计算机各进制换算

合集下载

各种进制转换

各种进制转换

各种进制转换
进制是数学中的一个重要概念,它指的是数的表示方式。

在计算机科学中,常用的进制有二进制、八进制和十六进制。

不同进制下的数在形式上有所差异,但其本质并没有变化。

二进制是计算机中最基础的进制,它只包含两个数字0和1。

二进制常用于表示计算机中的数据。

我们可以通过将十进制数不断地除以2,来将十进制数转换为二进制数。

例如,将十进制数13转换为二进制数,我们可以依次进行以下操作:
13 ÷ 2 = 6 余 1
6 ÷ 2 = 3 余 0
3 ÷ 2 = 1 余 1
1 ÷
2 = 0 余 1
将以上余数倒序排列,得到的二进制数为1101。

八进制和十六进制,分别包含8和16个数字。

它们常用于表示计算机中的颜色、地址和编码等数据。

八进制和十六进制数的转换同样可以通过不断地除以对应的进制数来实现。

例如,将十进制数100转换为八进制数,则可以依次进行以下操作:
100 ÷ 8 = 12 余 4
12 ÷ 8 = 1 余 4
1 ÷ 8 = 0 余 1
将以上余数倒序排列,得到的八进制数为144。

类似地,将十进制数100转换为十六进制数,可以依次进行以下
操作:
100 ÷ 16 = 6 余 4
6 ÷ 16 = 0 余 6
将以上余数倒序排列,得到的十六进制数为64。

总之,进制转换是计算机科学中的一项基本技能,它可以帮助我们更好地理解和处理计算机中的数据。

计算机各进制换算

计算机各进制换算

计算机各进制换算现代社会中,计算机几乎遍布各个角落,成为人们工作、学习、娱乐的重要工具。

而作为计算机的基础,进制转换是我们在编程和计算中必不可少的一项技能。

本文将为大家介绍计算机中常见的进制,以及如何进行各进制间的转换。

一.十进制在计算机中,我们最常用的进制是十进制。

十进制采用0-9这十个数字进行计数,每一位的权重是按照10的倍数逐级增加的。

例如数字3876,我们可以将其拆分为千位(3)、百位(8)、十位(7)和个位(6)。

其计算方式为:3876 = 3 * 10^3 + 8 * 10^2 + 7 * 10^1 + 6 * 10^0在计算机中,十进制数常被表示为一串数字,例如3876即表示为3876。

二.二进制二进制由0和1两个数字组成,是计算机内部最基本的进制。

在计算机中,所有数据都是以二进制形式进行存储和运算的。

例如数字1001,我们可以将其拆分为千位(1)、百位(0)、十位(0)和个位(1)。

其计算方式为:1001 = 1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0在计算机中,二进制数通常以0b开头表示,例如1001即表示为0b1001。

三.八进制八进制由0-7这八个数字组成,每一位的权重是按照8的倍数逐级增加的。

例如数字235,我们可以将其拆分为百位(2)、十位(3)和个位(5)。

其计算方式为:235 = 2 * 8^2 + 3 * 8^1 + 5 * 8^0在计算机中,八进制数通常以0o开头表示,例如235即表示为0o235。

四.十六进制十六进制由0-9这十个数字和A-F这六个字母组成,每一位的权重是按照16的倍数逐级增加的。

例如数字4AF,我们可以将其拆分为千位(4)、百位(A)和个位(F)。

其中字母A-F分别表示十进制的10-15。

其计算方式为:4AF = 4 * 16^2 + 10 * 16^1 + 15 * 16^0在计算机中,十六进制数通常以0x开头表示,例如4AF即表示为0x4AF。

