高三第一次质量检测理科数学试题
四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析

四川省宜宾市2024届高三第一次诊断性测试理科数学试题及答案解析(考试时间:120分钟全卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.设集合{}23100,{33}A xx x B x x =+-<=-<<∣∣,则A B ⋂=()A.{32}x x -<<∣B.{52}x x -<<∣C.{33}x x -<<∣D.{53}xx -<<∣2.已知i 为虚数单位,且32i1i z =+,则z =()A.1i- B.1i + C.1i-+ D.1i --3.设函数()()()121log 2(1)31x x x f x x +⎧-<⎪=⎨⎪⎩,则()()32log 8f f -+=()A.8B.9C.22D.264.712x x ⎛⎫- ⎪⎝⎭的二项式展开式中x 的系数为()A.560B.35C.-35D.-5605.已知点(,)x y 满足不等式组21400x y y x y ⎧⎪⎨⎪≥≥+--+⎩≤,则2z x y =+的最小值为()A.3- B.1- C.5D.76.华为在过去几年面临了来自美国政府的封锁和限制,但华为并没有放弃,在自主研发和国内供应链的支持下,成功突破了封锁,实现了5G 功能.某手机商城统计了最近5个月华为手机的实际销量,如下表所示:若y 与x 线性相关,且线性回归方程为2ˆ0.4ˆyx a =+,则下列说法不正确的是()A.样本中心点为()3,1.0 B.由表中数据可知,变量y 与x 呈正相关C.ˆ0.28a =D.预测7x =时华为手机销量约为1.86(万部)7.已知n S 是数列{}n a 的前n 项和,若11a =,112n n S a +=,则()A.数列{}n a 是等比数列B.数列{}n a 是等差数列C.数列{}n S 是等比数列D.数列{}n S 是等差数列8.函数24()exx xf x -=的图象大致是()9.将函数()cos()(0)6f x x πωω=+>的图像向左平移2π个单位长度后得到曲线C ,若C 关于原点对称,则ω的最小值是()A.23B.32 C.53D.11310.某校举办中学生乒乓球运动会,高一年级初步推选3名女生和4名男生参赛,并从中随机选取3人组成代表队参赛,在代表队中既有男生又有女生的条件下,女生甲被选中的概率为()A.12 B.715C.713D.111511.漏刻是中国古代科学家发明的一种计时系统,“漏”是指带孔的壶,“刻”是指附有刻度的浮箭.《说文解字》中记载:“漏以铜壶盛水,刻节,昼夜百刻.”某展览馆根据史书记载,复原唐代四级漏壶计时器.如图,计时器由三个圆台形漏水壶和一个圆柱形受水壶组成,水从最上层的漏壶孔流出,最终全部均匀流入受水壶.当最上层漏水壶盛满水时,漂浮在最底层受水壶中的浮箭刻度为0当最上层漏水壶中水全部漏完时,漂浮在最底层受水壶中的浮箭刻度为100.已知最上层漏水壶口径与底径之比为5:2,则当最上层漏水壶水面下降至其高度的三分之一时,浮箭刻度约为(四舍五入精确到个位)()A.88B.84C.78D.7212.已知函数()(),f x g x 的定义域为()R,g x 的图像关于1x =对称,且()22g x +为奇函数,()()()11,31g f x g x ==-+,则下列说法正确的个数为()①(3)(5)g g -=;②(2024)0g =;③(2)(4)4f f +=-;④20241()2024n f n ==∑.A.1B.2C.3D.4二、填空题:本大题共4个小题,每小题5分,共20分13.若函数()212ln 2f x x ax x =-+-在1x =处的切线平行于x 轴,则a =__________.14.已知(2,1)AC = ,(1,)AB t = ,且3AC AB ⋅=,则t =__________.15.已知等差数列{}n a 的公差为23π,集合{}*sin |n S a n =∈N ,若{},S a b =,则22a b +=__________.16.正方体1111ABCD A B C D -的校长为1,点P 为线段1CC 的中点,则三棱锥1P BDD -外接球的表面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17.(12分)已知等差数列{}n a 的前n 项和为n S ,且279a a +=,945S =.(1)求数列{}n a 的通项公式;(2)若2nn n b a =,求数列{}n b 的前n 项和n T .18.(12分)如图所示,△ABC 是正三角形,AE ⊥平面ABC ,AE CD ∥,2AE AB ==,1CD =,且F 为BE 的中点.(1)求证:DF ∥平面ABC ;(2)求平面BDE 与平面ABC 所成二面角的正弦值.19.(12分)自1996年起,我国确定每年3月份最后一周的星期一为全国中小学生“安全教育日”.我国设立这一制度是为全面深入地推动中小学生安全教育工作,大力降低各类伤亡事故的发生率,切实做好中小学生的安全保护工作,促进他们健康成长.为了迎接“安全教育日”,某市将组织中学生进行一次安全知识有奖竞赛,竞赛奖励规则如下,得分在[70,80)内的学生获三等奖,得分在[80,90)内的学生获二等奖,得分在[90,100]内的学生获一等奖,其他学生不获奖.为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,统计如下:(1)若现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获一等奖的概率;(2)若该市所有参赛学生的成绩X 近似服从正态分布(65,100)X N ~,利用所得正态分布模型解决以下问题:(i )若该市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过85分的学生数(结果四舍五入到整数);(ii )若从所有参赛学生中(参赛学生数大于100000)随机抽取4名学生进行访谈,设其中竞赛成绩在65分以上的学生数为Y ,求随机变量Y 的分布列及数学期望.附参考数据:若随机变量X 服从正态分布()2,N μσ,则:()6827.0≈+<<-σμσμX P ,()9545.022≈+<<-σμσμX P ,()9973.033≈+<<-σμσμX P .20.(12分)已知抛物线()()200:2(0),4,0E y px p P y y =>>为E 上一点,P 到E 的焦点F 的距离为5.(1)求E 的标准方程;(2)设O 为坐标原点,A ,B 为抛物线E 上异于P 的两点,且满足PA PB ⊥.判断直线AB 是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.21.(12分)已知()ln 1f x x x x =--,记()f x 在1ex =处的切线方程为()g x .(1)证明:()()g x f x(2)若方程()f x m =有两个不相等的实根()1212,x x x x <,证明:12122x x m e e->+--.(二)选做题:共10分.请考生在第22、23题中选一题作答.如果多做,则按所做的第一题计分.22.(10分)[选修44-:坐标系与参数方程]在平面直角坐标系xOy 中,射线l 的方程为(0)y x x =≥,曲线C 的方程为2214x y +=.以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求射线l 和曲线C 的极坐标方程;(2)若射线l 与曲线C 交于点P ,将射线OP 绕极点按逆时针方向旋转2π交C 于点Q ,求△POQ 的面积.23.(10分)[选修45-:不等式选讲]已知函数()2121f x x x =-++.