高考数学用补形法解立体几何题

合集下载

2022高考数学立体几何外接球专题(含解析)

2022高考数学立体几何外接球专题(含解析)

知识梳理模型一、圆柱外接球结论:422h r R +=(R:外接球半径 h:圆柱高 r:圆柱底面半径)推导:模型一推广:(1)直棱柱422h r R += (h:圆柱的高 r:直棱柱底面外接圆半径 )学 科 数学 教师姓名 教材版本 人教版新教材学生姓名所在年级上课时间课题名称外接球问题教学目标 1、圆柱和圆锥的外接球模型2、有公共斜边的两个直角三角形组成的三棱锥外接球3、利用模型解决相关棱柱和棱锥外接球问题教学重点 教学难点(2)侧面为三角形,底面为矩形,侧面和底面垂直的四棱锥(3)侧棱垂直于底面的棱锥【2017深二模】已知三棱锥S-ABC,△ABC是直角三角形,其斜边AB=8,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为( )(A)64π(B)68π(C)72π(D)100π模型二、圆锥外接球结论:hh r R 222+=(R:外接球半径 h:圆锥高 r:圆锥底面半径)推导:模型二推广:(1)棱锥(上顶点在底面外心正上方)外接球hh r R 222+= (h:棱锥的高 r:棱锥底面外接圆半径 )【2018深一模】如图,网格纸上小正方形的边长为1,某几何体的三视图如图所示,则该几何体的外接球表面积为()A.B.C.16πD.25π【2017全国一卷文 16】已知三棱锥S−ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S−ABC的体积为9,则球O的表面积为______________.【2019 全国一卷理 12】已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A.B.C.D模型一、二总结题型:求几何体的外接球模型一: 422h r R += (圆柱模型) 模型二: h h r R 222+=(圆锥模型)适用于: 适用于:1、所有的圆柱、直棱柱 上顶点在底面外心正上方的棱锥2、侧棱垂直于底面的棱锥3、侧面为任意三角形,底面为矩形, 且侧面垂直于底面的四棱锥模型三、有公共斜边的两个直角三角形组成的三棱锥 ,球心在公共斜边的中点处如下图,∠ABC=∠ADC=90°,则O 为外接球球心1、在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为A. π12125B.π9125C.π6125D.π31252.三棱锥S ABC -的所有顶点都在球O的球面上,且SA AC SB BC ====4SC =,则该球的体积为A 2563πB 323π C 16π D 64π专题练习类型一 构造法(补形法)【例1】已知是球上的点, , , ,则球的表面积等于________________.【例2】【辽宁省鞍山一中2019届高三三模】刘徽《九章算术•商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为( )A .B .C .3πD .4π,,,S A B C O SA ABC ⊥平面AB BC ⊥1SA AB ==BC =O【举一反三】1、【山东省济宁市2019届高三一模】已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为A.B.C.D.2、【辽宁省师范大学附属中学2019届高三上学期期中】在三棱锥S−ABC中,,则三棱锥S−ABC外接球的表面积为()A.25ΠB.C.50ΠD.3、【河南省天一大联考2019届高三阶段性测试(五)】某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为()A.7πB.8πC.9πD.10π类型二 正棱锥与球的外接【例3】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A . B . C . D .【举一反三】1、球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S-ABC 的体积的最大值为( )A .33 B . 3 C .2 3 D .42. 【四川省德阳市2018届高三二诊】正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______.814π16π9π274π3、【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥P −ABC 中,√2PA =AB =4√2,点E 在棱PA 上,且PE =3EA .正三棱锥P −ABC 的外接球为球O ,过E 点作球O 的截面α,α截球O 所得截面面积的最小值为__________.类型三 直棱柱的外接球【例4】直三棱柱的各顶点都在同一球面上,若,, 则此球的表面积等于 .【举一反三】1、【云南省2019年高三第二次统一检测】已知直三棱柱的顶点都在球O 的球面上,AB =AC =2,BC =2√2,若球O 的表面积为72Π,则这个直三棱柱的体积是( ) A .16 B .15C .D .2、已知三棱柱的6个顶点都在球的球面上,,,,则球的半径为()A B . C.D .3、 正四棱柱的各顶点都在半径为的球面上,则正四棱柱的侧面积有最111ABC A B C -12AB AC AA ===120BAC ∠=︒111ABC A B C -O 34AB AC ==,AB AC ⊥112AA =O 1321111ABCD A B C D -R值,为 .答案与解析类型一 构造法(补形法)【例1】已知是球上的点, , , ,则球的表面积等于________________. 【答案】 【解析】由已知S,A,B,C 是球O 表面上的点,所以 ,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC 三边长为长方体的外接球的半径,因为, ,所以,所以球的表面积.【指点迷津】当一三棱锥的三侧棱两两垂直时,可将三棱锥补成一个长方体,将问题转化为长方体(正方体)来解.长方体的外接球即为该三棱锥的外接球.