压缩机防喘振控制分析
压缩机防喘振曲线详解(一)

压缩机防喘振曲线详解(一)压缩机防喘振曲线什么是喘振喘振是指在机械系统中由于某种激励作用下,产生周期性振荡的一种现象,通常为系统共振的结果。
压缩机的喘振在压缩机运行时,由于叶轮的旋转速度和叶轮之间的间隙,会产生一定的压力波,进而产生压缩机的喘振现象。
喘振会严重影响压缩机的工作效率,甚至可能会导致压缩机的损坏。
防止喘振的措施为了避免或减少压缩机的喘振现象,工程师们通过各种方式研究和探索,在压缩机的设计和制造过程中,加入了一些预防喘振的措施。
其中,一种比较有效的措施是通过曲线图的方式来控制压缩机的工作状态,进而达到防止喘振的目的。
压缩机防喘振曲线压缩机防喘振曲线是一种通过图像方式来控制压缩机的工作状态的方法,它能够有效地避免压缩机的喘振现象。
具体而言,该曲线是由一系列曲线组成的,每条曲线表示了压缩机在不同压力下的工作状态。
曲线的作用通过压缩机防喘振曲线,可以清晰地看到压缩机在不同压力下的工作状态,进而根据实际情况来调整压缩机的工作状态,避免或减少喘振的发生。
因此,压缩机防喘振曲线是一种有效的防止喘振的措施。
结论通过引入压缩机防喘振曲线这一有效的技术手段,压缩机的工作效率和稳定性得以提高,喘振现象得到有效遏制。
作为机械系统中非常重要的一环,压缩机的稳定运行是保证生产效率的关键因素,因此,对压缩机防喘振曲线的研究和应用具有重要的意义。
总结压缩机防喘振曲线是一种非常实用的技术手段,它通过图像的方式清晰地表现了压缩机在不同压力下的工作状态,为压缩机的稳定运行提供了有力的保障。
在实际应用中,对于压缩机的设计和制造人员来说,深入研究和掌握压缩机防喘振曲线的相关原理和技术,将对提高产品的品质和市场竞争力有着重要的促进作用。
大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用大型透平式压缩机是工业领域中常见的压缩设备,常用于石油化工、电力、冶金等行业。
在运行过程中,压缩机容易出现喘振现象,严重影响压缩机的工作效率和安全性。
为了有效控制和预防喘振,需要在透平压缩机的设计和使用过程中考虑一系列的防喘振措施。
喘振是指压缩机由于外界扰动、流量脉动或系统参数波动等原因,引起压缩机内部压力和流量发生不稳定的现象。
喘振有时表现为高密度压缩机背压的跳动,有时表现为冷却水温度的跳动,甚至可能引发严重的机械振动和震动,造成设备的损坏。
为了防止喘振,需要从动态特性、结构设计、控制系统和操作维护等方面进行综合考虑。
对于透平式压缩机的动态特性分析非常重要。
通过对压缩机的传递函数进行建模,可以得到压缩机的振动特性和稳定性,进而确定设计参数和控制策略。
对压缩机的敏感性分析也非常重要,可以通过扰动试验和频率响应试验等方法获取敏感性矩阵和敏感频率范围,为防喘振控制提供有效的依据。
在结构设计方面,需要注意减小压缩机结构的共振频率,增加压缩机的刚度和阻尼,以提高压缩机的稳定性。
常见的措施包括增加支撑结构的刚度和阻尼、采用阻尼材料和阻尼器、改变结构形式等。
还可以通过优化叶轮、控制叶片等方式改善压缩机的稳定性。
在控制系统方面,可以采用主动控制和被动控制相结合的策略来防止喘振。
主动控制是指通过控制策略和控制器来主动消除或抑制喘振现象。
常见的控制策略包括PID控制、模糊控制、自适应控制等。
被动控制是指通过结构设计和改进来被动地减小压缩机结构的共振频率和提高稳定性。
在操作维护方面,需要加强对压缩机的监测和维护,及时发现和处理可能引起喘振的故障和问题。
定期对压缩机进行振动监测、润滑油分析、叶片磨损检测以及定期检查和维护,可以有效地延长压缩机的使用寿命并提高压缩机的可靠性和稳定性。
大型透平式压缩机防喘振控制需要综合考虑动态特性、结构设计、控制系统和操作维护等多个方面的因素。
通过合理的设计和有效的控制策略,可以有效地预防和控制喘振现象,保证压缩机的安全稳定运行。
压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。
喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。
1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。
2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。
3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。
4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。
1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。
2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。
3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。
4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。
5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。
6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。
7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。
通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。
压缩机防喘振的3种控制方法

