数学竞赛中的三角函数问题

合集下载

一道三角函数竞赛题的多种解法

一道三角函数竞赛题的多种解法

一道三角函数竞赛题的多种解法《华罗庚数学奥林匹克竞赛集训教材》第169页有这样一道竞赛题: 求满足下式的锐角x :4sin 347cos 1215=-+-x x由于此题较难,所以笔者将它作为我校高二竞赛培训中的一道压轴考试题,但考试结果较好。

笔者收集了几种颇具代表性的解答,供竞赛教练和同学参考。

解法1:考虑构造余弦定理(此法与教程相同)。

因4)90cos(3432cos 31223123222=-︒-++⨯-+x x在ABC Rt ∆中,设3 =CE ,x ACD =∠,则x BCD -︒=∠90。

如图,||4|||AB BE AE ≥=+,又4412||=+=AB 所以点E 、D 重合。

设y AD =||,于是)]90sin(2sin 32[32132x x S S S BCD ACD ABC -︒+⨯=+==∆∆∆ ︒=⇒︒+=⇒60)30sin(1x x解法2:运用柯西不等式。

因≥⎥⎦⎤⎢⎣⎡-+-⨯⎥⎦⎤⎢⎣⎡+2222sin 347cos 4513x x2sin 3471cos 453⎥⎦⎤⎢⎣⎡-⨯+-⨯≥x x 16sin 347cos 12152=⎥⎦⎤⎢⎣⎡-+-=x x 当且仅当xx sin 3471cos 453-=-,即4cos sin 33=-x x ,因x x x f cos sin 33)(-=在⎪⎭⎫⎝⎛2 ,0π上递增,又4)3(==πf ,则3π=x 。

解法3:分子有理化巧妙化简。

因4sin 347cos 1215=-+-x x ① 则⇒=------4sin 347cos 1215)sin 347()1215(xx x cocxx x x x sin 3cos 32sin 347cos 1215+-=--- ②由(①+②2)整理得:04)sin 3(cos 4)sin 3(cos 2=++-+x x x x则2sin 3cos =+x x ,从而︒=60x .1232CABD E解法4:朴素的化简运算。

奥数挑战三角函数的高级运算

奥数挑战三角函数的高级运算

奥数挑战三角函数的高级运算在奥数竞赛中,三角函数的高级运算一直是考察的重点之一。

掌握三角函数的高级运算,不仅可以帮助我们更好地理解数学知识,还能够提高解题的效率和准确性。

在本文中,我将为大家介绍奥数中的三角函数高级运算,并给出一些例题进行详细讲解。

一、三角函数的基本概念在开始介绍三角函数的高级运算之前,我们首先需要明确三角函数的基本概念。

常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。

这些函数可以通过对应的特殊角度值来确定,如0度、30度、45度、60度等。

同时,三角函数也可以表示为一个周期性函数,其取值范围在区间[-1, 1]之间。

二、三角函数的高级运算1. 复合角的三角函数运算复合角是由两个角度相加、相减或相乘而成的新角。

在奥数中,我们经常会遇到复合角的运算,这需要灵活运用三角函数的运算性质。

以sin(A + B)为例,我们可以利用三角函数的加法公式进行计算:sin(A + B) = sinAcosB + cosAsinB同样地,我们还可以利用其他三角函数的加法公式计算cos(A + B)和tan(A + B)。

需要注意的是,复合角的三角函数运算可以通过套用不同的公式来实现,所以我们需要灵活选择适合的公式。

2. 幂函数与三角函数的运算在奥数竞赛中,我们常常需要处理幂函数与三角函数的运算。

例如,我们需要计算sin²x、cos²x和tan²x等。

这时候,我们可以利用三角函数的平方公式进行计算:sin²x = 1/2(1 - cos2x)cos²x = 1/2(1 + cos2x)tan²x = (1 - cos2x) / (1 + cos2x)通过利用这些公式,我们可以将幂函数与三角函数的运算转化为幂函数与幂函数的运算,从而更容易求解。

3. 倍角、半角和三角恒等式倍角、半角和三角恒等式是三角函数的高级运算中常见的一类题型。

初中数学竞赛:锐角三角函数(附练习题及答案)

初中数学竞赛:锐角三角函数(附练习题及答案)

初中数学竞赛:锐角三角函数古希腊数学家和古代中国数学家为了测量的需要,他们发现并经常利用下列几何结论:在两个大小不同的直角三角形中,只要有一个锐角相等,那么这两个三角形的对应边的比值一定相等.正是古人对天文观察和测量的需要才引起人们对三角函数的研究,1748年经过瑞士的著名数学家欧拉的应用,才逐渐形成现在的sin 、cos 、tg 、ctg 的通用形式.三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性;2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tg α=ααcos sin ,ctg α=ααsin cos ; 倒数关系:tg αctg α=1. 【例题求解】【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA =135,tanB=2,AB=29cm , 则S △ABC = .思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA=135=AC CD ,tanB=2=BDCD,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值.注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论:(1) S △ABC =C ab B ac A bc sin 21sin 21sin 21==;(2)R CcB b A a 2sin sin sin ===. 【例2】 如图,在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3D .23-思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化.注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形.(2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.【例3】 如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值.思路点拨 作垂线把∠ACE 变成直角三角形的一个锐角,将问题转化成求线段的比.【例4】 如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC , (1)求证:AC =BD ; (2)若sinC=1312,BC=12,求AD 的长. 思路点拨 (1)把三角函数转化为线段的比,利用比例线段证明;(2) sinC=ACAD=1312,引入参数可设AD=12k ,AC =13k .【例5】 已知:在Rt △ABC 中,∠C=90°,sinA 、sinB 是方程02=++q px x 的两个根. (1)求实数p 、q 应满足的条件;(2)若p 、q 满足(1)的条件,方程02=++q px x 的两个根是否等于Rt △ABC 中两锐角A 、B 的正弦?思路点拨 由韦达定理、三角函数关系建立p 、q 等式,注意判别式、三角函数值的有界性,建立严密约束条件的不等式,才能准确求出实数p 、q 应满足的条件.专题训练1.已知α为锐角,下列结论①sin α+cos α=l ;②如果α>45°,那么sin α>cos α;③如果cos α>21,那么α<60°; ④αsin 11)-(sin 2-=α.正确的有 .2.如图,在菱形ABCD 中,AE ⊥BC 于E ,BC=1,cosB135,则这个菱形的面积为 . 3.如图,∠C=90°,∠DBC=30°,AB =BD ,利用此图可求得tan75°= .4.化简(1)263tan 27tan 22-+ = .(2)sin 2l °+sin 22°+…+sin 288°+sin 289°= .5.身高相等的三名同学甲、乙、丙参加风筝比赛.三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的),则三人所放的风筝中( )A .甲的最高B .丙的最高C .乙的最低D .丙的最低6.已知 sin αcos α=81,且0°<α<45°则co α-sin α的值为( )A .23 B .23- C .43 D .43-7.如图,在△ABC 中,∠C =90°,∠ABC =30°,D 是AC 的中点,则ctg ∠DBC 的值是( ) A .3 B .32 C .23 D .43 8.如图,在等腰Rt △ABC 中.∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA=51,则AD的长为( )A .2B .2C . 1D .229.已知关于x 的方程0)1(242=++-m x m x 的两根恰是某直角三角形两锐角的正弦,求m 的值.10.如图,D 是△ABC 的边AC 上的一点,CD=2AD ,AE ⊥BC 于E ,若BD =8,sin ∠CBD=43,求AE 的长. 11.若0°<α<45°,且sin αcon α=1673,则sin α= .12.已知关于x 的方程0)cos 1(2sin 423=-+⋅-ααx x 有两个不相等的实数根,α为锐角,那么α的取值范围是 .13.已知是△ABC 的三边,a 、b 、c 满足等式))((4)2(2a c a c b -+=,且有035=-c a ,则sinA+sinB+sinC 的值为 .14.设α为锐角,且满足sin α=3cos α,则sin αcos α等于( ) A .61 B .51 C .92 D .10315.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( ) A .2 B .23C .1D .2116.如图,在△ABC 中,∠A =30°,tanB=23,AC=32,则AB 的长是( ) A .33+ B .322+ C .5 D .29 17.己在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且c=35,若关于x 的方程0)35(2)35(2=-+++b ax x b 有两个相等的实根,又方程0sin 5)sin 10(22=+-A x A x 的两实根的平方和为6,求△ABC 的面积.18.如图,已知AB=CD=1,∠ABC =90°,∠CBD °=30°,求AC 的长.19.设 a 、b 、c 是直角三角形的三边,c 为斜边,n 为正整数,试判断n n b a +与n c 的关系,并证明你的结论.20.如图,已知边长为2的正三角形ABC 沿直线l 滚动.(1)当△ABC 滚动一周到△A l B 1C 1的位置,此时A 点所运动的路程为 ,约为 (精确到0.1,π=3.14)(2)设△ABC 滚动240°,C 点的位置为C ˊ,△ABC 滚动480°时,A 点的位置在A ˊ,请你利用三角函数中正切的两角和公式tan(α+β)=(tan α+tan β)÷(1-tan α·tan β),求出∠CAC ˊ+∠CAA ˊ的度数.参考答案。