【例2】【辽宁省鞍山一中2019届高三三模】刘徽《九章算术•商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为( )A .B .C .3πD .4π,,,S A B C O SA ABC ⊥平面AB BC ⊥1SA AB ==BC =O 4πOA OB OC OS ===SA ABC ⊥平面AB BC ⊥S ABC -1SA AB ==BC =22,1R R ==O 244S R ππ==【答案】B【解析】由题意可知阳马为四棱锥,且四棱锥的底面为长方体的一个底面,四棱锥的高为长方体的一棱长,且阳马的外接球也是长方体的外接球,由三视图可知四棱锥的底面是边长为1的正方形,四棱锥的高为1,∴长方体的一个顶点处的三条棱长分别为1,1,1,∴长方体的对角线为,∴外接球的半径为,∴外接球的体积为.故选:B.【指点迷津】当一四面体或三棱锥的棱长相等时,可以构造正方体,在正方体中构造三棱锥或四面体,利用三棱锥或四面体与正方体的外接球相同来解即可.【举一反三】1、【山东省济宁市2019届高三一模】已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为A.B.C.D.【答案】C【解析】如图所示,将直三棱柱补充为长方体,则该长方体的体对角线为,设长方体的外接球的半径为R,则2R=4,R=2,所以该长方体的外接球的体积,故选C.2、【辽宁省师范大学附属中学2019届高三上学期期中】在三棱锥S−ABC中,,则三棱锥S−ABC外接球的表面积为()A.25蟺B.C.50蟺D.【答案】C【解析】解:如图,把三棱锥S−ABC补形为长方体,设长方体的长、宽、高分别为,则,∴三棱锥外接球的半径∴三棱锥S−ABC外接球的表面积为.故选:C.3、【河南省天一大联考2019届高三阶段性测试(五)】某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为()A .7πB .8πC .9πD .10π 【答案】C 【解析】由三视图可得,该几何体为一个三棱锥,放在长、宽、高分别为2,1,2的长方体中,此三棱锥和长方体的外接球是同一个,长方体的外接球的球心在体对角线的中点处,易得其外接球的直径为,从而外接球的表面积为9π.故答案为:C.类型二 正棱锥与球的外接【例3】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( )A .B .C .D .【答案】A .814π16π9π274π【指点迷津】求正棱锥外接球的表面积或体积,应先求其半径,在棱锥的高上取一点作为外接球的球心,构造直角三角形,利用勾股定理求半径. 【举一反三】1、球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S-ABC 的体积的最大值为( )A .33 B . 3 C .2 3 D .4 【答案】A【解析】 (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S -ABC 的体积最大.学科*网因为△ABC 是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=233.在Rt △SHO 中,OH =12OC =33,所以SH =⎝ ⎛⎭⎪⎫2332-⎝ ⎛⎭⎪⎫332=1, 故所求体积的最大值为13×34×22×1=33.2. 【四川省德阳市2018届高三二诊】正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______. 【答案】【解析】 解:如图,设正四面体ABCD 的棱长为x ,过A 作AD ⊥BC , 设等边三角形ABC 的中心为O ,则AO =23AD =√33x ,,,即x=√2a.再设正四面体ABCD的外接球球心为G,连接GA,则,即.∴正四面体ABCD的外接球的体积为.故答案为:.3、【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥P−ABC中,√2PA=AB=4√2,点E在棱PA上,且PE=3EA.正三棱锥P−ABC的外接球为球O,过E点作球O的截面α,α截球O所得截面面积的最小值为__________.【答案】3π【解析】因为PA=PC=PB=4,AB=AC=BC=4√2,所以PA2+PC2=AC2,所以∠CPA=π2,同理∠CPB=∠BPA=π2,故可把正三棱锥补成正方体(如图所示),其外接球即为球O,直径为正方体的体对角线,故2R=4√3,设PA的中点为F,连接OF,则OF=2√2且OF⊥PA,所以OE=√8+1=3,当OE⊥平面α时,平面α截球O的截面面积最小,此时截面为圆面,其半径为√(2√3)2−32=√3,故截面的面积为3π.填3π.类型三 直棱柱的外接球 【例4】直三棱柱的各顶点都在同一球面上,若,, 则此球的表面积等于 . 【答案】【解析】在中,,可得,由正弦定理,可得外接圆半径r=2,设此圆圆心为,球心为,在中,易得球半径,故此球的表面积为.【指点迷津】直棱柱的外接球的球心在上、下底面的外接圆的圆心的连线上,确定球心,用球心、一底面的外接圆的圆心,一顶点构成一个直角三角形,用勾股定理得关于外接球半径的关系式,可球的半径. 【举一反三】1、【云南省2019年高三第二次统一检测】已知直三棱柱的顶点都在球O 的球面上,AB =AC =2,BC =2√2,若球O 的表面积为72蟺,则这个直三棱柱的体积是( ) A .16 B .15 C .D .【答案】A 【解析】 由题,,因为AB =AC =2,BC =2√2,易知三角形ABC 为等腰直角三角形, 故三棱柱的高故体积V =12脳2脳2脳8=16 故选A111ABC A B C -12AB AC AA ===120BAC ∠=︒ABC ∆2AB AC ==120BAC ∠=︒BC =ABC ∆O 'O RT OBO '∆R =2420R ππ=2、已知三棱柱的6个顶点都在球的球面上,若,,,则球的半径为 ( )A .B .C .D .【答案】C【解析】由球心作面ABC 的垂线,则垂足为BC 中点M.计算AM=,由垂径定理,OM=6,所以半径,选C.3、 正四棱柱的各顶点都在半径为的球面上,则正四棱柱的侧面积有最值,为 . 【答案】大111ABC A B C -O 34AB AC ==,AB AC ⊥112AA =O 213252132=1111ABCD A B C D -R。