压缩机防喘振的3种控制方法
压缩机喘振是一种有害的现象,因为喘振可能导致压缩机损坏或减少其寿命。
因此,为了防止压缩机喘振,可以采取以下三种控制方法:
1. 变频控制方法
变频控制方法是通过改变压缩机的转速来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
这种方法的好处是不会产生噪音和振动,而且可以在喘振之前避免发生。
但是,这种方法的缺点是成本较高,需要购买变频设备。
2. 放气控制方法
放气控制方法是通过对不合格气体进行放气来防止喘振。
具体来说,当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是成本较低,但缺点是会产生一定的噪音和振动,而且需要人工干预。
3. 自动控制方法
自动控制方法是通过对压缩机的转速和气体浓度进行监测和自动调整来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是既不会产生噪音和振动,又可以在喘振之前避免发生,而且成本相对较低。
综上所述,变频控制方法、放气控制方法和自动控制方法是防止压缩机喘振的三种有效方法。
根据具体情况选择合适的方法可以有效地避免喘振的发生,保证压缩机的正常运转。
压缩机防喘振控制方案

压缩机防喘振的两种方法[分享]压缩机防喘振的两种方法一、离心式压缩机喘振的原因喘振是离心式压缩机的固有特性。
产生喘振的原因首先得从对象特性上找。
从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。
在此点右面的曲线上工作,压缩机是稳定的。
在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。
当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。
喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。
二、防喘振自控系统的可行性分析为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。
只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。
即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。
三、防喘振自控系统的几种实现方法目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法1.固定极限流量法固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。
此法优点是控制系统简单,使用仪表较少。
缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。
2.可变极限流量法在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。
常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。
压缩机防喘振控制

压缩机防喘振控制方法
压缩机防喘振的控制方法大致可分为固定极限 流量法和可变极限流量法,
1 . 固定极限流量法
固定极限流量是使压 缩机的入口流量保持控制线大于源自高转速下的临界流量,从而避免进
入喘振区运行,但在
低转速下效率太低,
能量浪费太大,
2 . 可变极限流量法
可变极限流量法是为 了减少压缩机的能量 损耗,在压缩机负荷 经常波动的场合采用,
4. 喘振的原因
当压缩机入口气体流量小于压缩机的最小流量 时,会导致压缩机排气管压力比机组内部压力 高,这时气体会发生瞬间倒流,压缩气体倒流又 使得排出侧气体压力降低,机组内部压力升高, 使气体流量恢复,直到出口压力升高,又重复上 述过程,这就是压缩机的喘振,
压缩机性能曲线的最高点就是喘振点,
离心压缩机特性
2. 喘振 当压缩机的负荷降低到一定程度时,气体排送会 发生往复运动的强烈振荡,从而导致机身的剧 烈振动,称为喘振,这是气体动力装置的一种特 性,
离心式压缩机与轴流式压缩机的比较
离心压缩机适用于中、小流量和中、高压力的 场合,流量约20~2000Nm3/min,大的可达 10000Nm3/min,单缸压比约 3.5~10,多缸排气 压力可高达90MPa以上,多变效率约为 76~83 %,
3. 压缩机的工作点
因为压缩机是串联在管路中,故当它正常工作 时,必须满足:
1 流过压缩机的气量必须等于流过管路的气量 指换算到同一状态下 ;
2 管端压力pe应与压缩机的排压相等,
因此,压缩机的工作点一定是在该压缩机的性 能曲线与管路特性曲线的交点上,
压缩机的工作点
性能曲线
工作点
管路特性曲线
压缩机的种类
2. 根据压缩机的压缩形式分,可分为往复式压 缩机、回转式压缩机、离心式压缩机和轴流式 压缩机,
大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用随着工业生产的日益发展,大型透平式压缩机在工业生产中扮演着重要的角色。
由于透平式压缩机工作时会产生较大的振动和噪音,如果不加以控制和防范,很容易引发喘振问题,严重影响设备的安全性和正常运行。
对大型透平式压缩机的喘振控制及应用成为工程技术领域亟待解决的重要问题。
什么是喘振?喘振是由于压缩机内部气体振荡而产生的一种不稳定的振动现象。
当压缩机工作时,由于气体流动速度和压力变化引起的共振效应,会使得系统产生自激振动,即所谓的喘振。
喘振不仅会导致设备损坏,还会引起严重的噪音污染,甚至对生产车间的安全形成威胁。
大型透平式压缩机的喘振控制成为了工程技术领域的焦点关注。
在喘振控制中,需要从多个方面入手,包括结构设计、控制系统、运行管理等多个方面,才能全面有效地解决喘振问题。
对于大型透平式压缩机的结构设计来说,需要合理设计压缩机的内部结构。
通过科学的设计和优化,减小气体流动速度的变化,降低共振效应的发生,从而减少喘振的产生。
还可以通过结构的改善和优化,增加阻尼器、削减共振频率等措施来有效抑制喘振的发生。
在压缩机的结构设计阶段,就可以采取措施来预防喘振问题的产生,这是避免喘振问题的有效手段。
对于大型透平式压缩机的控制系统来说,需要建立完善的控制系统,并对其进行合理的配置和优化。
通过运用先进的控制算法和技术,实时监测和调节压缩机的工作状态,及时发现并处理喘振问题。
还可以通过自适应控制、模糊控制和神经网络控制等方法,对压缩机的振动进行智能化控制,从而有效减少喘振的发生。
还可以通过合理的控制策略和调整参数,提高控制系统的稳定性和可靠性,进一步降低喘振的风险。
对于大型透平式压缩机的运行管理而言,需要建立严格的运行管理制度,确保设备的正常运行。
通过定期的维护和保养,及时发现和解决压缩机设备的问题,确保设备处于良好的工作状态。
还可以通过对设备运行数据的分析,及时发现异常情况,采取措施进行修复和调整,有效降低喘振的发生。
离心式压缩机的防喘振控制