专题探究课二--中学生数学竞赛中三角函数问题的热点题型

专题探究课二--中学生数学竞赛中三角函数问题的热点题型

专题探究课二--中学生数学竞赛中三角函数问题的热点题型三角函数是中学数学中的重要内容之一,也是中学生数学竞赛中经常涉及的题型之一。

本文将探讨中学生数学竞赛中三角函数问题的热点题型,以帮助学生更好地应对这类题目。

1. 正弦函数与余弦函数问题1.1 角度转换在数学竞赛中,经常出现要求将弧度转换为角度或者将角度转换为弧度的问题。

考生需要熟悉如何使用正弦函数和余弦函数的定义来进行转换,并灵活运用。

1.2 函数图像理解正弦函数和余弦函数的函数图像是解题的关键。

考生需要熟悉函数图像的特点,如振幅、周期、相位等,并能利用这些特点解决各种类型的问题。

1.3 同角三角函数的关系正弦函数、余弦函数与其他三角函数之间存在一定的关系,如正切函数、余切函数等。

考生需要了解这些关系,并能够利用它们简化计算、求解方程等。

2. 三角恒等式与方程2.1 基本恒等式三角函数的基本恒等式是解题中常用的工具,如正弦函数的和差公式、倍角公式、半角公式等。

考生需要熟悉这些恒等式的推导和应用,并能够利用它们求解各类三角函数方程。

2.2 复杂方程与恒等式的转化在数学竞赛中,有时会出现较为复杂的三角函数方程或者恒等式,考生需要能够灵活运用恒等式的性质将其转化为较为简单的形式,从而更好地解决问题。

2.3 解三角形三角函数的性质可以用来解决三角形相关的问题,如求解三角形的边长、角度等。

考生需要了解三角形的基本概念和性质,并能够运用三角函数解决各类三角形问题。

3. 应用题型数学竞赛中的应用题目常常涉及到三角函数的应用,如航空、导航、建筑等领域。

考生需要能够理解问题背景,灵活运用三角函数的概念和性质解决实际问题,并能够给出合理的解释和推理过程。

总结中学生数学竞赛中三角函数问题是较为常见的题型,要解决这类问题,考生需要熟悉正弦函数和余弦函数的性质,掌握三角函数的基本恒等式和转化方法,并能够灵活应用于各类题目中。

通过不断练习和探索,考生将能够在数学竞赛中取得更好的成绩。

高一三角函数竞赛题(含答案)

高一三角函数竞赛题(含答案)

竞赛试题选讲:三角函数一1.已知锐角α终边上一点A 的坐标为(2sin3,-2cos3),则角α的弧度数为的弧度数为( )A .3 B .π-3 C .3-2p D . 2p-3 2.若f (sin x )=cos2x ,则(cos )f x 等于(等于( ). A .-cos2xB .cos2xC .-sin2xD .sin2x答.A ∵f (sin x )=cos2x ,∴(cos )=(sin())=cos2()=cos(2)=cos 222f x f x x x x p pp ----3.已知:集合þýüîíìÎ-==Z k k x x P ,3)3(sin |p ,集合,集合þýüîíìÎ--==Z k ky y Q ,3)21(sin |p ,则P 与Q 的关系是 ( ).A .P ÌQ B .P ÉQ C .P=Q D .P ∩Q=φ 答.C∵(21)(3)(3)sinsin[8]sin333k k k pp p p ----=-+=,∴P=Q,∴P=Q4.化简sin(2)cos(2)tan(24)p p -+---所得的结果是(所得的结果是( ))A.2sin 2 B.0B.0 C.2sin 2- D.-1D.-1答.C答.C sin(2)cos(2)tan(24)=sin 2(cos 2)tan 22sin 2p p -+---+-=- 5.设99.9,412.721-==a a ,则21,a a 分别是第分别是第 象限的角象限的角若集合一、二若集合一、二 07.4122,2pp <-<得1a 是第一象限角;是第一象限角;9.994,2pp p <-+<得2a 是第二象限角是第二象限角6.|,3A x k x k k Z pp p p ìü=+££+Îíýîþ,{}|22B x x =-££,则B A =___[2,0][,2]3p-7.某时钟的秒针端点A 到中心点O 的距离为5cm ,秒针均匀地绕点O 旋转,当时间0t =时,点A 与钟面上标12的点B 重合,将,A B 两点的距离()d cm 表示成()t s 的函数,则d =π10sin60t,其中[0,60]t Î。

高中数学竞赛历年真题三角函数部分及答案

高中数学竞赛历年真题三角函数部分及答案

C

A 焦点在x轴上的椭圆
B 焦点在x轴上的双曲线
C 焦点在y轴上的椭圆
D 焦点在y轴上的双曲线
12,(2005年)设, , 满足0 2 ,若对于任意的 x R
4
cosx cosx cosx 0,则 = 3 。
提示:令 f x cosx cosx cosx 0 ,则f f f 0 ,可解得:
解:原不等式变形为 cos2 x 1 acos x a2 0 对任意的 x R 恒成立。运用换元法,令t=cosx,则
g1 0
可得到
gt t2 1 at a2
0
对任意的
t 1,1 恒成立。只需要
g1 0
即可,又因为a为负数,
所以 a 2
6,(2003年)若
x
5 12
,
3
,则
2
所以
AA1 cos
A 2
2sin B
A cos 2
A 2
sin
B
sinA
B
sin
B
sin C
同理 BB1 sin A sin C,CC1 sin A sin B ,所以原式=2
11,(2005年 )方程 sin
x2 2 sin
3 cos
y2 2 cos
3 1 表示的曲线是(
y
tan
x
2 3
tan x cos x 6 6
的最大值是(
C

A 12 2
5
B
11 2 6
C 11 3
6
D 12 3
5
解:
y
tan x 2 tan x 3
cost sin t cost sin t cost

三角函数及解直角三角形竞赛试题

三角函数及解直角三角形竞赛试题

《三角函数及解直角三角形》1.三角函数定义:如图R t △ABC 中,∠中,∠C C =9090°°正弦:斜边的对边A A Ð=sin ;c aA =sin余弦:斜边的邻边A A Ð=cos ;c b A =cos正切:的邻边的对边A tan ÐÐ=A A ;ba A =tan根据定义,写出∠根据定义,写出∠B B 的三个三角函数值的三个三角函数值=B sin ______________________;;=B cos ________________________;;=B tan ______________________________;;cabBCA2.三角函数之间关系.三角函数之间关系 (1)同角三角函数关系)同角三角函数关系AAA cos sintan =;1cos sin 22=+A A模仿写出:=B tan ________________________;;1cos sin 22=+B B (2)互余角三角函数关系()互余角三角函数关系(A A +B =9090))B A cos sin =;B A sin cos =;tanA tanA··tanB tanB==1一个角的正弦等于它余角的余弦;一个角的余弦等于它的余角的正弦3.特殊角的三角函数值3030°、°、°、454545°、°、°、606060°°三角函数三角函数 3030°° 4545°° 6060°° a sina cos a tan4.会设计并根据三角函数关系计算15°、°、757575°角的三角函数°角的三角函数°角的三角函数DC BA5.根据表格中数据总结正弦、余弦、正切的增减性.根据表格中数据总结正弦、余弦、正切的增减性 当0°≤a ≤9090°时,°时,°时,sin a 随a 的增大而的增大而_____________________;;cos a 随a 的增大而的增大而_____________________;;tan a 随a 的增大而的增大而_______ _______6.已知一个三角函数值,求其他三角函数值。