7 例析利用割补法解题题型 高中常用数学方法的介绍 例析 体验 练习

7   例析利用割补法解题题型   高中常用数学方法的介绍  例析  体验  练习

【学生版】例析利用割补法解题题型所谓割补法:就是将复杂的或不熟悉的几何图形转化为简单的熟悉的几何图形(如:三角形、正方形、长方形、平行四边形或梯形等)或几何体(如:柱体、锥体和球体);也就是把一个复杂长度、面积或体积的计算分割成若干个简单图形的有关计算或将一个不易求出长度、面积或体积的几何图形补足为较易计算的几何图形;例如,把曲边形割补成规则图形、把斜棱柱割补成直棱柱、把三棱柱补成平行六面体、把三棱锥补成三棱柱或平行六面体、把多面体切割成锥体(特别是三棱锥)、把不规则的几何体割补成规则的几何体,从而把未知的转化为已知的、把陌生的转化为熟悉的、把复杂的转化为简单的、把不够直观的转化为直观易懂的。

一、“分割”非规则图形为规则图形几何图形或几何体的“分割”,即将已知的几何图形或几何体按照结论的要求,分割成若干个易求长度、面积或体积的几何图形或几何体。

例1、为测出所住小区的面积,某人进行了一些测量工作,所得数据如图所示,则小区的面积是( ) A .3+64 km 2B .3-64km 2C .6+34 km 2D .6-34km 2【提示】 【解析】 【评注】例2、如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求: (1)该几何体的体积; (2)截面ABC 的面积。

【提示】 【解析】二、将非规则图形“补形”规则图形几何图形或几何体的“补形”,即将已知的几何图形或几何体按照结论的要求,补全成若干个易求长度、面积或体积的几何图形或几何体。

例3、已知三棱锥A —BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________例4、如图,在直三棱柱A 1B 1C 1-ABC 中,∠BCA =90°,点E ,F 分别为AB ,AC 的中点, 若BC =CA =CC 1,则B 1E 与A 1F 所成的角的余弦值为________.三、几何体的“割补”几何体的割补,即将已知的几何体按照结论的要求,既要分割又要补全成若干个易求体积的几何体。

补形——求解三棱锥外接球半径的一条重要途径

补形——求解三棱锥外接球半径的一条重要途径

教学争鸣新课程NEW CURRICULUM在立体几何的学习中,经常遇到求解三棱锥外接球体半径的问题,此类问题往往球心的位置难以找到。

我们知道,棱锥是柱体的一部分,因此,在求三棱锥外接球体的半径时,通过“补形”,将锥体还原成柱体,有时能起到柳暗花明的效果。

常见的“补形”方法有下列几种.例1.已知三棱锥P-ABC 中,PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,且PA =3,PB =4,PC =5.则其外接球体的表面积为.思路:补成“长方体”解析:三棱锥P-ABC (图1)可以补成长方体,且它们拥有相同的外接球体(图2),再过长方体的一组对面上的对角线作轴截面得一圆的内接矩形(图3).其中矩形的一边为原长方体的棱,另一边为原长方体的面对角线,而该矩形的对角线则为球体的直径,易得外接球体的半径为522√图1图2图3例2.已知一正四面体的棱长为4,则其外接球体的体积为.思路:补成“正方体”解析:由于连接正方体的六条面对角线可以形成一个正四面体,因此,可将正四面体补成一个正方体,且它们拥有相同的外接球体(图4).再过该正方体的一组对面上的对角线作轴截面,易得外接球体的半径为6√,从而其体积为86√π.图4例3.已知三棱锥P-ABC 中,底面ABC 为正三角形,边长为2球为.图5图6图7思路一:补成“直三棱柱”解析:将三棱锥P-ABC (图5)补成直三棱柱(图6),同样,它们拥有相同的外接球体.再过PA 及球心作一截面如(图7),其中,球心O 为O 1O 2的中点,而O 1、O 2分别是两底面正三角形ABC 的中心,可得外接球体的半径OA =21√3.思路二:补成“圆柱”解析:将三棱锥P-ABC (图5)补成圆柱体(图8),且它们拥有相同的外接球体,再过PA 及圆柱体的轴作一截面得图9.其中,球心O 为O 1O 2的中点,而O 1是正三角形ABC 的中心,可得外接球体的半径OA =21√3.图8图9总之,“补形”是求解三棱锥外接球体半径的一条重要途径,且通常可补成上述几种模型。