二进制,八进制,十进制,十六进制之间的转换

二进制,八进制,十进制,十六进制之间的转换

二进制,八进制,十进制,十六进制之间的转换1.什么是二进制二进制是计算技术中广泛采用的一种数制。

二进制数据是用0和1两个数码来表示的数。

它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。

当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。

计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。

信息的存储单位位(Bit) :度量数据的最小单位字节(Byte):最常用的基本单位,一个字节有8位b7 b6 b5 b4 b3 b2 b1 b01 0 0 1 0 1 0 1 =27+24+22+20=149K字节1k=1024 byteM(兆)字节 1M=1024KG(吉)字节 1G=1024MT(太)字节 1T=1024G曾经听人说,一个c,c++大神,就靠输入,0和1就可以装好操作系统,不知道是不是真的,嘿嘿2.十进制转换1234[10进制] 0 1 2 3 4 5 6 7 8 9 0 当数位上的值超过9就要进11000+200+30+4=1*103+2*102+3*101+4*100=12341011[2进制] 0 1 当数位上的值超过1就要进11*23+0*22+1*21+1*20=8+0+2+1=111011[8进制]0 1 2 3 4 5 6 7 当数位上的值超过7就要进11*83+1*81+1*80=512+8+1=5211011[16进制]0 1 2 3 4 5 6 7 8 9 A B C D E F 当数位上的值超过15就要进1 1*163+1*161+1*160=4096+16+1=4113当然其他进制转换成10进制是最简单的了,我想聪明的你肯定会了。

3.二进制转换首先来看十进制到二进制:除2取余数最后把余数倒过来 100101比如:十进制数37所以转换成的二进制数字为:100101再来八进制到二进制:一个八进制的位拆分成一个三位的二进制数比如:[八进制]6166拆分成 1101拆分成0016拆分成110所以转换成的二进制数字为:110001110再来十六进制到二进制:一个八进制的位拆分成一个四位的二进制数比如:[十六进制]6166拆分成01101拆分成00016拆分成0110所以转换成的二进制数字为:110000101104.八进制转换十进制到八进制:除8取余数最后把余数倒过来同时我们也可以先将十进制转换成二进制,然后将二进制又转换成八进制比如:2456 转化成八进制数字:46302456/8=307,余0;307/8=38,余3;38/8=4,余6;4/8=0,余4。

计算机进制之间的转换,十进制转二进制换算

计算机进制之间的转换,十进制转二进制换算

计算机进制之间的转换,⼗进制转⼆进制换算1. ⾸先我们要明⽩为什么会有不同进制,进制的作⽤是什么?进制的作⽤就是⽤来计数,不同进制可以视为不同的对象使⽤的计数⽅式不同,⽐如⼈从⼩学习的是⼗进制,使⽤的⾃然也就是⼗进制来计算,计算机使⽤⼆进制来计算⼆进制主要是⽤0,1来标识,⼋进制主要是0-7来标识,⼗进制主要0-9来标识,16进制,⽤过0-9+A-F来标识,字母不区分⼤⼩写2. 不同进制之间的计算⼝诀1、⼗六进制→⼆进制:“1位变4位”2、⼋进制→⼆进制:“1位变3位”3、⼆进制→⼗六进制:左边数四位为⼀组,不⾜⼀组前⾯⽤0补齐4、⼆进制→⼋进制:左边数三位为⼀组,不⾜⼀组前⾯⽤0补齐5、⼗进制→⼋进制:这个数除以⼋取余。

从下往上数。

6、⼗进制→⼆进制:这个数除以⼆取余,从下往上数。

7、⼗进制→⼗六进制:这个数除以⼗六取余,从下往上数3. 实际举例,⼗进制10转化各进制如何转化⼀个数除以另⼀个数,要是⽐另⼀个数⼩的话,商为0,余数就是它⾃⼰1.⼗进制转⼆进制--->⼗进制→⼆进制:这个数除以⼆取余,从下往上数。

10/2 5余数05/2 2余数12/2 1余数01/2 0余数12.⼆进制转⼗进制,还是⽤上⾯的例⼦来举例,⼆进制1010,按权展开求和,⼆进制的权为2,⼋进制的权为8⽐如从左数的第⼀位1,在它前⾯还有3位,那么它的次数就是为312的三次⽅+所以1010转化未⼗进制实际上就是:12的三次⽅ = 802的⼆次⽅ = 012的⼀次⽅ = 20*2的零次⽅ = 0最终结果就是104. ⼆进制转8进制,⼆进制→⼋进制:左边数三位为⼀组,不⾜⼀组前⾯⽤0补齐,1010第⼀位是010,2 个位第⼆位是001,1 ⼗位所以应该是8进制的125. ⼆进制转16进制,左边数四位为⼀组,不⾜⼀组前⾯⽤0补齐第⼀位:1010,0000 -->00001 -->10010 -->20011 -->30100 -->40101 -->5.....1111 -->F5. 16进制转⼆进制6. 8进制转16进制7. 8进制转10进制8. 8进制转⼆进制9. 16进制转8进制10. 16进制转10进制。