【高中数学竞赛专题大全】 竞赛专题3 三角函数(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题3 三角函数(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题3 三角函数 (50题竞赛真题强化训练)一、单选题1.(2018·吉林·高三竞赛)已知()sin 2cos xf x x=+,则对任意x ∈R ,下列说法中错误的是( ) A .()1sin 3f x x ≥B .()f x x ≤C .()f x ≤D .()()0f x f x ππ++-=【答案】A 【解析】 【详解】由()1sin 3f x x ≥得sin (1cos 01cos 0x x x ),-≥-≥,所以该式不一定成立,sinx 有可能是负数,所以选项A 错误; ()sin sin 2cos x f x x x x =≤≤+.所以选项B 正确;()sin 2cos x f x x=+=sin 0||cos (2)x x ---表示单位圆上的点和(-2,0)所在直线的斜率的绝对值,数形结合观察得到()f x ≤C 正确; ()()f x f x ππ++-=sin sin 002-cos 2-cos 2-cos x x x x x-+==,所以选项D 正确.故答案为A2.(2018·四川·高三竞赛)函数()()()sin 1cos 12sin 2x x y x R x--=∈+的最大值为( ).A .2B .1C .12+D【答案】B 【解析】 【详解】因为()sin cos sin cos 122sin cosxx x x x y x ⋅-++=+⋅,令sin cos 4t x x x π⎛⎫⎡=+=+∈ ⎪⎣⎝⎭, 则()21sin cos 12x x t ⋅=-,于是()()22211112.2121t t t y t t --+==-++- 令()(21t g t t t =+,则()()22211t g t t '-=+. 由()0g t '=知1t =-或1.因为(()()111,1,22g g g g =-=-==()g t 的最小值是()112g -=-,所以y 的最大值是11122⎛⎫--= ⎪⎝⎭.故答案为:B3.(2019·全国·高三竞赛)函数[][]sin cos sin cos y x x x x =⋅++的值域为( )([]x 表示不超过实数x 的最大整数). A .{}2,1,0,1,2-- B .{}2,1,0,1-- C .{}1,0,1- D .{}2,1,1--【答案】D 【解析】 【详解】1sin224y x x π⎤⎡⎤⎛⎫=++ ⎪⎥⎢⎥⎣⎦⎝⎭⎦..下面的讨论均视k Z ∈. (1)当222k x k πππ≤≤+时,1y =; (2)当32224k x k ππππ+<≤+时,1y =-; (3)当3224k x k ππππ+<<+时,2y =-; (4)当2x k ππ=+或322k ππ+时,1y =-;(5)当3222k x k ππππ+<<+时,2y =-; (6)当372224k x k ππππ+<<+时,2y =-; (7)当72224k x k ππππ+≤<+时,1y =-. 综上,{}2,1,1y ∈--. 故答案为D4.(2010·四川·高三竞赛)已知条件43p =和条件4:sin cos 3q αα+=.则p 是q 的( ). A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【详解】sin cos αα+,所以,p 是q 的充要条件.5.(2018·全国·高三竞赛)在ABC ∆中,A B C ∠≤∠≤∠,sin sin sin cos cos cos A B CA B C++=++则B 的取值范围是( ).A .,32ππ⎛⎫ ⎪⎝⎭B .0,2π⎛⎫ ⎪⎝⎭C .3π D .,43ππ⎛⎫ ⎪⎝⎭【答案】C 【解析】 【详解】由条件有)sin sin sin cos cos cos A B C A B C ++=++2sincos sin 22A C A C B +-⇒︒+ 2cos cos cos 22A C A C B +-⎫=︒+⎪⎭2sin cos222A C A C A C ++-⎛⎫⇒- ⎪⎝⎭ sin B B =. 利用辅助角公式有2sin cossin 3223A C A C B ππ+-⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭2sin cos 262B A C π-⎛⎫⇒- ⎪⎝⎭ 2sin cos 2626B B ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭60602sin cos cos 0222B A C B -︒--︒⎛⎫⇒-= ⎪⎝⎭606060sinsin sin 0244B AC B B A C -︒-+-︒-+-︒⇒︒︒=, 所以,600B ∠-︒=或者600A C B ∠-∠+∠-︒=或者600B A C ∠-∠+∠-︒=, 即60B ∠=︒或者60C ∠=︒或者60A ∠=︒,亦即A B C ∠∠∠、、中有一个为60︒.若60B ∠<︒,则60A B ∠≤∠<︒,所以,只能60C ∠=︒,此时,180A B C ∠+∠+∠<︒,矛盾; 若60B ∠>︒,则60C B ∠≥∠>︒,所以,只能60A ∠=︒,从而,180A B C ∠+∠+∠>︒,亦矛盾. 选C. 二、填空题6.(2018·江西·高三竞赛)若三个角x 、y 、z 成等差数列,公差为π3,则tan tan tan tan tan tan x y y z z x ++=______.【答案】3- 【解析】 【详解】 根据π3x y =-,π3z y =+,则tan x =tan z =所以tan tan x y tan tan y z 22tan 3tan tan 13tan y z x y -=-. 则229tan 3tan tan tan tan tan tan 313tan y x y y z z x y-++==--. 故答案为-37.(2018·广东·高三竞赛)已知△ABC 的三个角A 、B 、C 成等差数列,对应的三边为a 、b 、c ,且a 、c成等比数列,则2:ABC S a ∆=___________.【解析】 【详解】因为A 、B 、C 成等差数列,2B A C =+,3180B A B C =++=︒,因此60B =︒.又因为a 、c成等比数列,所以c qa =,b =由正弦定理()sin sin 120a qa A A ==︒-,整理得22sin A q =221A q q=-,()()232235420q q q q ⎡⎤-+++-=⎣⎦. 所以2q =,1sin 2A =,30A =︒,90C =︒.故212ABC S ab ∆==,所以2:ABC S a ∆=8.(2019·全国·高三竞赛)设锐角α、β满足αβ≠,且()()22cos cos 1tan tan 2αβαβ++⋅=,则αβ+=__________. 【答案】90 【解析】 【详解】由已知等式得()()()()22222tan tan 1tan tan 21tan 1tan αβαβαβ+++⋅=++,()()2tan tan tan tan 10αβαβ-⋅-=.但锐角αβ≠,故tan tan 10αβ⋅-=()cos 090αβαβ⇒+=⇒+=︒.故答案为909.(2021·全国·高三竞赛)函数sin 1tan tan 2x y x x ⎛⎫=+⋅ ⎪⎝⎭的最小正周期为____________.【答案】2π 【解析】 【详解】解析:当=2,x k k Z π∈时,sin 1tan tan 02x y x x ⎛⎫=+⋅= ⎪⎝⎭,当2,x k k Z π≠∈时,sin 1cos sin 1tan cos sin x x y x x x x -⎛⎫=+⋅= ⎪⎝⎭,其中2x k ππ≠+且2x k ππ≠+,画出图象可得函数周期为2π.故答案为:2π.10.(2021·浙江金华第一中学高三竞赛)设()()πcos 2243x f x x x =++为定义在R 上的函数.若正整数n 满足()12021nk f k ==∏,则n 的所有可能值之和为______.【答案】12121 【解析】 【详解】()cos cos cos 2222()41(1)(3)xxxf k k k k k πππ=++=++,111()(11)(13)(21)(23)nk f k --==++++⨯∏00(431)(433)m m ⨯-+-+11(421)(423)m m --⨯-+-+0011(411)(413)(41)(43)m m m m ⨯-+-+++,考虑cos2x π的周期为4,分四种情况考虑(1)当43k m =-(m 为正整数)时,4311111001()(21)(23)(41)(43)(443)(431)(433)m k f k m m m ---==++++⨯-+-+-+∏13(41)2021m -=⨯-=,所以416063,436061m n m -==-=;(2)当42k m =-时,42111()3(41)2021m k f k m ---==⨯+=∏,无正整数解;(3)当41k m =-时,41111()3(41)2021m k f k m ---==⨯+=∏,无正整数解;(4)当4k m =时,41111()3(43)2021m k f k m --==⨯+=∏,此时46060n m ==,综上,6060n =或6061n =, 故答案为:12121.11.(2021·全国·高三竞赛)在ABC 中,1155,tantantan222AC AC B =+-=,则+BC AB 的值为__________. 【答案】7 【解析】 【详解】解析:记ABC 中A 、B 、C 所对的边分别是a 、b 、c , 如图,设内切圆的半径为r ,则tan22A r b c a =+-,tan 22C r a b c =+-,tan 22B r a c b =+-,故5()b c a a b c a c b +-++-=+-,故()57a c b +=, 即7a c +=, 故答案为:712.(2021·全国·高三竞赛)已知ABC 满足2sin sin 2sin A B C +=,则59sin sin A C+的最小值是_______. 【答案】16 【解析】【详解】解析:2sin sin 2sin sin 2(sin sin )A B C B C A +=⇒=-2sincos 4sin cos 2222A C A C C A A C ++-+⇒⋅=⋅sin 2sin tan 3tan 2222A C C A C A+-⇒=⇒=. 令tan 2A t =,则222259595527326sin sin 22191t t t t A C t t t t +++=+=+++216416t t +=≥=.当113,tan ,tan 22222A C t ===时,tan02A C+>,所以180A C +<︒, 故min5916sin sin A C ⎛⎫+= ⎪⎝⎭. 故答案为:1613.(2020·浙江·高三竞赛)已知,,0,2παβγ⎡⎤∈⎢⎥⎣⎦,则cos 2cos cos cos()2cos()αβγαγβγ++-+-+的最大值为___________.【答案】【解析】 【详解】()cos cos 2sin sin 2sin 222γγγααγα⎛⎫-+=+≤ ⎪⎝⎭,同理()cos cos 2sin2γββγ-+≤,故cos 2cos cos cos()6sin22cos()cos αβγαγβγγγ++-+-++≤,而22cos 2sin 3116sin 6sin 12sin 222222γγγγγ⎛⎫+++=--+ -⎪=⎝⎭,因为0sin 2γ≤≤23112sin 222γ⎛⎫--+≤ ⎪⎝⎭当且仅当,24ππγαβ===时,各等号成立,故答案为:14.(2021·全国·高三竞赛)已知三角形ABC 的三个边长a b c 、、成等比数列,并且满足a b c ≥≥.则A ∠的取值范围为___________.【答案】2[,)33ππ【解析】 【详解】由条件2b ac =,结合余弦定理222cos 2a c b B ac+-=,则有11cos (1)22a c B c a =+-≥,从而(0,]3B π∈,而A 是最大角,从而2,33A ππ⎡⎫∈⎪⎢⎣⎭.故答案为:2,33ππ⎡⎫⎪⎢⎣⎭. 15.(2021·全国·高三竞赛)设02πθ<<,且333cos sin 1(cos sin 1)m θθθθ++=++,则实数m 的取值范是___________.【答案】14⎫⎪⎣⎭ 【解析】 【详解】解析:333cos sin 1(cos sin 1)m θθθθ++=++ ()223(cos sin )cos cos sin sin 1(cos sin 1)θθθθθθθθ+-++=++.令cos sin x θθ=+,则4x πθ⎛⎫=+∈ ⎪⎝⎭,且21sin cos 2x θθ-=, 于是2323321112232231(1)2(1)2(1)2(1)2(1)2x x x x x x x m x x x x x ⎛⎫--+ ⎪+-+--⎝⎭=====-+++++, 为然m是上的减函数,所以()(1)f f m f ≤<,即14m ⎫∈⎪⎣⎭.故答案为:41,24⎡⎫⎪⎢⎣⎭. 16.(2021·浙江·高三竞赛)在ABC 中,30B C ∠=∠=︒,2AB =.若动点P ,Q 分别在AB ,BC 边上,且直线PQ 把ABC 的面积等分,则线段PQ 的取值范围为______.【答案】 【解析】 【分析】【详解】如图所示,设,BP x BQ y ==,所以113sin 30222BPQBBCSxy S ︒===,所以23xy =由余弦定理可得,2222222312266PQ x y xy x y x x=+-=+-=+-, 易得[1,2]x ∈,所以2[1,4]x ∈, 所以2367PQ ≤≤,则PQ 的取值范围为[436,7]-. 