高考数学的立体几何多选题含答案

高考数学的立体几何多选题含答案

高考数学的立体几何多选题含答案一、立体几何多选题1.已知球O 为正方体1111ABCD A B C D -的内切球,平面11A C B 截球O 的面积为24π,下列命题中正确的有( )A .异面直线AC 与1BC 所成的角为60°B .1BD ⊥平面11AC B C .球O 的表面积为36πD .三棱锥111B AC B -的体积为288 【答案】AD 【分析】连接11A C ,1A B ,通过平移将AC 与1BC 所成角转化为11A C 与1BC 所成角可判断A ;通过反证法证明B ;由已知平面11A C B 截球O 的面积为24π求出正方体棱长,进而求出内切球的表面积可判断C ;利用等体积法可求得三棱锥111B AC B -的体积可判断D. 【详解】对于A ,连接11A C ,1A B ,由正方体1111ABCD A B C D -,可知11//A C AC ,11AC B ∴∠为异面直线AC 与1BC 所成的角,设正方体边长为a,则1111AC A B BC ==,由等边三角形知1160A C B ∠=,即异面直线AC 与1BC 所成的角为60,故A 正确; 对于B ,假设1BD ⊥平面11A C B ,又1A B ⊂平面11A C B ,则11BD B A ⊥,设正方体边长为a ,则11A D a =,1A B =,1BD =,由勾股定理知111A D B A ⊥,与假设矛盾,假设不成立,故1BD 不垂直于平面11A C B ,故B 错误; 对于C ,设正方体边长为a,则11AC =,内切球半径为2a,设内切球的球心O 在面11A C B 上的投影为O ',由等边三角形性质可知O '为等边11A C B △的重心,则11123233O A AC a ='=⨯=,又12OA a =,∴球心O 到面11A C B 的距离6a ==,又球心与截面圆心的连线垂直于截面,∴=,又截面圆的面积2246S a ππ⎛⎫= ⎪ ⎪⎝⎭=,解得12a =,则内切球半径为6,内切球表面积214644S ππ==⨯,故C 错误;对于D ,由等体积法知111111111111212122812383B A C B B A C B A C B V V S a --==⨯⨯=⨯⨯=,故D 正确; 故选:AD【点睛】关键点点睛:本题考查了正方体和它的内切球的几何结构特征,关键是想象出截面图的形状,从而求出正方体的棱长,进而求出内切球的表面积及三棱锥的体积,考查了空间想象能力,数形结合的思想,属于较难题.2.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得1CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -外接球的体积是43π 【答案】BD【分析】对于A ,取AD 中点E ,连接EC 交MD 与F ,可得到EN NF ⊥,又EN CN ⊥,且三线,,NE NF NC 共面共点,不可能;对于B ,可得由1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值),由余弦定理可得NC 是定值.对于C ,取AM 中点O ,连接1,B O DO ,假设1AM B D ⊥,易得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,显然不一定成立.对于D ,当平面B 1AM ⊥平面AMD 时,三棱锥B 1﹣AMD 的体积最大,可得球半径为1,体积是43π. 【详解】对于A 选项:如图1,取AD 中点E ,连接EC 交MD 与F , 则11////NE AB NF MB ,,又11AB MB ⊥,所以EN NF ⊥, 如果1CN AB ⊥,可得EN CN ⊥,且三线,,NE NF NC 共面共点, 不可能,故A 选项不正确;对于B 选项:如图1,由A 选项可得1AMB EFN ≈△△,故1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值), 故在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+ 故CN 为定值,故B 选项正确.对于C 选项:如图,取AM 中点O ,连接1,B O DO , 由AB BM =,得1B O AM ⊥,假设1AM B D ⊥,111B D B O B =,所以AM ⊥面1ODB ,所以OD AM ⊥,从而AD MD =,显然不恒成立,所以假设不成立,可得C 选项不正确.对于D 选项:由题易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,体积是43π.故D 选项正确. 故答案为:BD . 【点睛】本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,属于难题.本题C 选项的解题的关键在于采用反证法证明,进而推出矛盾解题,D 选项求解的关键在于把握平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大.3.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,PA ===同理可得PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,EM ∴==过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin d EM θθ==≤ 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为R '==,所以,截面圆的半径()()222226252r R d '=-≥-=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.4.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.5.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为球心,6为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 【答案】ACD 【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否. 【详解】如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点.同理,棱111111,,A B B C C D 与球面没有交点. 因为棱11A D 与棱BC 之间的距离为26>BC 与球面没有交点.因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H , 所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故22651AE OE OA -=-=,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC ,同理//GH BC ,故//EF GH ,故,,,E F G H 共面. 由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确.因为在直角三角1BA C 中,1A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误.由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥, 因为EFEH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒, 故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确. 因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱, 其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD. 【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.6.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE ,则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.7.M ,N 分别为菱形ABCD 的边BC ,CD 的中点,将菱形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,下列结论正确的有( )A .MN ∥平面ABDB .异面直线AC 与MN 所成的角为定值C .在二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径先变小后变大D .若存在某个位置,使得直线AD 与直线BC 垂直,则ABC ∠的取值范围是0,2π⎛⎫⎪⎝⎭【答案】ABD 【分析】利用线面平行的判定即可判断选项A ;利用线面垂直的判定求出异面直线AC 与MN 所成的角即可判断选项B ;借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,利用空间想象能力进行分析即可判断选项C;过A 作AH BC ⊥,垂足为H ,分ABC ∠为锐角、直角、钝角三种情况分别进行分析判断即可判断选项D. 【详解】对于选项A:因为M ,N 分别为菱形ABCD 的边BC ,CD 的中点,所以MN 为BCD ∆的中位线,所以//MN BD ,因为MN ⊄平面ABD ,BD ⊂平面ABD ,所以MN ∥平面ABD ,故选项A 正确;对于选项B :取AC 的中点O ,连接,DO BO ,作图如下:则,AC DO AC BO ⊥⊥,BO DO O =,由线面垂直的判定知,AC ⊥平面BOD ,所以AC BD ⊥,因为//MN BD ,所以AC MN ⊥,即异面直线AC 与MN 所成的角为定值90,故选项B 正确;对于选项C:借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,球心离开平面ABC ,但是球心在底面的投影仍然是ABC ∆外接圆圆心,故二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径不可能先变小后变大, 故选项C 错误;对于选项D:过A 作AH BC ⊥,垂足为H ,若ABC ∠为锐角,H 在线段BC 上;若ABC ∠为直角,H 与B 重合;若ABC ∠为钝角,H 在线段BC 的延长线上;若存在某个位置,使得直线AD 与直线BC 垂直,因为AH BC ⊥,所以CB ⊥平面AHD ,由线面垂直的性质知,CB HD ⊥,若ABC ∠为直角,H 与B 重合,所以CB BD ⊥,在CBD ∆中,因为CB CD =, 所以CB BD ⊥不可能成立,即ABC ∠为直角不可能成立;若ABC ∠为钝角,H 在线段BC 的延长线上,则在原平面图菱形ABCD 中,DCB ∠为锐角,由于立体图中DB DO OB <+,所以立体图中DCB ∠一定比原平面图中更小,,所以DCB ∠为锐角,CB HD ⊥,故点H 在线段BC 与H 在线段BC 的延长线上矛盾,因此ABC ∠不可能为钝角;综上可知,ABC ∠的取值范围是0,2π⎛⎫⎪⎝⎭.故选项D 正确; 故选:ABD 【点睛】本题考查异面垂直、线面平行与线面垂直的判定、多面体的外接球问题;考查空间想象能力和逻辑推理能力;借助极限状态和反证法思想的运用是求解本题的关键;属于综合型强、难度大型试题.8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.9.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =∈,,则12PD =,即点P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=,可判断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =,,11DD =,则12PD P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.10.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D D D .四边形1BFD E 面积的最小值为62【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 6【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为162322=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.。