二进制和十六进制怎么转换

二进制和十六进制怎么转换

二进制和十六进制怎么转换一、二进制转十六进制各种进制之间的转换方法:一、不同的进位制数转化为十进制数:按权展开相加十进制是权是10;二进制是权是2;十六进制是权是16;八进制是权是8;例:110011(二进制数)=1*2^5+1*2^4+0*2^3+0*2^2+1*2^1+1*2^0=32+16+2+1=51 1507(八进制数)=1*8^3 + 5*8^2 + 0*8^1 + 7*8^0 = 8392AF5(十六进制数)=2*16^3 + A*16^2+ F*16^1 + 5*16^0 = 10997二、十进制数化为不同进制数整数部分:除权取余;小数部分:乘权取整例:十进制数13转化成二进制数13/2=6 余16/2=3 余03/2=1 余11/2=0 余1结果:1101三、二进制换算八进制将二进制数从右到左,三位一组,不够补0例:二进制数10110111011换八进制数:010 110 111 011结果为:2673四、二进制转换十六进制二进制数转换为十六进制数的方法也类似,从右到左,四位一组,不够补0如上题:0101 1011 1011结果为:5BB二、简介进制在基数b的位置记数系统(其中b是一个正自然数,叫做基数),b个基本符号(或者叫数字)对应于包括0的最小b个自然数。

要产生其他的数,符号在数中的位置要被用到。

最后一位的符号用它本身的值,向左一位其值乘以b。

一般来讲,若b是基底,我们在b进制系统中的数表示为的形式,并按次序写下数字a0a1a2a3...ak。

这些数字是0到b-1的自然数 [3] 。

一般来讲,b进制系统中的数有如下形式:数和是相应数字的比重 [3] 。

二进制计数17世纪至18世纪的德国数学家莱布尼茨,是世界上第一个提出二进制记数法的人。

用二进制记数,只用0和1两个符号,无需其他符号 [4] 。

二进制数据也是采用位置计数法,其位权是以2为底的幂。

例如二进制数据110.11,逢2进1,其权的大小顺序为2²、2¹、2º、、。

计算机各进制换算

计算机各进制换算

计算机各进制换算⼀:⼗进制数转换成⼆进制数。

随便拿出⼀个⼗进制数“39”,(假如你今天买书⽤了39元)先来把这个39转换成2进制数。

商余数步数39/2= 19 1第⼀步19/2= 9 1 (这⾥的19是第⼀步运算结果的商)第⼆步9/2= 4 1 (这⾥的9是第⼆步运算结果的商)第三步4/2= 2 0 (这⾥的4是第三步运算结果的商)第四步2/2= 1 0 (这⾥的2是第四步运算结果的商)第五步1/2= 0 1 (这⾥的1是第五步运算结果的商)第六步那么⼗进制数39转换成2进制数就是100111. 既39(10)=100111(2)解析⼀:1. 当要求把⼀个10进制数转换成2进制数的时候,就⽤那个数⼀直除以2得到商和余数。

2. ⽤上⼀步运算结果的商在来除以2,再来得到商和余数。

3. 就这样,⼀直⽤上⼀步的商来除以2,得到商和余数!那么什么时候停⽌呢?4. 请看上述运算图,第六步的运算过程是⽤1除以2.得到的商是0,余数是1. 那么请你记住,记好了啊共2点。

A: 当运算到商为“0”的时候,就不⽤运算了。

B:1/2的商为“0”余数为“1”。

这个你要死记住,答案并不是0.5!答案就是商为“0”余数为“1”。

你不⽤去思考为什么,记好了就⾏了!5. 在上述图中你会清晰的看到每⼀步运算结果的余数,你倒着把它们写下来就是“100111”了。

那么这个就是结果了。

6. 在上述图中符号“/”代表“除以”。

⼆:⼗进制数转换成⼋进制数。

随便拿出⼀个⼗进制数“358”,(假如你今天买彩票中了358元)。

358是我们现实⽣活中所⽤10进制表达出来的⼀个数值,转换成⼋进制数⼗多少?商余数步数358/8= 44 6第⼀步44/8= 5 4 (这⾥的44是第⼀步运算结果的商)第⼆步5/8= 0 5 (这⾥的5是第⼆步运算结果的商)第三步那么⼗进制数358转换成8进制数就是546。