(1)求不等式()3f x ≥的解集;(2)记函数()f x 的最小值为m ,若a ,b ,c 均为正实数,且23a b c m ++=,求11a cb c+++的最小值.参考答案一、选择题1.A 解析:∵{}{}2501032<<-=<-+=x x x x x A ,∴{}23<<-=x x B A .2.B解析:由题意:()i i i i i i i z +-=+=+=-=1212122.3.C 解析:()()[]222log 221-=--=-f .∵18log 3>,∴()243338log 24log 3log 8log 18log 33333====++f ,∴()()222428log 23=+-=+-f f .4.D 解析:由题意知712⎪⎭⎫ ⎝⎛-x x 的展开式()()rr r r rr rr xC x x C T 27777712112---+-=⎪⎭⎫ ⎝⎛-=,令127=-r ,得3=r ,∴x 的系数为()5602137373-=--C .5.B解析:作出可行域如图,当目标函数y x z +=2的图象经过点()1,1-A 时,z 有最小值,此时1min -=z .6.D解析:由表格数据可以计算出3554321=++++=x ,0.155.12.10.18.05.0=++++=y ,则样本中心点为()0.1,3,即A 说法正确;从表格数据可得:y 随着x 的增加而增加,∴变量y 与x 正相关,即B 说法正确;将样本中心点为()0.1,3代入a x yˆ24.0ˆ+=,可得28.0ˆ=a ,即C 说法正确;由C 可知线性回归方程为28.024.0ˆ+=x y,将7=x 代入可得96.128.0724.0ˆ=+⨯=y,则D 说法不正确.7.C解析:因121+=n n a S ①可得,当2≥n 时,n n a S 211=-②,①-②得:n n n n a a S S 212111-=-+-,即n n n a a a 21211-=+,可得31=+n n a a ,因11=a ,在121+=n n a S 中,取1=n ,可得2212==S a ,即3212≠=a a ,故数列{}n a 不是等比数列,选项A ,B 错误;又因当*∈N n 时,都有n n n S S a -=++11,代入121+=n n a S 中,可得()n n n S S S -=+121,整理得:31=+nn S S ,故数列{}n S 是等比数列,即选项C 正确,D 错误.8.A解析:令()0>x f ,得4>x 或0<x ;令()0<x f ,得40<<x ,故排除CD,又当+∞→x 时,()042→-=xexx x f ,故排除B.9.A解析:由题意可知:函数()()06cos >⎪⎭⎫ ⎝⎛+=ωπωx x f 的图象关于点⎪⎭⎫⎝⎛02,π对称,则Z k k ∈+=+,262πππωπ,且0322>+=k ω,解得31->k ,即N k k ∈+=,322ω∴当0=k 时,ω取到最小值是32.10.B解析:用A 表示事件“代表队既有男生又有女生”,B 表示事件“女生甲被选中”,则在代表队中既有男生又有女生的条件下,女生甲被选中的概率为()A B P .∴()30333437=--=C C C A n ,()1468241412=+=+=C C C AB n ,∴()()()1573014===A n AB n A B P .11.B解析:有题意可知:最上层漏水壶所漏水的体积与浮箭刻度成正比,设最上层漏水壶的口径与底径分别为a a 25,,高为h ,则体积为()()()()h a h a a a a V 2222213252531πππππ=⎥⎦⎤⎢⎣⎡⨯⨯+=,当最上层漏水壶水面下降到高度的三分之一时,设此时浮箭刻度为x ,∵已漏下去的水组成以上下口径为a a 3,5,高为h 32的圆台,体积为()()()()h a h a a a a V 22222199832353531πππππ=⎥⎦⎤⎢⎣⎡⨯⨯+=,可得1001399822x h a ha =ππ,解得84≈x .12.C解析:∵()22+x g 为奇函数,∴()()2222+-=+-x g x g ,则()()22+-=+-x g x g ,∴()x g 对称中心为()0,2,又∵()x g 对的图象关于1=x 对称,则()()x g x g =+-2,∴()()x g x g =+-2,则()()()x g x g x g =+-=+24,∴()x g 的周期4=T ,①()()()5833g g g =+-=-,∴①正确;②∵()11=g ,()()x g x g =+-2,()x g 对称中心为()0,2,∴()()020==g g ,∴()()002024==g g ,∴②正确;③∵()()13+-=x g x f ,∴()()2112=+=g f ,∵()()x g x g =+-2,∴()()11g g -=-,则()()()011114=+-=+-=g g f ,∴()()242=+f f ,∴③错误;④∵()()13+-=x g x f 且()x g 周期4=T ,∴()()()()x f x g x g x f =+-=++-=+131434,则()x f 的周期为4=T ,∵()()1121=+=g f ,()22=f ,()()1103=+=g f ,()04=f ,∴()()()()44321=+++f f f f ,∴()()()()()[]20244506432150620241=⨯=+++=∑=f f f f n f n ,∴④正确.二、选择题13.3解析:∵()x ax x x f ln 2212-+-=,∴()xa x x f 2-+-=',则()0211=-+-='a f ,解得3=a .14.1解析:32=+=⋅t AB AC ,解得1=t .15.45(1.25)解析:∵等差数列{}n a 的公差为32π,∴ππ23233+=⨯+=+n n n a a a ,∴()()n n n a a a sin 2sin sin 3=+=+π,∴数列{}n a sin 是周期为3的数列,又{}b a S ,=,故1sin a ,2sin a ,3sin a 中必有两者相等,不妨设()31sin sin ≤<≤=j i a a j i ,则Z k k a a j i ∈+=,2π(舍)或Z k k a a j i ∈+=+,2ππ,而π32=+-j i a a 或π34=+-j i a a ,若π32=+-j i a a ,则Z k k a i ∈+=,6ππ,Z k k a j ∈+=,65ππ,连续三个中第三数为Z k k a i ∈+=,23ππ或Z k k a i ∈+-=,2ππ,此时⎭⎬⎫⎩⎨⎧-=121,S 或⎭⎬⎫⎩⎨⎧-=121,S .若π34=+-j i a a ,则Z k k a i ∈+-=,6ππ,Z k k a j ∈+=,67ππ,此时这两个数的中间数Z k k ∈+,2ππ,此时⎭⎬⎫⎩⎨⎧-=121,S 或⎭⎬⎫⎩⎨⎧-=121,S .综上,4541122=+=+b a .16.825π解析:以D 为坐标原点,DA ,DC ,1DD 方向分别为z y x ,,轴建立如图所示空间直角坐标系.则()()()⎪⎭⎫ ⎝⎛21101000110001,,,,,,,,,,,P D B D ,M 为线段1BD 的中点,则⎪⎭⎫⎝⎛21,21,21M ,显然点M 为1BDD ∆的外接圆圆心.则()()⎪⎭⎫ ⎝⎛-===0,21,210111001PM DB DD ,,,,,,,∴,,0212101=-=⋅=⋅DB PM DD PM 即PM 为平面1BDD 的一个法向量,即⊥PM 平面1BDD .则三棱锥1BDD P -外接球的球心O 在直线PM 行,连接OD ,则设R OP OD ==.设⎪⎭⎫⎝⎛-==0,2,2λλλPM OP ,即⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=-=21,21,20,2,22110λλλλ,,OP DP DO .