巧用补形法研究四面体问题

巧用补形法研究四面体问题

巧用补形法研究四面体问题作者:***来源:《数学教学通讯·高中版》2020年第11期[摘要] 立体几何问题中,有一类问题可以通过补形法,得到一个常见的几何体,使复杂的线面关系变得清晰明了. 文章从一道例题出发分析解决这类问题的方法,并在此基础上总结规律,归纳常见的一些四面体的补形方法.[关键词] 立体几何;四面体;补形教学中,遇到这样一个问题:已知在半径为2的球面上有A,B,C,D 四点,若AB=CD=2,则四面体ABCD的体积最大值为多少?这是某年数学全国卷的第12题,主要考查几何体的体积的计算、球的性质、异面直线间的距离,通过球这个载体考查学生的空间想象能力和推理计算能力.解答是这样的:过CD作平面PCD,使AB垂直于平面PCD,交AB于P. 设点P到CD的距离为h,则有V■=■×■×2×h×2=■h,当直径通过AB与CD中点时,h■=2■=2■,故V■=■.本小题这个解答当中,学生比较疑惑的有两点:(1)为什么可以过CD作平面PCD,使AB垂直于平面PCD,能这样作的前提是AB和CD要垂直,那为什么认定体积最大时AB和CD要垂直?(2)为什么直径通过AB与CD中点时,距离h最大?要解释清楚这两个疑点,首先需要补充说明一个公式.四面体体积公式:如果一个四面体的两条相对棱的长分别是a,b,它们的距离为d,所成的角为θ,那么它的体积为V■=■abdsinθ(证明见后).根据这个公式,我们首先得到结论:AB和CD必须垂直,即sinθ=90°时才能得到最大的体积.其次,由于AB=CD=R(球的半径),所以连结球心O和四个顶点,则容易知道△OAB 和△OCD都是正三角形.设AB的中点为E,CD的中点为F,则OE⊥AB,OF⊥CD.设AB与CD间的距离为d,有d≤EF≤OE+OF. (异面直线间公垂线段最短)因此,OEF共线时,四面体的体积可以达到最大值,因为OE=OF=■,故V■=■.?摇?摇这样解决一个选择题比较花费时间,而且在高中数学教学中,不涉及四面体的体积公式,异面直线的距离即公垂线段的长度在教学中也仅仅要求了解.下面我们用补形的思路来解决这个问题.因为题目当中两条线段长度一样,所以考虑把这个四面体补形成一个长方体:如图1:则四面体的外接球即是长方体的外接球,四面体的体积是长方体的体积减去四个全等的小三棱锥的体积.设长方体的边长为a,b,c,体对角线即为外接球的直径,得到:a2+b2+c2=42,b2+c2=22,所以a=2■,则V■=V■-4V■=abc-4×■×■abc=■abc=■.又b2+c2=22 ,所以V■=■≤■(b2+c2)=■,当且仅当b=c=■时,等号成立.从等号成立的条件可以比较容易地看出是在AB和CD垂直时,四面体的体积取到了最大值.我们会发现,使用补形,一下子把陌生的几何体变得熟悉了,原本错综复杂的线面关系也变得清晰起来. 利用这一方法解决某些几何问题,思路清晰明朗,较其他方法简洁明了.比如刚才提到的四面体的体积公式也可以用补形法得到.一个四面体的两条相对棱的长分别是a,b,它们的距离为d,所成的角为θ,将四面体补形成平行六面体(因为相对棱的长度不确定,相等的时候才能补成长方体).如图2:那么该平行六面体的底面积为S=■absinθ,平行六面体的体积为V■=■abdsinθ. 同样,该平行六面体由原四面体和四个全等的三棱锥构成. 三棱锥与平行六面体的高相等,底面积为平行六面体的一半,V■=■×■×■absinθ=■absinθ.所以V■=V■-4×V■=■absinθ.一起来看一下常见的几种四面体补形方式:一、把四面体的四个面各补上一个三棱锥,最后形成一个平行六面体. 其中正四面体是最特殊的形式,可以补成正方体. 而对棱相等的四面体则可以补形成一个长方体.例1:正四面体棱长为a,求外接球的半径R.正四面体补形为一个正方体,正四面体的外接球即为正方体的外接球.如图3:正方体的面对角线是正四面体的棱长,体对角线为外接球的直径.设正方体边长为b,则a=■b,2R=■b,所以R=■a.例2:在三棱锥A-BCD中,AB=CD=3,AD=BC=4,AC=BD=5,求三棱锥A-BCD外接球的半径.因为有三组对棱相等,把四面体补成一个长方形,如图4:长方体的三个面的面对角线是三棱锥的棱长,体对角线是外接球的直径.设长方体的棱长为a,b,c,外接球的半径为R,则a2+b2=32,b2+c2=42,a2+c2=52,(2R)2=a2+b2+c2,所以R=■.二、把四面体的一个角作为平行六面体的一个角补形成平行六面体.例3:四面体ABCD,侧棱AB,AC,AD两两垂直,AB=2,AC=3,AD=4,求四面体的外接球的半径R.因为四面体的侧棱两两垂直,所以可以把这个角看作长方体的一个角,把四面体补形成一个长方体,则四面体的外接球就是长方体的外接球四面体的三条侧棱就是长方体的长、宽、高,外接球的直径就是长方体的体对角线,则(2R)2=AB2+AC2+AD2=29,所以R=■.例4:若三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2■,AB=1,AC=2,∠BAC=60°,求球O的半径R.根据已知条件可以得到△ABC是直角三角形,把四面体补成一个长方体,则四面体的外接球就是长方体的外接球,外接球的直径就是长方体的体对角线.则(2R)2=SA2+AC2=16,所以R=2.例5:已知四面体PABC的侧面PAC与平面ABC垂直,∠ABC=90°,BC=2■,AB=2,且PA⊥PC,PA=PC,求异面直线PC与AB所成角的余弦值.解答:把四面体补成如图所示平行六面体,异面直线PC与AB所成角即為PC与CD所成角的补角的余弦值.取AC中点M,PA=PC,则PM⊥AC,又因为平面PAC与平面ABC垂直,所以PM⊥平面ABC.△ABC中,∠ABC=90°,AB=2,BC=2■,所以∠ACB=30°,AC=4.△PAC中,PA⊥PC,PA=PC,AC=4,所以PM=2,PC=2■.底面四边形ABDC中,DM2=DC2+CM2-2DC·CM·cos120°,得到DM=2■.Rt△PMD中,PD=4.△PCD中,cos∠PCD=■= -■.所以异面直线PC与AB所成角的余弦值为■.此题也可以用空间向量法解答,用补形能更好地体现线面关系.三、把四面体补形成三棱柱例6:已知某几何体底面ABC是棱长为1的等边三角形,PA⊥平面ABC,PA=3,求该几何体的外接球的半径.解答:将该四面体补形成一个三棱柱四面体的外接球就是三棱柱的外接球.先求三棱柱底面三角形外接圆半径r=■·■=■.又因为PA⊥平面ABC,PA=3,所以三棱柱的外接球半径为R=■=■.四面体的问题可以通过补形变成正方体、长方体乃至平行六面体的问题.尤其在正方体和长方体中,点线面的关系是我们所熟悉的. 一些几何题的证明和求解,由原几何图形分析探究会比较烦琐,通过补形填补成一个新的几何图形,能使原问题的本质得到充分的体现,解决起来比较容易. 本文着重讨论四面体的补形问题,希望窥一斑而知全豹,探究立体几何中补形法这一重要的转化策略.。