故答案为:[436,7]-.17.(2021·浙江·高三竞赛)若π3,π44x ⎛⎫∈- ⎪⎝⎭,则函数4sin cos 3sin cos x x y x x +=+的最小值为______.【答案】22【解析】 【分析】 【详解】令(sin cos 224t x x x π⎛⎫=+=+∈ ⎪⎝⎭, ()22213211222t t y t tt t-++===+≥当且仅当12t t =即2t =.故答案为:2218.(2021·全国·高三竞赛)已知等腰直角PQR 的三个顶点分别在等腰直角ABC 的三条边上,记PQR 、ABC 的面积分别为PQR S、ABCS,则PQR ABCS S的最小值为__________.【答案】15【解析】 【分析】 【详解】(1)当PQR 的直角顶点在ABC 的斜边上,如图1所示,则P ,C 、Q ,R 四点共圆,180APR CQR BQR ∠=∠=︒-∠,所以sin sin APR BQR ∠=∠.在APR △、BQR 中分别应用正弦定理得,sin sin sin sin PR AR QR BRA APRB BQR==∠∠. 又45,A B PR QR ∠=∠=︒=,故AR BR =,即R 为AB 的中点. 过R 作RH AC ⊥于H ,则12PR RH BC ≥=, 所以22221124PQR ABCBC SPR SBC BC ⎛⎫ ⎪⎝⎭=≥=,此时PQR ABCS S 的最小值为14.(2)当PQR 的直角顶点在ABC 的直角边上,如图2所示.设1,(01),02BC CR x x BRQ παα⎛⎫==≤≤∠=<< ⎪⎝⎭,则90CPR PRC BRQ α∠=︒-∠=∠=. 在Rt CPR 中,sin sin CR xPR αα==,在BRQ 中, 31,,sin 4x BR x RQ PR RQB QRB B ππαα=-==∠=-∠-∠=-, 由正弦定理,11sin 3sin sin sin cos 2sin sin sin 44x RQ RB x x B RQB απαααπα-=⇔=⇔=∠+⎛⎫- ⎪⎝⎭,因此222111122sin 2cos 2sin PQRx SPR ααα⎛⎫⎛⎫=== ⎪ ⎪+⎝⎭⎝⎭. 这样,()()2222111cos 2sin 512cos sin PQR ABCS Sαααα⎛⎫=≥= ⎪+++⎝⎭,当且仅当arctan 2α=时取等号,此时PQR ABCS S的最小值为15.故答案为:15.19.(2021·全国·高三竞赛)满足方程223cos cos 22cos cos2cos4,[0,2]4x x x x x x π+-=∈的实数x 构成的集合的元素个数为________. 【答案】14 【解析】 【分析】 【详解】将方程变形为,1cos2cos44cos cos2cos42x x x x x +-=-.两边同乘2sin x ,运用积化和差和正弦的倍角公式,得:(sin3sin )(sin5sin3)sin8sin x x x x x x -+--=-,即sin5sin8x x =,故58(21),x x k k π+=+∈Z 或852,x x k k π=+∈Z , 即21,13k x k π+=∈Z 或2,3k x k π=∈Z . 又因为在方程两边同时乘sin x 时,所以引入了增根,x k k π=∈Z (代入原方程检验可得). 再结合[0,2]xπ,得所求结果为14.故答案为:14.20.(2021·全国·高三竞赛)设ABC 的三内角A 、B 、C 所对的边长分别为a 、b 、c ,若2b c a +-=,则2222sin sin 2sin sin sin 22222C B A B Cb c bc +-值为_________. 【答案】1 【解析】 【分析】 【详解】2222sin sin 2sin sin sin 22222C B A B Cb c bc +- 2211(1cos )(1cos )12(cos cos cos 1)22b Cc B bc A B C =-+--++- 22(2)(cos cos 1114)(cos cos 22)b c bc b C b c B c c B b C =++-+-+221(2cos )4b c bc A ++-22221111(2)()142242b c a b c bc ba ca a +-=++--+==. 故答案为:1.21.(2021·全国·高三竞赛)ABC 中,A 、B 、C 的对边分别为a 、b 、c ,O 是ABC 的外心,点P 满足OP OA OB OC =++,若3B π=,且4BP BC ⋅=,则ABC 的面积为_________.【答案】【解析】 【分析】 【详解】由OP OA OB OC =++,得OP OA OB OC -=+,即AP OB OC =+. 注意到()OB OC BC +⊥,所以AP BC ⊥. 同理,BP AC ⊥,所以P 是ABC 的垂心, ()BP BC BA AP BC BA BC ⋅=+⋅=⋅,所以cos 4ac B =,8ac =,所以1sin 2ABC S ac B ==△故答案为:22.(2021·全国·高三竞赛)设ABC 的三个内角分别为A 、B 、C ,并且sin cos sin A B C 、、成等比数列,cos sin cos A B C 、、成等差数列,则B 为____________. 【答案】23π【解析】 【分析】 【详解】依题意,2sin sin cos ,cos cos 2sin A C B A C B =+=, 前一式积化和差可得2cos()2cos cos A C B B -=-,后一式和差化积可得cos2cos 22A C B-=, 所以22cos()2cos18cos 14cos 322A CB AC B --=-=-=+,联立两式得1cos 2B =-或3(舍去),所以23B π=. 故答案为:23π. 23.(2021·全国·高三竞赛)如果三个正实数x y 、、z 满足2225x xy y ++=,22144y yz z ++=,22169z zx x ++=,则xy yz zx ++=_________.【答案】【解析】 【分析】 【详解】易知三个等式可化为2222222222cos1205,2cos12012,2cos12013.x y xy y z yz z x zx ⎧+-︒=⎪+-︒=⎨⎪+-︒=⎩构造Rt ABC ,其中13,5,12AB BC CA ===.设P 为ABC 内一点,使得,,,120PB x PC y PA z BPC CPA APB ===∠=∠=∠=︒. 因BPCCPAAPBABCSSSS++=,则11()sin12051222xy yz zx ++︒=⨯⨯,所以xy yz zx ++=故答案为:24.(2021·全国·高三竞赛)设()cos ()cos 30xf x x =︒-,则()()()1260f f f ︒+︒++︒=_________.【解析】 【分析】 【详解】 因为()cos ()cos 30xf x x =︒-,所以:()()()()cos 60cos ()60cos 30cos 30x xf x f x x x ︒-+︒-=+︒--︒()()()()cos cos 602cos30cos 30cos 30cos 30x x x x x +︒-︒-︒===-︒-︒令:()()()1259s f f f =︒+︒++︒,① ()()()()595821s f f f f =︒+︒++︒+︒,②①+②得::()()()()()()2159258591s f f f f f f =︒+︒+︒+︒++︒+︒=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦所以s =()()()59312592f f f +++=.又()()1cos6060cos 3060f ︒︒==︒=︒-,则()()()()125960f f f f ︒+︒++︒+︒==. 25.(2021·全国·高三竞赛)已知cos cos 1x y +=,则sin sin xy -的取值范围是________. 【答案】⎡⎣【解析】 【分析】 【详解】设sin sin x y t -=,易得2cos in sin 1cos s 2y x y t x --=,即21cos()2t x y -+=. 由于()1cos 1x y -≤+≤,所以21112t --≤≤,解得t≤故答案为:⎡⎣.26.(2020·全国·高三竞赛)在ABC中,6,4AB BC ==,边AC 66sin cos 22A A+的值为_______. 【答案】211256. 【解析】【分析】由中线长公式计算出AC 的长度,然后运用余弦定理计算出cos A 的值,化简后即可求出结果. 【详解】记M 为AC 的中点,由中线长公式得()222242BM AC AB BC +=+,可8AC ==.由余弦定理得2222228647cos 22868CA AB BC A CA AB +-+-===⋅⋅⋅,所以66224224sin cos sin cos sin sin cos cos 22222222A A A A A A A A ⎛⎫⎛⎫+=+-+ ⎪⎪⎝⎭⎝⎭22222sin cos 3sin cos 2222A A A A ⎛⎫=+- ⎪⎝⎭231sin 4A =-213211cos 44256A =+=. 故答案为:211256【点睛】关键点点睛:解答本题关键是能够熟练运用中线长公式、余弦定理、倍角公式等进行计算,考查综合能力.27.(2019·江苏·高三竞赛)已知函数()4sin 23cos 22sin 4cos f x x x a x a x =+++的最小值为-6,则实数a 的值为________ .【答案】【解析】 【详解】令sin 2cos x x t +=,则[t ∈, ∴224sin 23cos 25t x x =++,∴2()()225,[f x g t t at t ==+-∈,当2a-≤a ≥函数的最小值为:(((22256g a =⨯+⨯⨯-=-,解得:a =当2a-a ≤-函数的最小值为:22256g a =⨯+⨯⨯-=-,解得:a =,不合题意,舍去;当2a-<a -< 函数的最小值为:22256222a a a g a ⎛⎫⎛⎫⎛⎫-=⨯-+⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:a =.故答案为:28.(2019·福建·高三竞赛)在△ABC中,若AC =AB =25tan 12π=,则BC =____________ .【解析】 【详解】5tan 12π=,得2sin 56tan 122cos 6A A πππ⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭,即5tan tan 612A ππ⎛⎫+= ⎪⎝⎭,所以5,612A k k πππ+=+∈Z . 结合0A π<<,得5,6124A A πππ+==. 所以由余弦定理,得:2222cos BC AC AB AC AB A =+-⋅⋅⋅22222cos4π=+-⋅2=所以BC29.(2018·全国·高三竞赛)设 A B C ∠∠∠、、是ABC 的三个内角.若sin ,A a =cos B b =,其中,a >0,0b >,且221a b +≤,则tan C =______.【解析】 【详解】因为cos 0B b =>,所以,B ∠为锐角,sin B又221a b +≤,则sin sin A a B =≤. 于是()sin sin A B π-≤. 若A ∠为钝角,则A π-∠为锐角.又B ∠为锐角,则A B A B ππ-∠≤∠⇒∠+∠≥矛盾.从而,A ∠为锐角,且cos A .故sin tan cos A A A ==sin tan cos B B B ==则tan tan tan tan tan 1A B C A B +==⋅-30.(2018·全国·高三竞赛)在ABC ∆中,已知a 、b 、c 分别是A ∠、B 、C ∠的对边.若4cos a b C b a +=,()1cos 6A B -=,则cos C ______. 【答案】23【解析】 【详解】由题设及余弦定理知222222422a b a b c a b c b a ab+-+=⋅⇒+=()()2221cos21cos22sin sin sin 1cos cos 22A BC A B A B A B --⇒=+=+=-+⋅-()2111cos 1cos 21cos 66C C C =+⇒+=-2cos 3C ⇒=或34-. 而()3cos cos 2sin sin 0cos 4C A B A B C ++=⋅>⇒=-(舍去).因此,2cos 3C =. 31.(2018·全国·高三竞赛)若对任意的ABC ∆,只要()+p q r p q R 、+=∈,就有222sin sin sin p A q B pq C +>,则正数r 的取值范围是______.【答案】01r <≤ 【解析】 【详解】设的三边长分别为a 、b 、c . 则222sin sin sin p A q B pq C +>①22211a b c q p⇔+>. 若1r ≤,则()22221111a b q p a b q p qp ⎛⎫+≥++ ⎪⎝⎭ ()22a b c ≥+>;若1r >,令2rp q ==. 当a b =,C π∠→时,2221 22a b rc +→<,式①不成立.综上,01r <≤.32.(2018·全国·高三竞赛)在锐角ABC ∆中,cos cos sin sin A B A B +--的取值范围是______. 【答案】()2,0- 【解析】 【详解】由02A B C π<∠∠∠<、、 22A B AB πππ⇒<∠+∠⇒∠-∠,2B A π∠>-∠.