=,即222222121222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛λλλλ,解得45-=λ,则⎪⎭⎫ ⎝⎛=21,83,85DO ,∴32252183852222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=R .则三棱锥1BDD P -外接球的表面积为82542ππ=R .三、解答题17.解:(1)设数列{}n a 的公差为d ,则⎩⎨⎧=+=+++4536996111d a d a d a ,解得⎩⎨⎧==111d a ,∴n a n =.(2)由(1)得nn n b 2⋅=,nn n T 2222121⋅++⨯+⨯= ,132222212+⋅++⨯+⨯=n n n T ,两式相减得:()()()2212121222222211132-⋅-=⋅---=⋅-++++=-+++n n n n nn n n n T ∴()2211+-=+nn n T .18.解:(1)证明:取AB 中点M ,连接MF 、MC ,则MF ∥AE ,且CD AE MF ===121.又∵AE ∥CD ,∴MF ∥CD ,即四边形MFDC 为平行四边形,∴DF ∥MC .又有⊄DF 平面ABC ,⊂MC 平面ABC ,∴DF ∥平面ABC .(2)延长ED 、AC 相交于点N ,连接BN ,则BN 为平面BDE 与平面ABC 的交线.∵AE ∥CD ,CD AE 2=,则DC 为ABC ∆的中位线,∴42==AC AN ,即BC CN AC ==,∴BN AB ⊥,∴3222=-=AB AN BN .而5222=+=AN AE EN ,2222=+=AB AE BE ,∴222EN BNBE =+,即BNBE ⊥∴EBA ∠即为平面BDE 与平面ABC 所成二面角的平面角.∴22222sin ===∠BE AE EBA 故平面BDE 与平面ABC 所成二面角的正弦值为22.19.解:(1)从该样本中随机抽取两名学生的竞赛成绩,基本事件总数为2100C ,设抽取的两名学生中恰有一名学生获一等奖为事件A ,则事件A 包含的基本事件的个数为190110C C ,∵每个基本事件出现的可能性都相等,∴()1122100190110==C C C A P 故抽取的两名学生中锋恰有一名学生获一等奖的概率为112.(2)(i )∵852=+σμ,∴()02275.029545.0185=-≈>X P ,∴参赛学生中成绩超过85分的学生数约为22802275.010000≈⨯人.(ii )由65=μ,得()2165=>X P ,即从所有参赛学生中随机抽取1名学生,该生竞赛成绩在65分以上的概率为21,∴随机变量Y 服从二项分布Y ~⎪⎭⎫ ⎝⎛214,B ,∴()161210404=⎪⎭⎫ ⎝⎛==C Y P ;()41211414=⎪⎭⎫ ⎝⎛==C Y P ;()83212424=⎪⎭⎫ ⎝⎛==C Y P ;()41213434=⎪⎭⎫ ⎝⎛==C Y P ;()161214444=⎪⎭⎫ ⎝⎛==C Y P .∴随机变量Y 的分布列为:∴期望为()216144138324111610=⨯+⨯+⨯+⨯+⨯=Y E.20.解:(1)∵()0,4y P 在抛物线E :()022>=p px y 上,且P 到E 的焦点F 的距离为5,即5=PF ,∴524=+p,解得2=p .∴E 的标准方程为x y 42=.(2)由(1)得P 点坐标为()4,4,由题知直线AB 斜率不为0,设直线AB 为b my x +=,联立⎩⎨⎧+==bmy x x y 42,得0442=--b my y ,()()01616424422>+=-⨯⨯--=∆b m b m ,即02>+b m ,m y y 421=+,b y y 421-=,∴()b m b y y m x x 24222121+=++=+,()22212116b y y x x ==,∵()4,411--=y x P A ,()4,422--=y x PB ,()()324421212121++-++-=⋅y y y y x x x x PB P A ()32161216324442442222=+---=+⨯--+-=m b m b m b b m b ∴41616361222++=+-m m b b ,即()()22246+=-m b ,当6-b 与24+m 同号时,246+=-m b ,即84+=m b ,此时()04284222>++=++=+m m m b m ,∴直线AB 的方程()8484++=++=y m m my x 过定点()48-,,当6-b 与24+m 异号时,246+=-m b ,即44+-=m b ,此时()0244222≥-=+-=+m m m b m ,∴直线AB 的方程()4444+-=--=y m m my x 过定点()44,,则此时与点B A P ,,中任意两点不重合矛盾,故直线AB 过定点,定点坐标为()48-,.21.解:(1)证明:()1ln --=x x x x f 的定义域为()∞+,0,∵()()x x x f ln 1ln 1-=+-=',∴11=⎪⎭⎫ ⎝⎛'e f ,121111-=-+=⎪⎭⎫ ⎝⎛ee e ef ,∴()e x e xg 112-=⎪⎭⎫⎝⎛--,即()11-+=e x x g .令()()()()x x ex x e x x f x g x F ln 11ln 11+=----+=-=,()+∞∈,0x ,()x x F ln 1+=',令()0='x F ,解得ex 1=,∴当e x 10<<时,()0<'x F ,()x F 在⎪⎭⎫⎝⎛e 10,单调递减,当e x 1>时,()0>'x F ,()x F 在⎪⎭⎫⎝⎛+∞,1e 单调递增,∴()01min =⎪⎭⎫⎝⎛=e F x F ,∴()0≥x F 恒成立,即()()x f x g ≥.(2)由(1)知()x x f ln -=',令()0='x f ,得1=x .∴当10<<x 时,()0>'x f ,()x f 在()1,0单调递增,当1>x 时,()0<'x f ,()x f 在()∞+,1单调递减,∴()()01max ==f x f ,当0→x 时,()1-→x f ;当e x >时,()()1-=<e f x f ,∵方程()m x f =有两个不相等的实根()2121,x x x x <,∴01<<-m 且e x x <<<<2110,∵()1-='e f ,()1-=e f ,∴函数()x f 在e x =处的切线方程为()()e x y --=--1,即1-+-=e x y .下证:()1-+-≤e x x f 令()()e x x x x f e x x h ++-=--+-=ln 21,()+∞∈,0x ∵()x x x h ln 11ln 2+-=++-=',令()0='x h ,解得e x =,∴当e x <<0时,()0<'x h ,()x h 在()e ,0单调递减,当e x >时,()0>'x h ,()x h 在()∞+,e 单调递增,∴()()0min ==e h x h ∴()0≥x h 恒成立,即()1-+-≤e x x f ,当且仅当e x =时等号成立.∵e x <<21,∴()122-+-<=e x x f m ,即12+->-e m x ,由(1)知,()()11-+=≤e x x g x f ,∵101<<x ,∴()1111-+≤=e x x f m ,即111+-≥em x ,∴ee m x x 12221--+>-.22.