2022-2023学年高考数学二轮复习立体几何妙招 1外接球秒杀之补形法- Word版含解析

2022-2023学年高考数学二轮复习立体几何妙招 1外接球秒杀之补形法-  Word版含解析
类型1:有一条棱垂直于底面
类型2:对棱相等
利用长方体相对面的对角线长度相等,把四面体放人其中
如图所示, ,三棱锥 可以放在长方体中,外接球直径 为长方体体对角线.
典型
【例1】已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()
A. B. C. D.
【解析】用公式 ,则 ,
【答案】C.
A. B.8 C. D.
【解析】由题意可采用割补法,考虑到四面体 的四个面为全等的三角形,所以可在其每个面补上一个以 为三边的三角形作为底面,且以分别 长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为 的长方体,并且 ,则有 ( 为球的半径),得 ,所以球的表面积为 ,
【答案】 .
5.在三棱锥 中,底面 是等边三角形,顶点 在底面 的投影是底面的中心,侧面 侧面 ,则此三棱锥的体积与其外接球的体积之比为( )
【答案】D.
【例6】在四面体 中, 是边长为2的等边三角形, 是以 为斜边的等腰直角三的等腰直角三角形,平面 平面 ,则四面体 的外接球的表面积为( )
A. B. C. D.
【解析】在四面体 中, 是边长为2的等边三角形, 是以 为斜边的等腰直角三角形, ,平面 平面 ,如图,可知 平面 ,可得 ,所以 是等腰直角三角形,所以三棱锥 是正方体的一个角,如图:外接球的直径就是长方体的体对角线的长度,所以 ,四面体 的外接球的表面积为 .
【答案】 .
【例4】在三棱锥 中, ,则三棱锥 外接球的表面积为
【解析】将三棱锥补形为长方体,三个长度为三对面的对角线长,设长方体的长、宽、高分别为 ,则 .
【答案】 .
【例5】已知三棱锥 的四个顶点在球 的球面上, 是边长为2的正三角形, 分别是 的中点, ,则球 的体积为( )