既358(10)=546(8)解析⼆: 1.没什么好说的啦,10进制数转换成2进制数和10进制数转换成8进制数的唯⼀不⼀样的地⽅就是除数变了,除数由“2” 变成了“8”。

十进制、二进制、八进制、十六进制之间的换算规律

十进制、二进制、八进制、十六进制之间的换算规律

◆十进制转二进制:二进制是计算技术中广泛采用的一种数制。

二进制数据是用0和1两个数码来表示的数。

它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。

当前计算机系统使用的基本上是二进制系统。

用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余0故二进制为100101110◆二进制转十进制从最后一位开始算,依次列为第0、1、2...位第n位的数(0或1)乘以2的n次方得到的结果相加就是答案例如:01101011.转十进制:第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.二进制01101011=十进制107.好了,现在对二进制和十进制之间的换算有了初步的了解了吧,下面,我们就进一步深入了解二者之间的其他换算规律:二进制转十进制,十进制转二进制的算法一、二进制数转换成十进制数由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。

这种做法称为"按权相加"法。

二、十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。

1. 十进制整数转换为二进制整数十进制整数转换为二进制整数采用"除2取余,逆序排列"法。

具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

二进制,十六进制,八进制的换算

二进制,十六进制,八进制的换算

0,16,2进制的互相转换所谓16进制,就是由0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F共16个数字组成。

逢16进⼀位,下⾯就讲讲在没有任何⼯具的情况下如何将⼀10进制转化为16进制:1000除以16得62余8,那么最低位为8,再将62除以16得3余14,那么倒数第2为E(14对于16进制来说是E),3⽐16⼩了,所以不⽤继续除了,总的就是3E8,为1000的16进制数。

想要将16进制的数转化为10进制,只需将上⾯的步骤反过来做就可以了。

不⽤我多说吧!2进制仅由0、1两个数字组成,逢1进⼀。

要将⼀10进制化为2进制,介绍⼀个简单的⽅法,先将10进制的数化为16进制,再化为2进制,举个例⼦:515对应16进制为203H,将203转为2进制则为0010(2) 0000(0) 0011(3),⼀个位数对2进制来说是4个字符。

0H就是0000、1H就是0001、……、0EH就是1110、OFH为1111,⼤家可⾃⼰推⼀下。

总之⼤家⼀定要熟练掌握各个进制的互相转化,尤其是100以内10--16和16--10的互相转化要记住。

16-10H、32-20H、48-30H、64-40H、80-50H、96-60H、100-64H,255-FFH,65535-FF FFH,1677万-FF FF FFH,前为10进制,后有H的为16进制,这些能记住,以后修改就⽅便许多了。

⼆进制⼆进制是逢2进位的进位制,0、1是基本算符。

现代的电⼦计算机技术全部采⽤的是⼆进制,因为它只使⽤0、1两个数字符号,⾮常简单⽅便,易于⽤电⼦⽅式实现。

⼆进制四则运算规则 加法 0+0=0,0+1=1+0=1,1+1=10 减法 0-0=0,1-0=1,1-1=0,0-1=-1 乘法 0×0=0,0×1=1×0=0,1×1=1 除法 0÷1=0,1÷1=1⼀、什么是⼆进制 在现实⽣活和记数器中,如果表⽰数的“器件”只有两种状态,如电灯的“亮”与“灭”,开关的“开”与“关”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一:十进制数转换成二进制数。

随便拿出一个十进制数“39”,(假如你今天买书用了39元)先来把这个39转换成2进制数。

商余数步数39/2= 19 1第一步19/2= 9 1 (这里的19是第一步运算结果的商)第二步9/2= 4 1 (这里的9是第二步运算结果的商)第三步4/2= 2 0 (这里的4是第三步运算结果的商)第四步2/2= 1 0 (这里的2是第四步运算结果的商)第五步1/2= 0 1 (这里的1是第五步运算结果的商)第六步那么十进制数39转换成2进制数就是100111. 既39(10)=100111(2)解析一:1. 当要求把一个10进制数转换成2进制数的时候,就用那个数一直除以2得到商和余数。

2. 用上一步运算结果的商在来除以2,再来得到商和余数。

3. 就这样,一直用上一步的商来除以2,得到商和余数!那么什么时候停止呢?4. 请看上述运算图,第六步的运算过程是用1除以2.得到的商是0,余数是1. 那么请你记住,记好了啊共2点。

