪音,如果不加以控制和防范,很容易引发喘振问题,严重影响设备的安全性和正常运行。

对大型透平式压缩机的喘振控制及应用成为工程技术领域亟待解决的重要问题。

什么是喘振?喘振是由于压缩机内部气体振荡而产生的一种不稳定的振动现象。

当压缩机工作时,由于气体流动速度和压力变化引起的共振效应,会使得系统产生自激振动,即所谓的喘振。

喘振不仅会导致设备损坏,还会引起严重的噪音污染,甚至对生产车间的安全形成威胁。

大型透平式压缩机的喘振控制成为了工程技术领域的焦点关注。

在喘振控制中,需要从多个方面入手,包括结构设计、控制系统、运行管理等多个方面,才能全面有效地解决喘振问题。

对于大型透平式压缩机的结构设计来说,需要合理设计压缩机的内部结构。

通过科学的设计和优化,减小气体流动速度的变化,降低共振效应的发生,从而减少喘振的产生。

还可以通过结构的改善和优化,增加阻尼器、削减共振频率等措施来有效抑制喘振的发生。

在压缩机的结构设计阶段,就可以采取措施来预防喘振问题的产生,这是避免喘振问题的有效手段。

对于大型透平式压缩机的控制系统来说,需要建立完善的控制系统,并对其进行合理的配置和优化。

通过运用先进的控制算法和技术,实时监测和调节压缩机的工作状态,及时发现并处理喘振问题。

还可以通过自适应控制、模糊控制和神经网络控制等方法,对压缩机的振动进行智能化控制,从而有效减少喘振的发生。

还可以通过合理的控制策略和调整参数,提高控制系统的稳定性和可靠性,进一步降低喘振的风险。

对于大型透平式压缩机的运行管理而言,需要建立严格的运行管理制度,确保设备的正常运行。

通过定期的维护和保养,及时发现和解决压缩机设备的问题,确保设备处于良好的工作状态。

还可以通过对设备运行数据的分析,及时发现异常情况,采取措施进行修复和调整,有效降低喘振的发生。

压缩机防喘振方案

压缩机防喘振方案

压缩机防喘振方案费希尔压缩机防喘振方案压缩机大概是工艺系统中最关键和昂贵的设备。

保护压缩机免受喘振损坏的任务由防喘振系统完成,防喘振系统的关键部件就是防喘振阀。

喘振可以定义为压缩机不能输出足够压力克服下游阻力时发生的流量不稳定现象。

简而言之,就是压缩机出口压力小于下游系统压力。

这会导致气量从压缩机出口反向涌入压缩机。

喘振也会由于进口流量不足引发。

图1 所示为一组典型的压缩机曲线(也称作压缩机图、性能曲线或叶轮图)。

X 轴表示流量,Y 轴表示出口压力。

平行的一组曲线表示压缩机在不同转速下的性能曲线,连接这些曲线的最小流量点,就得到喘振极限曲线。

压缩机操作点落在喘振极限曲线左边会发生不稳定(喘振),操作点落在曲线右边可稳定操作。

假设压缩机在稳定区域的A 点操作,当阻力增加而压缩机转速不变时,操作点就会向左方移动。

当操作点移动到喘振极限曲线,压缩机就会发生喘振。

喘振特征■ 快速逆流(毫秒级)。

■ 压缩机振动剧增。

■ 介质温度升高。

■ 噪声。

■ 可能导致压缩机“失效”。

喘振影响■ 压缩机寿命缩短。

■ 效率降低。

■ 压缩机出气量减少。

■ 密封、轴承、叶轮等受到机械损坏。

通过防喘振阀将部分或全部压缩机出口气量再循环至进口通常可控制喘振。

部分压缩机系统设计将部分出口气量持续循环回进口。

这是一种控制压缩机喘振的有效方法,但增加了能耗。

防喘振阀选用要求■流量——防喘振阀必须能够输送压缩机全部出口气量。

不过通常给压缩机流量乘上一个系数。

■噪声控制——在喘振过程中阀门承受的压降和流量会很高,将会引发过度噪声。

这点必须在阀门选型时充分考虑,虽然在阀门整个行程范围内可能不需要噪声控制。

极端喘振现象要求阀门在短时间(通常小于10秒)内全行程打开,如果阀门开启时间过长,压缩机将会由于其它原因停机(通常是高温或振动超标)。

因此可能需要采用特性化阀笼。

■速度——防喘振阀必须动作迅速(一般仅为开启方向)。

例如阀门必须在0.75 秒内完成20 英寸的行程。

压缩机喘振原因及预防措施

压缩机喘振原因及预防措施

转自海川论坛0 引言压缩机运行中一个特殊现象就是喘振。

防止喘振是压缩机运行中极其重要的问题。

许多事实证明,压缩机大量事故都与喘振有关。

喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。

喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。

喘振在运行中是必须时刻提防的问题。

在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。

判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。

1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。

当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。

上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。

在一定转速下使流量大于喘振流量就不会发生喘振。

1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。

2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩机防喘振的两种方法
[分享]压缩机防喘振的两种方法
一、离心式压缩机喘振的原因
喘振是离心式压缩机的固有特性。

产生喘振的原因首先得从对象特性上找。

从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。

在此点右面的曲线上工作,压缩机是稳定的。

在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。

当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。

喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。

二、防喘振自控系统的可行性分析
为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。

只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。

即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。

三、防喘振自控系统的几种实现方法
目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法
1.固定极限流量法
固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。

此法优点是控制系统简单,使用仪表较少。

缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。

2.可变极限流量法
在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极
限流量法。

常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。

二是根据防喘振控制线的数学表达式,用常规仪表来模拟表达式(1),控制流程如图3所示。

近年来随着数字仪表和微处理器的发展,这样的控制系统已容易实现。

其中a、b由压缩机制造厂决定,C是一个常数。

式中M—分子量
z—压缩系数
R—气体常数
k—综合流量系数
四、防喘振控制系统的实现方法
水气厂一英格索兰空气压缩机,型号为C90M × 3,三级压缩,流量11942m3/h,进气压力(绝)0.09MPa,排气压力(绝)0.9MPa,功率1305kW。

防喘振控制
系统如图4所示。

此防喘振系统是通过测量机组出口压力接近喘振点(旁通阀打开点)时,打开旁通阀来放出部分空气实现的。

旁通阀打开点的设定很重要。

设定过高时,压缩机在低负荷下消耗更大的能量。

设定过低时,压缩机将被允许穿过喘振线而发生喘振。

而压缩机的CMC可自动调整旁通阀打开点,使其高于喘振线的值来修正。

该压缩机也曾发生喘振,从自控系统分析,有几种情况会造成压缩机喘振:
1.出口压力的检测出现故障,使CMC接受的信号是假信号,造成旁通阀不能开到位。

2.旁通阀故障,打不开。

3.斜坡时间(旁通阀从关到开的时间)设定过长,使旁通阀打开过于滞后。

4.入口过滤器脏,过滤器阻力大,入口流量减小。

5. CMC故障,使旁通阀失控。

五、结束语
离心式压缩机的防喘振控制系统,在保证大机组的安稳运行方面起着极其重大的作用。

防喘振控制系统的实现方法,可用固定极限流量法和可变极限流量法。

还可根据具体的情况,增加一些其它方面的保安措施。

相关文档
最新文档