则0cos sin 1A B <<<,0cos sin 1B A <<<故2cos cos sin sin 0A B A B -<+--<. 所以取值范围是()2,0-.33.(2019·全国·高三竞赛)已知单位圆221x y +=上三个点()11,A x y ,()22,B x y ,()33,C x y满足1231230x x x y y y ++=++= .则222222123123x x x y y y ++=++=__________.【答案】32【解析】 【详解】设1cos x α=,2cos x β=,3cos x γ=,1sin y α=,2sin y β= 3sin y γ=. 由题设知ABC ∆的外心、重心、垂心重合,其为正三角形.故()222313cos cos cos cos2cos2cos2222αβγαβγ++=+++=, ()222313sin sin sin cos2cos2cos2222αβγαβγ++=-++=. 故答案为3234.(2021·全国·高三竞赛)在ABC 中,2cos 3cos 6cos A B C +=,则cos C 的最大值为_______________.【解析】 【分析】 【详解】令cos ,cos ,cos A x B y C z ===,则236x y z +=,即223y z x =-. 因为222cos cos cos 2cos cos cos 1A B C A B C +++=, 所以22222212233x z x z x z x z ⎛⎫⎛⎫+-+=-- ⎪ ⎪⎝⎭⎝⎭,整理得222134********z x z z x z ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭,()2228134Δ44510393z z z z ⎛⎫⎛⎫=----≥ ⎪ ⎪⎝⎭⎝⎭,化简得2413(1)(1)4039z z z z ⎛⎫+-+-≥ ⎪⎝⎭, 于是24134039z z +-≤,得z ≤ 所以cos C.16. 35.(2021·全国·高三竞赛)已知正整数n p 、,且2p ≥,设正实数12,,,n m m m 满足1111npi im ==+∑,则12n m m m 的最小值为_______.【答案】(1)mp n - 【解析】 【分析】【详解】令2tan ,0,,1,2,,2p i i i m x x i n π⎛⎫=∈= ⎪⎝⎭.由题设可得22212cos cos cos 1n x x x +++=,于是:2222121cos cos cos sin n n x x x x -+++=,222221221cos cos cos cos sin n n n x x x x x --++++=,……2222231cos cos cos sin n x x x x +++=,将上述各式利用均值不等式得:2221(1)cos sin n n n x x --≤, 22221(1)cos sin n n n x x ---≤,……2231(1)cos sin n n x x -≤,再把上述n 个不等式相乘,得()2222221212(1)cos cos cos sin sin sin n n n n x x x x x x -≤,即22212tan tan tan (1)n n x x x n ≥-.由于2tan ,1,2,,p i i m x i n ==,故12(1)n pn m mm n ≥-,当且仅当1(1)p i m n =-时上式等号成立.故答案为:(1)mp n -.36.(2021·全国·高三竞赛)设锐角ABC 的三个内角、、A B C ,满足sin sin sin A B C =⋅,则tan tan tan A B C ⋅⋅的最小值为_______.【答案】163【解析】 【分析】 【详解】由题设可知,0,,2A B C π<<,则cos 0,cos 0B C >>.又由A B C π++=及sin sin sin A B C =⋅ 得()()sin sin sin B C B C π-+=⋅, 即()sin sin sin B C B C +=⋅,则sin cos cos sin sin sin B C B C B C +=⋅, ① 由cos 0,cos 0B C >>,①式两边同时除以cos cos B C ⋅, 可得tan tan tan tan B C B C +=⋅. 设tan tan B C s +=,则tan tan B C s ⋅=, 由0,2B C π<<知,tan 0,tan 0B C >>,则0s >. 于是有()tan tan B s B s ⋅-=,故2tan tan 0B s B s -+=,从而有22(tan )(4)244s s sB s s -=-=-.又2(tan )02s B -≥,得(4)04s s -≥,而0s >.所以4s ≥.故4s ≥.tan tan tan tan(())tan tan A B C B C B C π⋅⋅=-+⋅⋅2tan tan tan tan 1tan tan 1B C s B C B C s +=-⋅⋅=-⋅-. 因为4s ≥,于是求tan tan tan A B C ⋅⋅的最小值转化为求函数2()(4)1x f x x x =≥-的最小值.考虑函数221()(4),()(1)2(4)111x x f x x f x x x x x x =≥==-++≥---,即()f x 在[)4,+∞上单调递增,从而()()4,4x f x f ≥≥. 因此()f x 的最小值在4x =时取得,为2416(4)413f ==-. 由tan tan tan tan 4B C B C +=⋅=得,tan tan 2B C ==,从而4tan 3A =, 故当4tan 3A =,tan tan 2BC ==时,tan tan tan A B C ⋅⋅取得最小值163. 故答案为:163. 37.(2019·贵州·高三竞赛)在△ABC 中,0,0GA GB GC GA GB ++=⋅=.则(tan tan )tan tan tan A B CA B+⋅=____________ .【答案】12 【解析】 【详解】设△ABC 中角A 、B 、C 所对的边分别为a 、b 、c .由0,0GA GB GC GA GB ++=⋅=,知G 为△ABC 的重心. 又GA ⊥GB ,所以22222222211221122GA GB c GA GB a GB GA b ⎧⎪+=⎪⎪⎪⎛⎫⎛⎫+=⎨ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫⎪+= ⎪ ⎪⎪⎝⎭⎝⎭⎩.得到2225a b c +=.故:(tan tan )tan (sin cos cos sin )sin tan tan sin sin cos A B C A B A B C A B A B C++=⋅2sin sin sin cos C A B C =()22222abc ab a b c =+-2222212c a b c ==+-. 故答案为:12.38.(2019·江西·高三竞赛)△ABC 的三个内角A 、B 、C 满足:A =3B =9C ,则cos cos A B +cos cos cos cos B C C A +=____________ .【答案】14-【解析】 【详解】设,3,9C B A θθθ===,由39θθθπ++=得13πθ=,所以cos cos cos cos cos cos S A B B C C A =++9339coscos cos cos cos cos 131313131313ππππππ=++112642108cos cos cos cos cos cos 2131313131313ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 注意括号中的诸角度构成公差为213π的等差数列,两边同乘4sin 13π,得到 246810124sin2sincos cos cos cos cos cos 1313131313131313S ππππππππ⎛⎫⋅=+++++⎪⎝⎭35375sin sin sin sin sin sin 131313131313ππππππ⎛⎫⎛⎫⎛⎫=-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭971191311sin sin sin sin sin sin 131313131313ππππππ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ sin13π=-.所以,14S =-.故答案为:14-.三、解答题39.(2021·全国·高三竞赛)在ABC 中,三内角A 、B 、C 满足tan tan tan tan tan tan A B B C C A =+,求cos C 的最小值.【答案】23【解析】 【分析】 【详解】由tan tan tan tan tan tan A B B C C A =+,得: sin sin sin sin sin sin cos cos cos cos cos cos A B B C C AA B B C C A =+sin (sin cos sin cos )cos cos cos C B A A B A B C +=sin sin()cos cos cos C A B A B C+=2sin cos cos cos C A B C=, 所以2sin sin cos sin A B C C =.由正余弦定理,得22222a b c abc ab+-=, 所以2222222sin 223,cos sin sin 333C c a b ab a b c C A B ab ab ab ++====≥=, 当且仅当a b =时等号成立,所以cos C 的最小值为23.40.(2021·全国·高三竞赛)解关于实数x 的方程:{}202020201arctan k x x k==∑(这里{}[][],x x x x =-为不超过实数x 的最大整数) 【答案】{}0 【解析】 【分析】 【详解】(1)当0x <时,{}202020201arctan 0(1,2,,2020),arctan 0k x x k x k k =<=<≤⋅⋅⋅∑,此时原方程无解.(2)当0x =时,有{}202020001arctan0k x x k===∑. (3)当01x <<时,令arct ()1)2an (0x xf x x =-<<,则211()0(01)12f x x x '=-><<+, 故()f x 在()0,1上递增.有()()00f x f >=,即arctan 2x x > 于是,此时{}202020204202020201111125arctan 2224k k k x x x xx x x k k k =====>>=>∑∑∑,即1x >,矛盾.故无解.(4)当1≥x 时,注意到111123tan(arctan arctan )112316++==-, 且由110arctan arctan arctan1arctan1232π<+<+=,知11arctan arctan 234+=π.则{}20202020202011111arctan arctan arctan1arctan arctan 1232k k x x k k π===≥>++=>∑∑,与{}202001x <<,矛盾.故此时无解.由(1)(2)(3)(4),知原方程的解集为{}0.41.(2021·全国·高三竞赛)已知点(2cos ,sin ),(2cos ,sin ),(2cos ,sin )A B C ααββγγ,其中,,[0,2)αβγπ∈,且坐标原点O 恰好为ABC 的重心,判断ABCS是否为定值,若是,求出该定值;若不是,请说明理由.【答案】三角形ABC【解析】 【分析】 【详解】先证明一个引理:若()()1122,,,,(0,0)A x y B x y C ,则122112ABCS x y x y =-. 因为()()1122,,,CA x y CB x y ==, 所以21cosCA CB C CA CBx⋅==⨯所以sin C ==所以:1sin 2ABCSCACB C =⋅⋅ 12211122x y x y ==-回到原题,连结OA 、OB 、OC ,则: ABCOABOBCOACSSSS=++112cos sin 2sin cos 2cos sin 2sin cos 22αβαββγβγ=-+- 12cos sin 2sin cos 2αγαγ+- sin()sin()sin()αββγαγ=-+-+-.由三角形的重心为原点得sin sin sin 0,2cos 2cos 2cos 0.αβγαβγ++=⎧⎨++=⎩即sin sin sin ,cos cos cos .αβγαβγ+=-⎧⎨+=-⎩ 所以两式平方相加可得1cos()2αβ-=-,所以sin()αβ-=,同理sin()sin()βγαγ-=-=, 所以sin()sin()sin()3ABCSαββγαγ=-+-+-==故三角形ABC 42.(2019·上海·高三竞赛)已知,0,2A B π⎛⎫∈ ⎪⎝⎭,且sin sin A B =()sin A B +,求tanA 的最大值.【答案】43【解析】 【详解】由题设等式可得sin sin (sin cos cos sin )A B A B A B =+, 所以tan sin (tan cos sin )A B A B B =+. 令tan t A =,则2sin cos sin t t B B B =+,于是2sin 21cos2t t B B =+-,21)t B θ--, 这里θ是锐角,sin θ=.所以2|21|1t t -+,注意到t >0,可得43t. 当413arctan ,arcsin 3225A B π⎛⎫==+ ⎪⎝⎭时,题设等式成立.所以,tanA 的最大值为43.43.