解:(1)将θρcos =x ,θρsin =y 代入()0≥=x x y 得θρθρcos sin =,∴1tan =θ,∴射线l 的极坐标方程为04≥=ρπθ,,将θρcos =x ,θρsin =y 代入1422=+y x 得()()1sin 4cos 22=+θρθρ,∴曲线C 的极坐标方程为θρ22sin 314+=(2)由题可知,可以设⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛43,4,21πρπρQ P ,,则584sin 314221=+=πρ,5843sin 314222=+=πρ,∴510221==ρρ,∴542sin 2121==∆πρρPOQ S .23.解:(1)由题意可得()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<--≤-=21,42121,221,4x x x x x x f ,不等式()3≥x f 等价于⎪⎩⎪⎨⎧-≤≥-2134x x 或⎪⎩⎪⎨⎧≥≥2134x x ,解得43-≤x 或43≥x .即不等式()3≥x f 的解集为⎪⎭⎫⎢⎣⎡∞+⎥⎦⎤ ⎝⎛-∞-,,4343 .(2)由(1)可知,函数()x f 在⎥⎦⎤ ⎝⎛-∞-21,上单调递减,在⎪⎭⎫⎢⎣⎡∞+,21上单调递增,且22121=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-f f ,即函数()x f 在最小值2=m ,即232=++c b a .()()c b c b c b c c b c b c a +++-=+++--=+++222211322111()()()[]c b c b c b c b +++-⎥⎦⎤⎢⎣⎡+++-=121121,∵()022>+-=+c b c a ,∴10<+<c b .令()1,0,∈+=t c b t ,则()t t t t c b c a +-⎪⎭⎫⎝⎛+-=+++12112111()()2231212321121321+=⎪⎪⎭⎫ ⎝⎛-⋅-+≥⎪⎭⎫ ⎝⎛-+-+=t t t t t t t t ,当且仅当()t t t t -=-121,即22-=t 时,取等号.即c b c a +++11的最小值为223+.。
河南省2023届高三上学期第一次考试数学理科试题(解析版)

“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。
四川省资阳市2024届高三第一次诊断性考试理科数学试题(含答案解析)

面积为 1,求 .
23.已知函数 f x 2 x 1 x 1 .
(1)解不等式 f x 4 2x ;
试卷第 3页,共 4页
(2)设
f
x
的最小值为
M
,正数
a
,b
满足 a
b
M
,求证:
a
1 2
2
b
1 2
2
9 2
.
试卷第 4页,共 4页
1.B
参考答案:
【分析】由复数的除法,计算得 z 和 z ,再由复数模的计算公式,计算 z 3i .
A.
(n
1)π 2
xn
(n
1)π 2
B. xn1 xn π
C. xn xn1 (2n 1)π
D.{| xn (n 1)π |} 为递减数列
二、填空题
13.已知函数 f x ax3 a 2 x2 ex ex 为偶函数,则实数 a 的值为
.
14.已知向量 a
,b
满足
a
2,
8.已知向量 a , b , c 满足
a
b
c
3,且 a b
2
c
3
0 ,则 cos
a b,b
(
)
A. 2 2 3
B. 1 3
C.
1 3
D. 2 2 3
9. sin40 tan10 3 ( )
A. 1
B. 1 2
C.
1 2
D.1
10.已知
a
3
24
,
b
π , c log3 4 ,则 a , b , c 的大小关系为(
0 ,
N
x
|
高三毕业班数学(理)第一次质量检查(附答案)

高三毕业班数学(理)第一次质量检查注意事项:准考证号码填写说明:准考证号码共九位,每位都体现不同的分类,具体如下:7 0 0 0答题卡上科目栏内必须填涂考试科目一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案涂在答题卡上) 1.设集合B A B N x x x A ⋃=∈≤<-=则},3,2{},,21{等于 A .{1,2,3} B .{0,1,2,3}C .{2}D .{-1,0,1,2,3}2.集合{|1}P x y x ==-,集合{|1}Q y y x ==-,则P 与Q 的关系是A.P=QB.PQ C .P ≠⊂Q D.P ∩Q=∅3.若函数f(x)=2log (a ax x 32+-)在区间[2,+∞)上递增,则实数a 的范围是 A.(-∞,4] B.(-4,4]C.(-4,2)D.(-∞,-4)∪[2,+∞)4.若一系列函数的解析式相同,值域也相同,但定义域不同,则称这些函数为“同族函数”,那么解析式为2x y =,值域为{1,4}的“同族函数”共有A.4个B.8个C.9个D.16个5.函数y =f(x)的图象在点P (1,f(1))处的切线方程为y =-2x +10, 导函数为()f x ',则f(1)+(1)f '的值为A. -2B.2C .6D. 86设函数f(x)在定义域内可导,y =f(x)的图象如图1所示,则导函数y =f '(x)可能为级别代号科类代号教学班代号行政班代号行政班座号xyOAxyOB xyOC yODxxyO图17.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a =A .2B .3C .4D .58.要得到)42sin(3π+=x y 的图象只需将y =3sin2x 的图象A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位 D .向右平移8π个单位 9.设)4tan(,41)4tan(,52)tan(παπββα+=-=+则的值是A .223 B .1813 C .2213 D .6110.定义函数sin , sin cos ()cos , sin cos x x xf x x x x ≥⎧=⎨<⎩,给出下列四个命题:(1)该函数的值域为[1,1]-; (2)当且仅当2()2x k k Z ππ=+∈时,该函数取得最大值;(3)该函数是以π为最小正周期的周期函数; (4)当且仅当322()2k x k k Z ππππ+<<+∈时,()0f x <.上述命题中正确的个数是A .1个B .2个C .3个D .4个二、填空题(本题共5小题,每题4分,共20分)11.设函数⎪⎩⎪⎨⎧--=1)21()1(log )(2x x x f )2()2(<≥x x 若3)(0>x f 则0x 的取值范围是12.当0<x<1时,2212)(,)(,)(-===x x h x x g x x f 的大小关系是___________ 13.如果奇函数y=f(x) (x ≠0),当x ∈(0,+∞)时,f(x)=x -1,则使f(x -1)<0的x 的取值范围是14.直线12y x b =+是曲线()ln 0y x x =>的一条切线,则实数b = . 15. 设函数)0)(x 3cos()x (f π<ϕ<ϕ+=,若)x (f )x (f /+是奇函数,则ϕ=_________三、解答题(共6题,共80分,解答应写出文字说明、证明过程或演算步骤.)16.(本小题13分)设}015{2≥--=ax x x A ,}02{2<+-=b ax x x B ,}65{<≤=⋂x x B A ,求B A ⋃ 17.(本小题13分)设函数f(x)=cos(2x+3π)+sin 2x.求函数f(x)的最大值和最小正周期。
高三第一次质量调查(一模)考试数学(理)试题-Word版含答案

数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范。
高三数学第一次教学质量检测试题理含解析试题

2.等差数 ,假设 ,那么 的前7项的和是〔〕
A. 112 B. 51 C. 28D. 18
【答案】C
【解析】由等差数列的通项公式结合题意有: ,
求解关于首项、公差的方程组可得: ,
那么数列的前7项和为: .