A: 当运算到商为“0”的时候,就不用运算了。

B:1/2的商为“0”余数为“1”。

这个你要死记住,答案并不是0.5!答案就是商为“0”余数为“1”。

你不用去思考为什么,记好了就行了!5. 在上述图中你会清晰的看到每一步运算结果的余数,你倒着把它们写下来就是“100111”了。

那么这个就是结果了。

6. 在上述图中符号“/”代表“除以”。

二:十进制数转换成八进制数。

随便拿出一个十进制数“358”,(假如你今天买彩票中了358元)。

358是我们现实生活中所用10进制表达出来的一个数值,转换成八进制数十多少?商余数步数358/8= 44 6第一步44/8= 5 4 (这里的44是第一步运算结果的商)第二步5/8= 0 5 (这里的5是第二步运算结果的商)第三步那么十进制数358转换成8进制数就是546。

既358(10)=546(8)解析二: 1.没什么好说的啦,10进制数转换成2进制数和10进制数转换成8进制数的唯一不一样的地方就是除数变了,除数由“2” 变成了“8”。

其余的都一样。

所以解析一,你一定要看明白并记好。

2.你或许会疑问5/8为什么商为“0” 余数为“5”。

因为5不够被8除,那么商就是“0”余数就是“5” 同理1/2商为“0”余数为“1”。

不多解释了啊!三:十进制数转换成十六进制数。

随便拿出一个十进制数“120”,(假如你今天捡了120元)。

120是我们现实生活中所用10进制表达出来的一个数值,转换成十六进制数十多少?商余数步数120/16= 7 8第一步7/16= 0 7 (这里的7是第一步运算结果的商)第二步@4那么十进制数120转换成16进制数就是78,既120(10)=78(16)。

解析三:上同,看明白并记好解析一和解析二就可。

到这里,我想我已经把10进制数转化成2进制数,8进制数,16进制数已经给你讲的很明白了。

在这里你就可以看到,十进制数148转换成2进制8进制16进制所得到数的长度是不是在逐渐缩短。

这就是所谓的“进制越大,数的表达长度越短” 。

那么接下来我来给你讲解2进制数,8进制数,16进制数怎样转换成10进制数。

四:2进制数转换成10进制数。

就拿这个数吧“111101”。

位置第5位第4位第3位第2位第1位第0位数值 1 1 1 1 0 1111101(2)= 1*2的0次方+ 0*2的1次方+ 1*2的2次方+ 1*2的3次方+ 1*2的4次方+ 1*2的5次方= 1*1 + 0*2 + 1*4 + 1*8 + 1*16 +1*32= 1 + 0 + 4 + 8 + 16 + 32= 61(10)解析一: 1. “2的0次方”其实是一个数学表达式,但我打不出来那种数学的格式,就用纯汉语了。

“2”就是基数,“0”就是次方数。

2的0次方,最后的结果是1!记好了啊,任何数的0次方结果都是“1”.说到这里就出来了一个很具争论的问题,那就是0的0次方是等于“1”还是“0”?当然你没必要去研究了啊。

你只要记住2的0次方=“1”,8的0次方=“1”,16的0次方=“1”等于“1”就可以了。

2. “1*2的0次方”中的1是第0位上的数。

那么为什么要乘以2的0次方呢?因为它是2进制数,而且这个1处在第0位。

3.“0*2的1次方”中的0是第1位上的数。

那么为什么要乘以2的1次方呢?因为它是2进制数,而且这个0处在第1位。

4.“1*2的2次方”中的1是第2位上的数。

那么为什么要乘以2的2次方呢?因为它是2进制数,而且这个1处在第2位。

5. 后面的2的3次方,2的4次方,2的5次方,就不用我多解释了吧。

6. 将计算出来的数相加,就是这个2进制数转换成10进制数的结果。

7. 还要注意一点,一个2进制数从右边开始的第一个数位是“第0位”而不是“第1位”,要记好了啊。

看看我上面给你做的图示。

其实把8进制数,16进制数转换成10进制数,唯一变的地方就是基数变了。

我给你分别个例子,你在对照上面的解析四,我相信这些你都会搞明白的。

8进制数转换成10进制数。

224(8)=?(10)第0位4*8的0次方= 4第1位2*8的1次方=16第2为2*8的2次方=1284+16+128=148@6那么224(8)=148(10)352(8)=?(10)8进制数352的第0位为“2”,第1位为“5”, 第2位为“3”第0位2*8的0次方=2第1位5*8的1次方=40第2位3*8的2次方=1922+40=192=234那么352(8)=234(10)16进制数转换成10进制数2AF5(16)=?(10)16进制数2AF5的第0位为“5”,第1位为“F”, 第2位为“A” 第3位为“2”第0位5*16的0次方=5第1位F*16的1次方=240第2位A*16的2次方=2560第3位2*16的3次方=81925+240+2560+8192=10997那么2AF5(16)=10997(10)或许你对A和F看不懂吧?没事,往下看。