(2018·全国·高三竞赛)在ABC ∆中,证明:coscos cos cos cos cos 222222cos cos cos 222B C C A A BA B C ⋅⋅⋅++≥ABC ∆为正三角形时,上式等号成立.【答案】见解析 【解析】 【详解】如图,对ABC ∆,作其相伴111A B C ∆. 则11cos 2B E B B O =,111cos 2C G C A C =,111cos 2C G A B C =. 故11111111111111coscos 22cos2B E C G B C B O A C B E B C A C G B O A C B C ⋅⋅⋅==⋅. 由O 、E 、1C 、F 四点共圆得11111B E B C B O B F ⋅=⋅则111cos cos 22cos 2B C B F A AC ⋅=.类似地,111coscos 22cos 2B C C G A A B ⋅=,111cos cos 22cos2B C A E A B C ⋅= 记111A B C ∆的三边111111B C C A A B 、、分别为111a b c 、、,相应边上的高111A E B F C G 、、分别为123h h h 、、,且其面积为S 、则312222222111111111cos cos 222111222cos2B C h h h S S S S A a b c a b c a b c ⋅⎛⎫∑=++=++=++ ⎪⎝⎭.其中,“∑”表示轮换对称和.由熟知的不等式222111111334a b c S++≥,得coscos 33222cos 2B CA ⋅∑≥. 当且仅当ABC ∆为正三角形时,上式等号成立.44.(2019·全国·高三竞赛)在△ABC 中,若cos cos 2sin sin A BB A+=,证明:∠A +∠B =90° 【答案】见解析 【解析】 【详解】由sin cos sinB sin sin sin sinB 0A A cosB A B A ⇒⋅+⋅-⋅-⋅=()()sin cos sin sinB cosB sinA 0A A B ⇒-+-=()()sinA sin 90sinB sinB sin 90sinA 0A B ⎡⎤⎡⎤⇒︒--+︒--=⎣⎦⎣⎦909090902sinA cossin 2sin cos sin 2222A B A B B A B AB ︒-+︒--︒-+︒--⇒⋅⋅+⋅⋅ 902sin sin cos 45?sin cos 450222A B A B A B A B ⎡⎤︒----⎛⎫⎛⎫⎛⎫⇒⋅︒-+⋅︒+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=0902A B ︒--⎛⎫⇒ ⎪⎝⎭sin cos sin sin cos sin 02222A B A B A B A B A B ⎡⎤----⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.()()90cos sin sin sin sin sin 0222A B A B A B A B A B ︒----⎛⎫⎡⎤⇒++-= ⎪⎢⎥⎝⎭⎣⎦222cos sin 2sin cos 02222A B A B A B A B -+-+⋅+⋅>sin cos sin sin cos sin 02222A B A B A B A B A B ⎡⎤----⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 90sin 02A B ︒--⎛⎫⇒= ⎪⎝⎭ 90A B ⇒∠+∠=︒()10A a a a ⎛⎫> ⎪⎝⎭,. 45.(2018·全国·高三竞赛)已知ABC 的三个内角满足2A C B ∠+∠=∠,cos cos A C +=cos 2A C -的值.【解析】 【详解】由题设知60,B ∠= 120A C ∠+∠=︒. 设2A Cα∠-∠=,则2A C α∠-∠=,于是,60,60A C αα∠=+∠=-. 故()()cos cos cos 60cos 602cos60cos cos A C αααα+=++-=⋅=.()()()260cos 6032cos2cos120cos cos604αααα+⋅-⎫==+︒=-⎪⎭.故223cos cos 2cos 04αααα⎫=--⇒+-=⎪⎭()(32cos 0αα⇒+=.若3cos 1αα+⇒=<-舍,从而,2cos 0cos αα=⇒=. 46.(2018·全国·高三竞赛)已知函数()()()3333sin cos sin cos f x x x m x x =+++在0,2x π⎡⎤∈⎢⎥⎣⎦有最大值2.求实数m 的值.【答案】1m =- 【解析】 【详解】注意到,()()233sin cos sin cos sin cos 3sin cos x x x x x x x x ⎡⎤+=++-⋅⎣⎦()()()223sin cos sin cos sin cos 12x x x x x x ⎧⎫⎡⎤=++-+-⎨⎬⎣⎦⎩⎭.令sin cos 4t x x x π⎛⎫⎡=+=+∈ ⎪⎣⎝⎭. 则()()()223333931222f x t t t mt m t t g t ⎡⎤⎛⎫=--+=-+∆ ⎪⎢⎥⎣⎦⎝⎭.由()233322g t m t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦',有以下两种情形.(1)32m ≥. 由()0g t '>,知()max 92322g t g m ⎫==-+=⎪⎭ 230m ⇒-<,矛盾.(2)32m <. 若32132m -<-,即0m <时,()()max 1321g t g m m ==+=⇒=-;若32132m -≤≤-3012m ⎛≤≤ ⎝⎭时, ()max271523248g t g m m ==⇒=-⇒=-,矛盾;若3232m ->-33122m ⎛<< ⎝⎭时,()max 3 222g t g m ⎫==+=⎪⎭34m ⇒=-. 综上,1m =-.47.(2019·全国·高三竞赛)求(),f xy =【答案】42 【解析】 【详解】注意到,2cos472cos 26x x +=+ ()2222cos 16x =-+ ()428cos cos 1x x =-+,同理,()42cos478cos cos 1y y y +=-+,而22cos4cos48sin sin 6x y x y +-⋅+ ()()22cos47cos478sin sin 8x x x y =+++-⋅-()428cos cos 1x x =-++ ()428cos cos 1y y -+- ()()2281cos 1cos 8x y ---()44228cos cos 8cos cos x y x y =+-⋅,()()42424422,8cos cos 1cos cos 1cos cos cos cos f x y x x y y x y x y =-++-+++-⋅,如图,作边长为1的正SAB ∆、SBC ∆、SCD ∆,在SB 、SC 上分别取点X 、Y 使得2cos SX x =,2cos SY y =,联结AX 、AY ,则(),f x y ()8AX XY YD =++,其最小值就是线段ASD 的长度,即当2x y π==时,min 2842f ==.48.(2021·全国·高三竞赛)求证:对任意的n +∈N ,都有21111arctan arctan arctanarctan 37114n n n π++++=+++.【答案】证明见解析. 【解析】 【详解】由于1111tan arctan 1412111n n n n n π-⎛⎫+-== ⎪++⎝⎭+⨯+,只需证: 2111arctan arctan arctanarctan 3712nn n n +++=+++.设*(),2nf n n n =∈+N ,注意到:21()(1)12111()(1)1121n n f n f n n n n n f n f n n n n n ----++==-+-+++⋅++,即21tan[arctan ()arctan (1)]tan arctan 1f n f n n n ⎛⎫--= ⎪++⎝⎭, 又由于()f n 、(1)f n -、211n n ++均大于0,则21[arctan ()arctan (1)],,arctan 0,2212f n f n n n πππ⎛⎫⎛⎫--∈-∈ ⎪ ⎪++⎝⎭⎝⎭, 从而21arctanarctan ()arctan (1)1f n f n n n =--++. 所以2111arctan arctan arctan371n n +++=++arctan ()arctan (0)arctan 2nf n f n -=+,所以对任意的n +∈N ,都有21111arctan arctan arctanarctan 37114n n n π++++=+++.49.(2021·全国·高三竞赛)设αβγ、、是锐角,满足αβγ+=,求证:cos cos cos 1αβγ++-≥【答案】证明见解析 【解析】 【详解】2cos cos cos 12coscos2sin 222αβαβγαβγ+-++-=⋅- 2cos cos sin sin 2222γαβγαβ-+⎛⎫=⋅-⋅ ⎪⎝⎭.由于0,224αβγπ+⎛⎫=∈ ⎪⎝⎭,所以cos cos cos sin 2222αβαβγγ-+>=>. 由恒等式()()222222()()ac bd ad bc a b c d ---=--可知,如果0a b >>且0c d >>,则ac bd -≥cos cossinsin2222γαβγαβ-+⋅≥-⋅===所以cos cos cos 1αβγ++-≥50.(2019·河南·高二竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C ---.【答案】证明见解析 【解析】 【详解】 原不等式等价于cos()cos()cos()8cos cos cos B C C A A B A B C---.在三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=, cos()sin sin cos cos cos sin sin cos cos B C B C B C A B C B C -+=-tan tan 1tan tan 1B C B C +=-tan (tan tan 1)tan tan A B C B C +=+2tan tan tan tan tan A B CB C++=+.令tan tan tan tan tan tan A B xB C y C A z+=⎧⎪+=⎨⎪+=⎩,则原不等式等价于()()()8z x y z x y yxz +++. 而上式左边228zx yxz⋅=,故原不等式得证【高中数学竞赛专题大全】 竞赛专题3 三角函数 (50题竞赛真题强化训练)一、单选题1.(2018·吉林·高三竞赛)已知()sin 2cos xf x x=+,则对任意x ∈R ,下列说法中错误的是( ) A .()1sin 3f x x ≥B .()f x x ≤C .()f x ≤D .()()0f x f x ππ++-=2.(2018·四川·高三竞赛)函数()()()sin 1cos 12sin 2x x y x R x--=∈+的最大值为( ).A .2B .1C .12+D3.(2019·全国·高三竞赛)函数[][]sin cos sin cos y x x x x =⋅++的值域为( )([]x 表示不超过实数x 的最大整数). A .{}2,1,0,1,2-- B .{}2,1,0,1-- C .{}1,0,1-D .{}2,1,1--4.(2010·四川·高三竞赛)已知条件43p =和条件4:sin cos 3q αα+=.则p 是q 的( ). A .充分但不必要条件 B .必要但不充分条件 C .充要条件D .既不充分也不必要条件5.(2018·全国·高三竞赛)在ABC ∆中,A B C ∠≤∠≤∠,sin sin sin cos cos cos A B CA B C++=++则B 的取值范围是( ).A .,32ππ⎛⎫ ⎪⎝⎭B .0,2π⎛⎫ ⎪⎝⎭C .3π D .,43ππ⎛⎫ ⎪⎝⎭二、填空题6.(2018·江西·高三竞赛)若三个角x 、y 、z 成等差数列,公差为π3,则tan tan tan tan tan tan x y y z z x ++=______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件中的角度变换为结论中所要的角度 .
) = 5sinβ, 得 证明 由已知 sin ( 2α+ β ) + α] = 5sin [ (α+ β ) - α] , 于是 sin [ (α+ β ) cos α+ cos (α+ β ) sinα sin (α+ β ) cos α- 5cos (α+ β ) sinα, = 5sin (α+ β ) sinα= 2sin (α+ β ) cos α. 整理得 3cos (α+ β
) ( cos2α + sec2α ) 思考题 8 证明 : ( sin2α + csc2α
思路分析 :容易发现 , 结论中的角度 α,α + β与
) - α, 条件中的角度β, 2α + β 有关系式β = (α + β ) + β, 因此对条件变形时应考虑先将 2α+ β= (α+ β
π ,α= arctan 2 时 , 原不等式等号 4
a - b , 即原式 = a- b
3 3
三角式的化简和求值是三角变换的基础 . 一般 说来 , 角变换是三角变换的主线 , 侧重于函数的有 “化杂为弦” “ , 化为互为倒数的函数” “ , 化异名为同 名” 等等 , 侧重于运算的有 “弦函数升降幂” “ , 和积互 化” 以及纯代数运算的各种变换 .