此题选择C选项.
3.集合 是函数 的定义域,集合 是函数 的值域,那么 〔〕
【答案】
【解析】由抛物线的方程可知焦点坐标为 ,准线方程为 ,
设点 的坐标为 ,由题意结合抛物线的定义可得:
, , ,
那么四边形 的周长为 ,
整理可得: ,
那么点 的坐标为 .
16.在四面体 中, ,二面角 的大小为 ,那么四面体 外接球的半径为__________.
【答案】
【解析】过等边三角形 的中心作平面 的垂线,
双曲线的离心率: ,
此题选择C选项.
5.执行如图程序框图,假设输入的 等于10,那么输出的结果是〔〕
A. 2 B. C. D.
【答案】C
【解析】结合流程图可知程序运行如下:
首先初始化数据 ,
此次循环满足 ,执行: , ;
此次循环满足 ,执行: , ;
此次循环满足 ,执行: , ;
此次循环满足 ,执行: , ;
所以 的分布列为
所以 .
19.如图,在多面体 中, 是正方形, 平面 , 平面 , ,点 为棱 的中点.
〔1〕求证:平面 平面 ;
〔2〕假设 ,求直线 与平面 所成的角的正弦值.
【答案】(1)见解析〔2〕
【解析】试题分析:
〔1〕连结 ,交 于点 ,由三角形中位线的性质可得 平面 ,由线面垂直的性质定理可得 为平行四边形,那么 ,结合面面平行的判断定理有 平面 .最后,利用面面平行的判断定理可得平面 平面 .
高三数学上学期第一次质检试题 理 试题

卜人入州八九几市潮王学校蕉岭2021~2021高三第一次质检考试数学〔理科〕一、选择题:此题一共12小题,每一小题5分,一共60分。
1.集合3{|}U x y x ==,9{|log }A x y x ==,{|2}x B y y ==-,那么()=UAB 〔〕A .{}|0x x >B .R C .∅ D .{}0z 满足(1)1i z ai +=-,那么实数a 等于〔〕A .0B .1-或者1C .1D .1-3.公差不为0的等差数列{}n a 满足4123a a a ⋅=,n S 为数列{}n a 的前n 项和,那么3253S S S S --的值是〔〕A.2-B.3-C.3D.24.向量a 与b 的夹角是,且|a |=1,|b |=4,假设(3a +λb )⊥a ,那么实数λ的值是() A.B .-C.D .-5.函数()210210x x f x x x x +≥⎧=⎨++<⎩,假设矩形ABCD 的顶点A 、D 在x 轴上,B 、C 在函数()y f x =的图象上,且()0,1A ,那么点D 的坐标为〔〕A .()2,0-B .(12,0)--C .(1,0)-D .1(,0)2-6.在ABC ∆中,“tan tan 1B C >〞是“ABC ∆为锐角三角形〞的〔〕7.如图,在长方体1111D C B A ABCD -中,点P 是棱CD 上一点,那么三棱锥A B A P 11-的左视图可能为ABCD8.函数()2sin(2)(0)f x x ϕπϕ=+-<<,将()f x 的图像向左平移3π个单位长度后所得的函数图像过点(0,1),那么函数()cos(2)g x x ϕ=+〔〕A .在区间(,)63ππ-上单调递减B .在区间(,)63ππ-上有最大值C .在区间(,)63ππ-上单调递增D .在区间(,)63ππ-上有最小值 9.定义在R 上的函数f (x )满足f (x+1)=f (1-x ),且在[1,+∞)上是增函数,不等式f (ax+2)≤f (x-1)对任意x ∈[,1]恒成立,那么实数a 的取值范围是〔〕A.[-3,-1]B.[-2,0]C.[-5,-1]D.[-2,1]10.记不等式组4326 4x y x y x y +≤⎧⎪-≥⎨⎪-≥⎩表示的区域为Ω,点P 的坐标为(),x y1:p P ∀∈Ω,0y ≤;2:p P ∀∈Ω,122x y -≥; 3:p P ∀∈Ω,665y -≤≤;4:p P ∃∈Ω,1125x y -=〕A .1p ,2p B .1p ,3pC .2p ,4pD .3p ,4p11.过点)12(-,P 作抛物线y x 42=的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,那么△PEF 与△OAB 的面积之比为(C)A .23B .43 C .21 D .41 12.设函数)(x f 在R 上存在导数)(x f ',R x ∈∀,有2)()(x x f x f =+-,在),0(+∞上x x f <')(,假设2(2)()220f m f m m m -+--+-≥,那么实数m 的取值范围为〔〕A .[1,1]-B .[1,+∞)C .[2,)+∞D .(,2][2,)-∞-+∞ 二、填空题:此题一共4小题,每一小题5分,一共20分。
高三(普通班)第一次大检测数学试题(理)含答案试卷分析详解

高三普通班第一次质量大检测理科数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数1iz i=-的实部为( )A .12B .2iC .-12D .-2i 2.集合,则P Q =( )A. (12],B. [12],C. ),1()3,(+∞⋃--∞D. [12), 3.设等差数列{}n a 的前n 项和为n S ,14a =,546S S S ≥≥,则公差d 的取值范围是 ( )A.81,9⎡⎤--⎢⎥⎣⎦ B.41,5⎡⎤--⎢⎥⎣⎦ C.84,95⎡⎤--⎢⎥⎣⎦D.[]1,0-4.已知“x a x b ≥⇒>”,且“x a x c <⇒≤”,则“x c ≤”是“x b ≤”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若的展开式中的系数为,则( )A .B .C .D . 6.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,在此正方形中任取一点,则此点取自阴影部分的概率是( )2101()()x a x x-+6x 30a =12-2-122A .B .C .D . 7.已知,则( ) A . B . C . D . 8.函数的大致图象为( )A .B .C .D .9.已知等差数列的前项和为,且,,则数列的前10项和为A.B. C. D. 10. 已知函数在上单调,且函数的图象关于对称,若数列是公差不为0的等差数列,且,则的前100项的和为A .B .C .D .11.已知,两直角边,是内一点,且, 设,则316381418tan()4πα-=sin 2α=79-7919-19()ln(1)f x x x =-+{}n a n n S 912162a a =+24a =1n S ⎧⎫⎨⎬⎩⎭1112101191089()f x (1,)-+∞(2)y f x =-1x ={}n a 5051()()f a f a ={}n a 200-100-050-Rt ABC 1,2AB AC ==D ABC ∆60DAB ∠=(,)AD AB AC R λμλμ=+∈λμ=A.C. D. 12.已知函数的定义域为,若对于分别为某个三角形的边长,则称为“三角形函数”.给出下列四个函数:①; ②;③;④.其中为“三角形函数”的个数是 A.B.C. D.第 Ⅱ 卷二.