离心式压缩机的防喘振控制离心式压缩机是一种常见的工业设备,广泛应用于制冷、空调、石化、化工和能源等领域。
但离心式压缩机在高速旋转过程中,易发生喘振现象,严重影响设备的可靠性和运行效率。
因此,实现离心式压缩机的防喘振控制,成为压缩机研发领域的热门话题。
喘振的概念和机理喘振是指机械系统在一定运行工况下,出现自激振动和自我放大的现象。
具体表现为设备发出高频噪声、振幅剧烈震动、设备受到损坏等。
离心式压缩机的喘振主要由两种类型引起,分别是稳定喘振和非稳定喘振。
稳定喘振是指设备在一定工况下,由于颤振力和阻尼力平衡不稳定而发生振动。
非稳定喘振则是指由于系统参数的变化而导致的振动,如流量、压力、转速等。
喘振的机理比较复杂,通常是由流体特性、机械特性和控制策略等多个因素综合作用形成。
针对离心式压缩机,具体原因如下:•离心式压缩机转子和静子间的流体动力学作用•离心式压缩机转子的惯性力和弹力•离心式压缩机流量的变化导致的系统不稳定防喘振的控制为了防止离心式压缩机的喘振,降低因喘振而引起的振动、噪声、能耗和设备损坏等问题,可以采用以下控制策略:转子动平衡离心式压缩机转子的动平衡是减少振动和噪声的有效措施。
动平衡可以通过加装质量均匀化转子重量分布,减少旋转惯量差异,使转子自身的振动减少。
减弱单元耦合离心式压缩机中存在转子和静子的相互作用,转子运转时的振动会将振动传递到静子中,同时静子的反作用力也会反过来影响转子。
因此,为了减小单元之间的耦合作用,需要采用合适的材料和合理的结构设计。
控制喘振频率喘振频率是指转子和压气机系统之间的谐振频率。
为了控制喘振,可以借助传感器、控制系统和信号处理技术,实时检测喘振频率,调节系统工况,减小喘振频率。
同时还可以采用创建额外的泄放卡止或捆绑物来改变系统频率。
控制驱动力离心式压缩机喘振的发生和发展与外界激励力有关。
为了降低驱动力,需要在系统中加入有阻尼的弹簧,将外部力矩转换为电信号或机械压力信号,并将信号传输到控制系统中,调节工况,实现防喘振。