空间几何体中几种常见的补形法

空间几何体中几种常见的补形法
CC =8,所以 何体=÷ 棱柱=÷×
s△^船 ·AA =丁1×24×8=96 .
【小结 】比较 上述 两种 方 法 ,补 形
图3
法显 然 比分割法要简 洁得 多 ,计算 量也很 小 ,但 要抓 住 图形
的对 称性 ,巧妙的补成熟悉的几何 体 ,并找到 原几何 体 与补
形后 的几何体 的关 系 ,实现化繁为 简的奇效.
了一种构造思 想 ,同时也反 映了对 立统一的辩证思想 .
利用补形 法解决立体几何 问题 的基本 步骤是 :
第一步 :把不熟悉 的或 复杂 的几 何体 延 伸或 补加 成 熟
悉的或简单 的几何 体 ,把不完整 的图形 补成完整 的图形 ;
第二 步 :运用常见几何体 的知识 等计算结果 ;
第三 步 :得 出结论.
以外接球直径 2R= ,所 以 R= ,所 以外接 球 的表 面积
s球=挚.
方 法 二 联 系补 形 例 2 已知 三棱 锥 P—ABC,PA=BC=5,朋 :AC= 4,PC:AB= l,求三棱 锥的体积. 【思路 】如按常规求法 ,需求三棱锥 的底 面积和 高 ,而高 很 难求 出.由已知三组相对棱相 等这一 特点 ,联想长 方体对 面不平行 的对 角线恰 好组 成对 棱相 等 的三棱 锥 ,因此 可把 三棱锥 P—ABC补成长方体 ,再将长方体 分割成三棱锥 P— ABC和 四个相 同体积 的三棱锥.
在高考 中 ,补形法既可 以在选 择填空 题 中体 现 ,也 可以
在解答题 中体 现 ,常见的补形法 有对称 补形 、联系补 形 和还
原补形 ,还原补形主要涉及 台体 中“还台为锥 ”.下 面结合 实
例进行剖析 :
方法一 对称补形

立体几何中的补形与等效问题

立体几何中的补形与等效问题

立体几何中的补形与等效问题一.将正四面体放在正方体中主要结论:1.正四面体的每一个面是正三角形,反之亦然.2.正四面体是三组对棱都垂直的等面四面体.3.正四面体的对棱中点的连线都互相垂直且相等,等于棱长的22倍,反之亦真.4.正四面体的外接球与正方体外接球相同.例1.已知四面体ABCD 2,M ,N 分别为棱AD ,BC 的中点,F 为棱AB 上异于A ,B 的动点.有下列结论:①线段MN 的长度为1;②若点G 为线段MN 上的动点,则无论点F 与G 如何运动,直线FG 与直线CD 都是异面直线;③MFN ∠的余弦值的取值范围为55⎡⎢⎣⎭;④FMN ∆21.其中正确结论的个数为()A.1B.2C.3D.4解析:由于是一个正四面体,所以可以通过正方体来解决该问题.对于①,可根据,M N 分别为正方体前后两个面的中心可得出结论:正确对于②,F 取为AB 的中点,G 取为MN 的中点,此时FG 与CD 相交:错误对于③,计算可得35cos 35MBN ∠=>,由逼近思想可作出判断:正确对于④,空间问题平面化的技巧,将三角形ABC 与ABD 放在同一平面上,可计算出2≥+MF NF ,正确例2.如图,已知四面体ABCD 为正四面体,2,AB E F =,分别是,AD BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为.A.123D.2解析:补成正方体,如图.,EF α⊥Q ∴截面为平行四边形MNKL ,可得2NK KL +=,又//,//,MN AD KL BC 且,AD BC KN KL ⊥∴⊥可得L MNK S NK KL =⋅四边形2()1,2NK KL +≤=当且仅当NK KL =时取等号,选A.二.对棱相等的四面体四面体ABCD 中,==AB CD m ,==AC BD n ,==AD BC t ,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类问题.如图,设长方体的长、宽、高分别为,,a b c ,则222222222⎧+=⎪+=⎨⎪+=⎩b c m a c n a b t ,三式相加可得:222++=a b c 222,2++m n t 而显然四面体和长方体有相同的外接球,设外接球半径为R ,则22224+=+a b c R ,所以2228++=m n t R.例3.在四面体ABCD 中,41,34,5,,AB CD AC BD AD BC E F =====分别是,AD BC 的中点.则下述结论:①四面体ABCD 的体积为20;②异面直线,AC BD 所成角的正弦值为2425;③四面体ABCD 外接球的表面积为50π;④若用一个与直线EF 垂直,且与四面体的每个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为6.其中正确的有_____.(填写所有正确结论的编号)解析:根据四面体特征,可以补图成长方体设其边长为,,a b c ,222222413425c b c a b a ⎧+=⎪+=⎨⎪+=⎩,解得3,4,5a b c ===,补成长,宽,高分别为3,4,5的长方体,在长方体中:①四面体ABCD 的体积为13454345203V ⨯⨯-⨯⨯⨯⨯==,故正确②异面直线,AC BD 所成角的正弦值等价于边长为5,3的矩形的对角线夹角正弦值,可得正弦值为1517,故错;③四面体ABCD外接球就是长方体的外接球,半径22R ==,其表面积为50π,故正确;④由于EF α⊥,故截面为平行四边形MNKL ,可得5KL KN +=,设异面直线BC 与AD 所成的角为θ,则sin sin HFB sin LKN θ∠∠==,算得2425sin θ=,224••6225MNKL KL KN S NK KL sin NKL +⎛⎫∴∠≤⨯= ⎪⎝⎭=.故正确.故答案为:①③④.三.墙角四面体墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),有以下四种类型:例4.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱锥B -ACD 的外接球的表面积为()A .5πB .203πC .10πD .34π解析:依题意,在三棱锥B -ACD 中,AD ,BD ,CD 两两垂直,且AD =4,BD =CD =3,因此可将三棱锥B ­ACD 补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R =32+32+42=34,故三棱锥B -ACD 的外接球的表面积为4πR 2=34π例5.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径.∴CD =(2)2+(2)2+(2)2=2R ,因此R =62,故球O 的体积V =4πR 33=6π.四.圆锥等效于正棱锥,1.如图,P 的射影是A B C ∆的外心⇔三棱锥P A B C -的三条侧棱相等2.侧棱,底面半径,圆锥的高构成勾股定理.3.斜高,底面内切圆半径,圆锥的高构成勾股定理.例6:如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC是底面的内接正三角形,P 为DO 上一点,6PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.解析:(1)由题设,知DAE △为等边三角形,设1AE =,则2DO =,1122CO BO AE ===,所以6264PO DO ==,,,44PC PB ====又ABC 为等边三角形,则2sin 60BA OA = ,所以2BA =,22234PA PB AB +==,则90APB ∠= ,所以PA PB ⊥,同理PA PC ⊥,又PC PB P = ,所以PA ⊥平面PBC ;五.异面直线计算中的补形例7.如图,在四面体ABCD 中,AB ⊥BC ,CD ⊥BC ,BC =2,AB =CD =AB 与CD 所成的角为60 ,则四面体ABCD 的外接球的表面积为_________.解析:将四面体补形为直三棱柱如下图所示(设,O O '''为直三棱柱上下底面三角形的外接圆圆心):图(1)中60ABD '∠=︒,图(2)中120ABD '∠=︒,在图(1)(2)中可知:,,BC AB BC BD AB BD B ''⊥⊥= ,所以BC ⊥平面ABD ',图(1)(2)中取O O '''的中点O ,连接OB ,则O 为四面体ABCD 的外接球的球心,OB 为外接球的半径,图(1)中11122OO O O BC ''''===,且ABD '△为等边三角形,所以122cos30ABBO '==︒,所以R OB ===2420S R ππ==;图(2)中,11122OO O O BC ''''===,且O BD ''为等边三角形,所以BO AB '==所以R OB ==,所以外接球的表面积为2452S R ππ==;故答案为:20π或52π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学用补形法解立体几何题
1. 正四面体补为正方体
例1. 求棱长为1的正四面体的体积。