2004 年第 14 ,16 期 数学通讯
85
= 5 + tan2α+ 4cot 2α
) 2 + 4tan・ = 5 + ( tanα- 2cotα cotα
α 2sinα cos sinα = α( 1 - cosα ) 1 - cos α 2cos α 1 + cos = = 右边 . sinα tanα sinα tanα+ sinα 思考题 6 证明 α = . tan - sinα tanα sinα ) = 5sinβ 例6 已知 sin ( 2α+ β .
). 例3 化简 sin2α+ sin2β+ 2sinα sinβ cos (α+ β
可 看 作 a2 + ab + b2 =
sin3 10° - cos3 40° 3 3 , 而 sin 10° , cos 10° 可利用公式: sin10° - cos40°
α 来降 sin3α= 3sinα - 4sin3α, cos3α = 4cos3α - 3cos 幂. 即 sin3α=
) . 于是 + cos3α
1 ( 1 ( ) , cos3α = α 3sinα - sin3α 3cos 4 4
分析 1 注意到式中有三种角 :α,β,α + β, 我 β, 后一项中的 们可考虑将前两项降幂并化积成 α± β, 以尽量造成同角 , sinα sinβ可由积化和差造出α± 于是便有下面的解法 1 :
=
). 求证 :3tanα= 2tan (α+ β
≥ 5+4=9 若 ( 1) 等号成立 , 则 sin2β= 1 , 即 β=
( 2)
π . 4 若 ( 2) 等号成立 , 则 tanα= 2cotα, 即 tan2α= 2 , 故 α= arctan 2 . 所以 , 当 β= 成立 . 由例 7 的证明可以看到 , 在三角不等式的证明 过程中 , 一般要对已知或求证的不等式作各种巧妙 的三角变换和代数变形 , 具有很大的灵活性和技巧 性.
© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved.