填空题:(本题共4小题,每小题5分,共20分) (13)若,且,则的最小值是__________ (14)若,则 +−+…+的值为(15)已知、、是球的球面上三点,,,,且棱锥的表面积为___________ (16)已知外接圆的半径为1,且.若,则的最大值为__________三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分 17.(本小题满分12分)已知数列}{n a 的前n 项和为n S ,且满足*4(1),3n n S a n N =-∈. (Ⅰ)求数列}{n a 的通项公式;(Ⅰ)令n n a b 2log =,记数列1(1)(1)n n b b ⎧⎫⎨⎬-+⎩⎭的前n 项和为n T .证明:1132n T ≤<.18.(本小题满分12分)33()f x D ,,,(),(),()a b c D f a f b f c ∀∈()f x 23()ln ()f x x e x e =≤≤()4cos f x x =-12()(14)f x x x =<<()1xx e f x e =+12340,0a b >>()ln 0a b +=11a b+()2018220180122018(12)x a a x a x a x x R +=++++∈12a -222a 332a 201820182a A B C O 2AB =AC =60ABC ∠=O ABC -O ABC ∆O BO BA BC λμ=+60ABC ∠=λμ+据统计,国庆中秋假日期间,黔东南州共接待游客590.23万人次,实现旅游收入48.67亿元,同比分别增长44.57%、55.22%.旅游公司规定:若公司导游接待旅客,旅游年总收入不低于40(单位:百万元),则称为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙两家旅游公司各有导游100名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:(Ⅰ)求,a b的值,并比较甲、乙两家旅游公司,哪家的影响度高?(Ⅰ)若导游的奖金y(单位:万元),与其一年内旅游总收入x(单位:百万元)之间的关系为12022040340xy xx<⎧⎪=≤<⎨⎪≥⎩,求甲公司导游的年平均奖金;(Ⅰ)从甲、乙两家公司旅游收入在[)50,60的总人数中,随机的抽取3人进行表彰,设来自乙公司的人数为ξ,求ξ的分布列及数学期望.19. 如图,四棱锥中,为等边三角形,且平面平面,,,.(Ⅰ)证明:;(Ⅱ)若直线与平面所成角为,求二面角的余弦值.20. 已知圆经过椭圆:的两个焦点和两个顶点,点,,是椭圆上的两点,它们在轴两侧,且的平分线在轴上,.分组频数b1849245[)20,30[)10,20[)30,40[)50,60[)40,50(Ⅰ)求椭圆的方程; (Ⅱ)证明:直线过定点.21.(本题满分12分)设函数f (x )=ax 2+b ,其中a ,b 是实数.(Ⅰ)若ab >0,且函数f [f (x )]的最小值为2,求b 的取值范围;(Ⅰ)求实数a , b 满足的条件,使得对任意满足xy =1的实数x , y ,都有f (x )+f (y )≥f (x )f (y )成立.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.[选修4-4:坐标系与参数方程]在平面直角坐标系中,曲线的参数方程为:(为参数,),将曲线经过伸缩变换:得到曲线.(1)以原点为极点,轴的正半轴为极轴建立极坐标系,求的极坐标方程; (2)若直线:(为参数)与,相交于,两点,且,求的值.23.[选修4-5:不等式选讲] 已知函数.(1)若的最小值不小于,求的最大值;(2)若的最小值为,求的值.xOy 1C cos sin x y θθ=⎧⎨=⎩θ[0,]θπ∈1C ''x xy =⎧⎪⎨=⎪⎩2C x 2C l cos sin x t y t αα=⎧⎨=⎩t 1C 2C AB 1AB =α()1()f x x a a R =--∈()f x 3a ()()2g x f x x a a =+++3a参考答案CAAB DCBA BBAC13. 4 14. -1 15.48 16.17.解:(I )当1=n 时,有1114(1)3a S a ==-,解得41=a . 当2≥n 时,有)1(3411-=--n n a S ,则 1144(1)(1)33n n n n n a S S a a --=-=---整理得:41=-n na a ∴ 数列}{n a 是以4q =为公比,以41=a 为首项的等比数列.∴ 1*444(n n n a n N -=⨯=∈)即数列}{n a 的通项公式为:*4(n n a n N =∈). ……………………………6分 (II )由(I )有22log log 42nn n b a n ===,则11111=(1)(1)(21)(21)22121n n b b n n n n ⎛⎫=- ⎪+-+--+⎝⎭∴ n T )12)(12(1751531311-++⋅⋅⋅+⨯+⨯+⨯=n n )]121121()7151()5131()3111[(21+--+⋅⋅⋅+-+-+-=n n )1211(21+-=n 易知数列{}n T 为递增数列∴ 112n T T ≤<,即2131<≤n T . ………………………………………12分 18.解:(I )由直方图知:()0.010.0250.0350.01101a ++++⨯=,有0.02a =, 由频数分布表知:1849245100b ++++=,有4b =.∴ 甲公司的导游优秀率为:()0.020.0110100%30%+⨯⨯=;乙公司的导游优秀率为:245100%29%100+⨯=; 由于30%29%>,所以甲公司的影响度高. ………………………4分π(II )甲公司年旅游总收入[)10,20的人数为0.011010010⨯⨯=人;年旅游总收入[)20,40的人数为()0.0250.0351010060+⨯⨯=人; 年旅游总收入[)40,60的人数为()0.020.011010030+⨯⨯=人; 故甲公司导游的年平均奖金1106023032.2100y ⨯+⨯+⨯==(万元). ……8分 (III )由已知得,年旅游总收入在[)50,60的人数为15人,其中甲公司10人,乙公司5人.故ξ的可能取值为0,1,2,3,易知:()31031524091C p C ξ===; ()2110531545191C C p C ξ===; ()1210531520291C C p C ξ===; ()353152391C p C ξ===.∴ ξ的分布列为:∴ ξ的数学期望为:2445202()0123191919191E ξ=⨯+⨯+⨯+⨯=. …………12分 19.【答案】证明见解析;(Ⅱ).【解析】试题分析: (Ⅰ)取的中点为,连接,,结合条件可证得平面,于是,又,故可得.(Ⅱ)由题意可证得,,两两垂直,建立空间直角坐标系,通过求出平面和平面的法向量可求解本题.试题解析: 证明:(Ⅰ)取的中点为,连接,,∵为等边三角形,∴.在底面中,可得四边形为矩形,∴,∵,∴平面,∵平面,∴.又,∴.(Ⅱ)∵平面面,,∴平面,由此可得,,两两垂直,建立如图所示的空间直角坐标系.∵直线与平面所成角为,即,由,知,得.则,,,,,,,设平面的一个法向量为.由,得.令,则.