@7在2进制中只有2个数字,既1,0在8进制中只有8个数字,既0,1,2,3,4,5,6,7在10进制中有10个数字,既0,1,2,3,4,5,6,7,8,9在16进制中有10个数字和6个字母,既0,1,2,3,4,5,6,7,8,9和A,B,C,D,E,F, 字母A代表数字10,字母B代表数字11,字母C代表数字12,字母D代表数字13,字母E代表数字14,字母F代表数字15,那么F*16的1次方=240和A*16的2次方=2560 你明白了吧?2AF5(16)=10997(10)你也该明白了吧。

其实你学习到这里,基本上都应该会10进制,2进制,8进制,16进制之间的相互转换了吧!你要考虑一个问题,出了一道题,将一个2进制数转化成16进制数!你会做吗?最笨的办法就是先把2进制数转换成10进制数,在转化成16进制数。

当然有简单的把法。

你需要记住一些常用的就好了。

那些事常用的,往下看!二进制数(仅4位的2进制数) = 十进制数= 16进制数0000 = 0 = 00001 = 1 = 10010 = 2 = 20011 = 3 = 30100 = 4 = 40101 = 5 = 50110 = 6 = 60111 = 7 = 71000 = 8 = 81001 = 9 = 91010 = 10 = A1011 = 11 = B1100 = 12 = C1101 = 13 = D1110 = 14 = E1111 = 15 = F当你能熟练记住这些常用的,那么做2进制数与16进制数相互转换的时候就很轻松了。

来给你举个例子看看啊。

111111011010010110011011(这是一个2进制数)先把它所包含的数字分成4个4个在一块,如下所示:1111 1101 1010 0101 1001 1011根据上述常用表可以得到1111=F1101=D1010=A0101=51001=91011=B那么它所对应的16进制数就是“FDA59B”同理给你一个16进制数,怎么快速转换成2进制呢?FD(16)=?(2)呵呵,记住上面的常用数据表,那不是很快就出来了。

FD(16)=1111 1101(2)什么叫进制?现在所存在的进制有10进制,2进制,8进制,16进制。

我们日常生活中的数学计算采用的是10进制。

比如你现在有9元钱,过两天又有了2元钱。

总共多少钱?采用我们日常生活所用的10进制,逢十进一,算出的结果就是11元钱。

计算机它只能认识电路的通导和阻塞,也就是0和1.所以计算机不能采用10进制来计算数据,只能采用2进制来计算数据。

逢2进1.那么为什么后来有出现了8进制,16进制呢?为什么没有3进制,5进制呢?8,16分别是2的3次方,2的4次方。

这样来储存数据有利于2进制,8进制,16进制之间的相互转换。

所以没有3进制,5进制。

而且进制越大,这个数所占的字节就越小,计算机要储存数据,所占的字节越少,那么有限的空间它就能储存更多的数据。

给你举个例子,你就明白了。

随便拿出来一个10进制数,148.148(10)=10010100(2)148(10)=224(8)148(10)=94(16)看到效果了吧,把它转换成2进制,数位很多。

转换成16进制,数位仅仅只有2位!而且有的变成语言要用到8进制,16进制的。

就比如C++,C语言。

ASCII码表机内码、国际码是十六进制的,区位码是十进制的。

一般换算全部用十六进制,不过特别注意:区位码从十进制转换为十六进制是两位两位分别转换的。

国际码=区位码(十六进制)+2020H机内码=国际码+8080H如:某汉字的区位码是2534。

则25D=19H,34D=22H国际码=1922H+2020H=3952H机内码=3952H+8080H=B9D2H区位码是10进制的,而国标码和机内码是16进制的,首先要把2083转化成16进制。

就是把20除16取余得到14 如同10进制转化2进制同样把83除二取余最后把得到的数加2020是国标码再加上8080是机内码。

相关文档
最新文档