图1
分析:常规的思路是直接用三棱锥的体积公式去求,但要首先求出此三棱锥的高,求高比较繁琐。

如果将正四面体ABCD补形为正方
体(如图1),那么此正方体的棱长为,因此,求正四面体的体
积便有了新的求解思路:
例2. 如图2,正三棱锥S-ABC的侧棱与底面边长都相等,如果E、F、G分别是SC、AB、AC的中点,那么异面直线EF与BG所成角
的余弦值等于__________。

图2
分析:常规的思路是“平移法”,取GA的中点H,连结EH、FH,则∠EFH即为所求,但解△EFH的运算量较大。

联想到正四面体可补形为正方体(如图3),相当于求与BG所成角的余弦值。

在此正方体的左边补上一个大小相同的正方体,构成一个长方体(如图4),则相当于求长方体对角线BD与侧棱所成角的余弦值。

设正方体边长为1,则长方体对角线BD的长为。

在中,
2. 三条侧棱两两垂直的三棱锥或对棱相等的三棱锥或一条侧棱垂直于底面的三棱锥都可以考虑补形为长方体
例3. 如图5,是直二面角,
,,那么AB与面β所成的角等于()
图5
A. 90°
B. 60°
C. 45°
D. 30°
分析:由α⊥β,BD⊥CD,得BD⊥α同理得:AC⊥β因此,AC ⊥CD,BD⊥CD,AC⊥BD不妨把三棱锥A-BCD补形为长方体(如图5),易得∠ABC为所求的角。

在Rt△ABC中,,选D。

例4. 如图6,四面体P-ABC中,侧棱PA、PB、PC两两垂直,O为面ABC 上一点,且O到平面PAB、平面PAC、平面PBC的距离分别为2,3,4,求OP的长度。

分析:可补一个“小”长方体(如图6),由此可得“小”长方体的长、宽、高分别为2,3,4,求OP长可转化为求该“小”长方体的对角线长,得:
3. 一般三棱锥(三棱柱)可补形为三棱柱(平行六面体)
例5. 已知三棱锥P-ABC中,PA⊥BC,PA=BC=a,PA、BC的公垂线段DE=h,求证三棱锥的体积是。

分析:以ABC为底面,PA为侧棱补形为一个三棱柱ABC-,进一步补形为平行六面体ABCD-(如图7),那么
由异面直线PA、BC的距离为h知:两底面与平面的距离为h又PA⊥BC,PA=BC=a可求出底面的面积为,所以
例6. 已知正三棱柱ABC-,若,求与所成的角。

分析:在三棱柱ABC-的下方再补上一个大小形状一样的三棱柱-EFG,构成一个新的三棱柱ABC-EFG(如图8),连结,则∠FA1C即为所求。

易知由知:∠AB1G=90°故∠FA1C=90°
4. 其它不规则几何体可视情况补形为三棱柱或平行六面体
例7. 如图9,在多面体ABCDEF中,平面ABCD是正方形,且EF∥平
面ABCD。

若EF=3,且其余的棱长都是2,求该多面体的体积。

分析:先把该不规则多面体补形为三棱柱,进一步补形为平行六面体(如图9)。

可求得点F到平面
的距离为。

所以
从以上几例可知,补形后的运算很简捷,难点就在于如何突破“补形”这一关。

规律是原几何体经补形后常常置身于长方体、正方体、三棱柱或平行六面体等规则几何体中,由整体再回过头来看局部,则可化难为易。

相关文档
最新文档