设平面的一个法向量为,由,得.令,则,∴,由图形知二面角为钝角,∴二面角的余弦值为.20.【答案】(Ⅰ).(Ⅱ)直线过定点.【解析】【试题分析】(I)根据圆的半径和已知,故,由此求得椭圆方程.(II)设出直线的方程,联立直线方程与椭圆方程,写出韦达定理,写出的斜率并相加,由此求得直线过定点.【试题解析】(Ⅰ)圆与轴交点即为椭圆的焦点,圆与轴交点即为椭圆的上下两顶点,所以,.从而,因此椭圆的方程为:.(Ⅱ)设直线的方程为.由,消去得.设,,则,.直线的斜率;直线的斜率..由的平分线在轴上,得.又因为,所以,所以.因此,直线过定点.21.解:(1)由题, f [f (x )]=a 3x 4+2a 2bx 2+ab 2+b ,记t =x 2当ab >0时,二次函数b ab bt a t a y +++=22232的对称轴abt -=<0, 显然当0<a 时,不符合题意,所以0,0>>b a , 所以当0=t 时,f [f (x )]取到最小值,即有22=+b ab从而 02>-=bbab ,解得20<<b ; (2)∵ 1xy =,即1y x=,且()()()()f x f y f x f y +≥,∴ ()()11f x f f x f x x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≥,即22222211()2()a x b ab x a b x x +++++≥.令221[2,)t x x=+∈+∞,则22(1)2a b t a b b -+-≥要恒成立,需要(1)0a b -≥,此时(1)y a b t =-在[2,)+∞上是增函数,所以222(1)2a b a b b -+-≥,即2()2()0a b a b +-+≤,⇒02a b +≤≤ 所以实数a ,b 满足的条件为(1)002a b a b -⎧⎨+⎩≥≤≤22.解:(1)的普通方程为,把,代入上述方程得,, ∴的方程为. 令,, 所以的极坐标方程为. (2)在(1)中建立的极坐标系中,直线的极坐标方程为,由得,由得1C 221(0)x y y +=≥'x x ='y y =22''1('0)3y x y +=≥2C 221(0)3y x y +=≥cos x ρθ=sin y ρθ=2C 22233cos sin ρθθ=+232cos 1θ=+([0,])θπ∈l ()R θαρ=∈1ρθα=⎧⎨=⎩1A ρ=2232cos 1ρθθα⎧=⎪+⎨⎪=⎩ρ=第11页 共11页,∴. 而,∴或. 23.解:(1)因为,所以,解得,即. (2).当时,,,所以不符合题意.当时,,即,所以,解得.当时,同法可知,解得.综上,或.11=1cos 2α=±[0,]απ∈3πα=23πmin ()(1)f x f a ==-3a -≥3a ≤-max 3a =-()()2g x f x x a a =+++12x x a =-++1a =-()310g x x =-≥03≠1a =-1a <-(1)2(),()(1)2(),1(1)2(),1x x a x a g x x x a x a x x a x -++≥-⎧⎪=--+≤<-⎨⎪---+<⎩312,()12,1312,1x a x a g x x a x a x a x -+≥-⎧⎪=---≤<-⎨⎪-+-<⎩min ()()13g x g a a =-=--=4a =-1a >-min ()()13g x g a a =-=+=2a =2a =4-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第一次质量检测 数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有 一项是符合题目要求的. 1 若复数,i 为虚数单位)是纯虚数,则实数a 的值为A 6B -6C 5D -4 2 函数的图像大致是3. m 、n 是不同的直线,α、β、γ是不同的平面,有以下四命题: ① 若γαβα//,//,则γβ//; ②若αβα//,m ⊥,则β⊥m ; ③ 若βα//,m m ⊥,则βα⊥; ④若α⊂n n m ,//,则α//m . 其中真命题的序号是 ( )A .①③B .①④C .②③D .②④4.设函数()3)sin(2)(||)2f x x x πϕϕϕ=+++<,且其 图象关于直线0x =对称,则 ( ) A.()y f x =的最小正周期为π,且在(0,)2π上为增函数 B.()y f x =的最小正周期为π,且在(0,)2π上为减函数C.()y f x =的最小正周期为2π,且在(0,)4π上为增函数 D.()y f x =的最小正周期为2π,且在(0,)4π上为减函数5.如右图,若程序框图输出的S 是126,则判断框①中应为 ( )A .?5≤nB .?6≤nC .?7≤nD .?8≤n6.若定义在R 上的偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,(),f x x =则方程3()log ||f x x =的解个数是 ( )A .0个B .2个C .4个D .6个7.若{}n a 是等差数列,首项公差0d <,10a >,且201320122013()0a a a +>,则使数列{}n a 的前n 项和0n S >成立的最大自然数n 是 ( )A .4027B .4026C .4025D .40248.已知00(,)M x y 为圆222(0)x y a a +=>内异于圆心的一点,则直线200x x y y a +=与该圆的位置关系是 ( ) A 、相切 B 、相交 C 、相离 D 、相切或相交 9.已知n 为正偶数,用数学归纳法证明11111111...2(...)2341242n n n n-+-++=++++++ 时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( )A .1n k =+B .2n k =+C .22n k =+D .2(2)n k =+10. 已知向量α、β、γ满足||1α=,||||αββ-=,()()0αγβγ-⋅-=.若对每一确定的β,||γ的最大值和最小值分别为m 、n ,则对任意β,m n -的最小值是 ( )A .12B .1C .2D第Ⅱ卷(共100分)二、填空题:本大题共共5小题,每小题5分,共25分11.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射 疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射 了疫苗的鸡的数量平均为 万只.3主视图 俯视图侧视图12.二项式1022⎪⎪⎭⎫⎝⎛+x x 展开式中的第________项是常数项.13.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.14.已知z=2x +y ,x ,y 满足,2,,y x x y x a ≥⎧⎪+≤⎨⎪≥⎩且z 的最大值是最小值的4倍,则a 的值是 .15.给出如下四个结论:① 若“p 且q ”为假命题,则p 、q 均为假命题;② 命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”; ③ 若随机变量~(3,4)N ζ,且(23)(2)P a P a ζζ<-=>+,则3a =;④ 过点A (1,4),且横纵截距的绝对值相等的直线共有2条. 