84
2 3 ( a - 1) ; 当 a >
数 学 通 讯 2004 年第 14 ,16 期 β+ cosα )2 = ( sinα cos sinβ
). = sin2 (α+ β
7 1 +3a 时 , y 有最小值 . 3 2 7 综上 , 当 1 < a ≤ 时 , f ( θ) 有 最 小 值 3 7 2 3 ( a - 1) + a + 2 ; 当 a > 时 , f (θ) 有 最 小 值 3 1 +3a 5 +5a + a+2= . 2 2
0<
y
2
≤ 2,
Δ = y2 - 12 ( a - 1) ≥ 0.
4. 3 ( a - 1) ≤y ≤
y
2
>2,
g ( 2) = - 2 y + 3 a + 1 ≤ 0, y >4且 y ≥
1 +3a . 2 7 . 而当 a > 3
3 ( a - 1) ≤4 得 1 < a ≤
7 1 +3a 7 时, > 4 , 故当 1 < a ≤ 时 , y 有最小值 3 2 3
思考题 4 化简
3 - 4cos2α+ cos4α . 3 + 4cos2α+ cos4α
例4 求 sin2 10° + cos2 40° + sin10° cos40° 的值 . 分析 1 我们侧重于角来考虑 , 设法化成同角或 者特殊角 . 由于 40° = 30° + 10° , 故可化为 30° 和 10° 的三角函数 . 解法 1 sin2 10° + cos2 40° + sin10° cos40°
1 1 ( 1 - cos2α ) + ( 1 - cos2β ) 2 2 ) - cos (α- β ) ]cos (α+ β ) - [ cos (α+ β
解法 2
1 (3sin10° ) - sin30° - 3cos40° - cos120° 4 sin10° - cos40° 3 = . 4 思考题 5 ( 1991 年全国高中数学联赛试题 ) 求
2
三角等式的证明分恒等式与条件等式的证明两 大类型 . 证明过程一般是将等式较繁的一边通过化 简后等于另一边 . 如果等式左右两边都很繁杂时 , 则 将左右两边分别化简为同一式子 .
sin2α 例 5 证 明 : ( α α- 1) ( sinα- cosα+ 1) sin + cos α 1 + cos = . sinα sin2α 证明 左边 = 2 α- 1 sin α- cos2α+ 2cos α 2sinα cos = α- 1 1 - 2cos2α+ 2cos
(B) cos (α+ β ) < cos α+ cos β . ( C) cos (α+ β ) > sinα+ sinβ .
( )
g ( 2) = - 2 y + 3 a + 1 ≤ 0 时 , 方程 ( 1) 在 ( 0 , 2 ]内至少有一实根 .
由 解得 2 由 解得 再由 2
原式 =
解法 1 原式 =
) cos (α - β ) - cos2 (α + β ) + cos (α + = 1 - cos (α+ β
cos2 10° + cos2 50° - sin40° sin80° 的值 . 3 三角等式和不等式的证明
β )・ ) cos (α- β
). = sin (α+ β
= sin2α ( 1 - sin2β) + sin2β ( 1 sin2α) +
α β 2sinα cos sinβ cos α β+ sin2α = sin2α cos2β+ 2sinα cos sinβ cos cos2α
© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved.
) + sin10° ) = sin2 10° + cos2 ( 30° + 10° cos ( 30° + 10°
这里 , 我们利用正弦函数的有界性将求最小值 的问题化归为讨论二次函数的有关问题来解决 . 利用三角函数的有界性 , 可以用来解决某些三 角函数的最值和证明某些三角不等式的问题 . 思考题 2 已知函数 y = cos2 x + 2 p sin x + q 的 值域为 [ 7 , 10 ] , 试求 p , q 之值 . 思考题 3 对所有的实数 x , y , 有不等式
1 三角函数的性质及其应用
( D) cos (α+ β ) < sinα+ sinβ .
例 2 设 a > 1 , a ,θ 均为实数 , 试求当 θ 变化 时 , 函数
) = f (θ ( a + sinθ ) ( 4 + sin θ )
1 + sinθ
2
的最小值 .
π 内 , 且满足 cosα 2 β ) = β, cos ( sinγ ) = γ, 试比较 α,β,γ 的 = α, sin ( cos 例1 设 α,β,γ在区间 0 , 大小 . α, 由余弦函数在 0 , 解 若 β≥ 可知 π β≤ α= α< 0 < cos cos , 2 β= sin ( cos β ) < cos β≤ α= α. cos 这与假设矛盾 , 故有 β< α. α, 再由余弦函数在 0 , 若 γ≤ 不等式 α< 0 < sinγ < γ ≤ π , 2 π 的单调性及 2 π 的单调性 2
θ+ ( 4 + a) sinθ+ 4 a 1 + sinθ 3 ( a - 1) ) + = ( 1 + sinθ + a + 2. 1 + sinθ 令 1 + sinθ= x , 由于 - 1 ≤ sinθ≤ 1 , 1 + sinθ≠ 0,
相关文档
最新文档