其中正确结论的序号是______________________________.三、解答题:本大题共共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤16. (本小题满分12分)已知函数()23sin cos cos f x x x x m =-+()R m ∈的图象过点π(,0)12M . (Ⅰ)求m 的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若cos +cos =2cos c B b C a B ,求()f A 的取值范围. 17.(本小题满分12分)已知函数()e x f x tx =+(e 为自然对数的底数).(Ⅰ)当e t =-时,求函数()f x 的单调区间;(Ⅱ)若对于任意(0,2]x ∈,不等式()0f x >恒成立,求实数t 的取值范围. 18.(本小题满分12分)如图,已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC=AD=CD=DE=2,AB=1,F 为CD 的中点.(Ⅰ)求证:AF ⊥平面CDE ;(Ⅱ)求面ACD 和面BCE 所成锐二面角的大小.19.(本小题满分12分)某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。
规定:至少正确完成其中2题的便可提交通过。
已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是32,且每题正确完成与否互不影响。
(Ⅰ)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望; (Ⅱ)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.20.(本小题满分13分)已知(1,0)F , P 是平面上一动点, P 到直线:1l x =-上的射影为点N ,且满足1()02PN NF NF +•= (Ⅰ)求点P 的轨迹C 的方程; (Ⅱ)过点(1,2)M 作曲线C 的两条弦,MA MB , 设,MA MB 所在直线的斜率分别为12k k ,, 当12k k ,变化且满足121k k +=-时,证明直线AB 恒过定点,并求出该定点坐标.21. (本小题满分14分) 已知数列{}n a 满足:232121...2nn a a a a n n λλλ-++++=+(其中常数*0,n N λ>∈).(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求证:当4λ=时,数列{}n a 中的任何三项都不可能成等比数列;(Ⅲ)设n S 为数列{}n a 的前n 项和.求证:若任意*n N ∈,(1)3n n S a λλ-+≥参考答案一、ACABB CDCB A二、11,90;12,九;13,3;14,14;15,②④16.解:(Ⅰ)由11()2(1cos 2)sin(2)2262f x x x m x m π=-++=-+-……… 3分 因为点(,0)12M π在函数()f x 的图象上,所以1sin(2)01262m ππ⋅-+-= 解得:12m = ……………………5分(Ⅱ)因为2ccos B bcosC acos B +=,所以sin cos sin cos 2sin cos C B B C A B +=所以sin()2sin cos B C A B +=,即sin 2sin cos A A B = 又因为(0,)A π∈,所以sin 0A ≠,所以1cos 2B = …………………… 9分 又因为(0,)B π∈,所以2,33B AC ππ=+=所以270,23666A A ππππ<<-<-<,所以1sin(2),162A π⎛⎤-∈- ⎥⎝⎦所以()f A 的取值范围是1,12⎛⎤-⎥⎝⎦……………………12分 17.解:(Ⅰ)当e t =-时,()e e x f x x =-,()e e x f x '=-. 由()e e >0x f x '=-,解得1x >;()e e <0x f x '=-,解得1x <.∴函数()f x 的单调递增区间是(1,)+∞;单调递减区间是(,1)-∞. ……………… 5分(Ⅱ)依题意:对于任意(0,2]x ∈,不等式()0f x >恒成立,即e 0xtx +>即e xt x>-在(0,2]x ∈上恒成立.令e ()x g x x =-,∴2(1)e ()xx g x x -'=.当01x <<时,()0g x '>;当12x <<时,()0g x '<. ∴函数()g x 在(0,1)上单调递增;在(1,2)上单调递减.所以函数()g x 在1x =处取得极大值(1)e g =-,即为在(0,2]x ∈上的最大值.∴实数t 的取值范围是(,)e -+∞. …………………… 12分18.解:(Ⅰ)∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又∵AC=AD ,F 为CD 中点,∴AF ⊥CD ,因CD ∩DE=D ,∴AF ⊥平面CDE. ……………… 4分(Ⅱ)取CE 的中点Q ,连接FQ ,因为F 为CD 的中点,则FQ ∥DE ,故DE ⊥平面ACD ,∴FQ ⊥平面ACD ,又由(Ⅰ)可知FD ,FQ ,FA 两两垂直,以O 为坐标原点,建立如图坐标系, 则F (0,0,0),C (1-,0,0),A (0,0,3),B (0,1,3),E (1,2,0).(1,1,3),(2,2,0)CB CE == ………………6分设面BCE 的法向量(,,)n x y z =,则0,0,n CB n CE ⎧⋅=⎪⎨⋅=⎪⎩ 即30,220,x y z x y ⎧++=⎪⎨+=⎪⎩取(1,1,0)n =-.又平面ACD 的一个法向量为(0,1,0)FQ =,∴ 0102cos ,||||2FQ n FQ n FQ n ⋅-+<>===.∴面ACD 和面BCE 所成锐二面角的大小为45°.19,解:(Ⅰ)设考生甲、乙正确完成实验操作的题数分别为ξ,η,则ξ的取值分别为1、2、3,η的取值分别,0、1、2、3,122130424242333666131(1),(2),(3)555C C C C C C P P P C C C ξξξ========= 所以考生甲正确完成实验操作的题数的概率分布列为:ξ 1 23P15 35 15131()1232555E ξ=⋅+⋅+⋅= ………………5分因为2~(3,)3B η,所以考生乙正确完成实验操作的题数的概率分布列为:η0 1 2 3P127 627 1227 827 16128()0123227272727E η=⋅+⋅+⋅+⋅= ………………8分(Ⅱ)因为31412820(2),(2)555272727P P ξη≥=+=≥=+= 所以(2)(2)P P ξη≥>≥ ………………10分从做对题的数学期望考察,两人水平相当;从至少正确完成2题的概率考察,甲通过的可能性大,因此可以判断甲的实验操作能力较强。