《过程控制系统》实验报告

合集下载

北京科技大学过程控制实验报告

北京科技大学过程控制实验报告

实验报告课程名称:过程控制系统实验项目名称:被控对象特性测试实验日期与时间: 2022.07 指导教师:班级:姓名:学号:成绩:一、实验目的要求1.了解控制对象特性的基本形式。

2.掌握实验测试对象特性的方法,并求取对象特性参数二、实验内容本节实验内容主要完成测试对象特性,包含以下两部分内容:1.被控对象特性的实验测定本实验采用飞升曲线法(阶跃向应曲线法)测取对象的动特性。

飞升曲线是指输入为阶跃信号时的输出量变化的曲线。

实验时,系统处于开环状态,被控对象在某一状态下稳定一段时间后,输入一阶跃信号,使被控对象达到另一个稳定状态,得到被控对象的飞升曲线。

在实验时应注意以下的一些问题:1)测试前系统应处于正常工作状态,也就是说系统应该是平衡的。

采取一切措施防止其他干扰的发生,否则将影响实验结果。

2)在测试工作中要特别注意工作点与阶跃幅度的选取。

作为测试对象特性的工作点,应该选择正常工作状态,也就是在额定负荷及正常的其他干扰下,因为整个控制过程将在此工作点附近进行。

阶跃作用的取值范围为其额定值的 5-10%。

如果取值太小,由于测量误差及其它干扰的影响,会使实验结果不够准确。

如果取值过大,则非线性影响将扭曲实验结果。

不能获得应有的反应曲线,同时还将使生产长期处于不正常的工作状态,特别是有进入危险区域的可能性,这是生产所不能允许的。

3)实验时,必须特别注意的是,应准确地记录加入阶跃作用的计时起点,注意被调量离开起始点时的情况,以便计算对象滞后的大小,这对以后整定控制器参数具有重要的意义。

4)每次实验应在相同的条件下进行两次以上,如果能够重合才算合格。

为了校验线性,宜作正负两种阶跃进行比较。

也可作不同阶跃量的实验。

2.飞升曲线数据处理在飞升曲线测得以后,可以用多种方法来计算出所测对象的微分方程式,数据处理方法有面积法、图解法、近似法等。

面积法较复杂,计算工作量较大。

近似法误差较大,图解法较方便,误差比近似法小。

过程控制系统课程设计报告报告实验报告1

过程控制系统课程设计报告报告实验报告1

过程控制系统课程设计报告报告实验报告成都理工大学工程技术学院《过程控制系统课程设计实验报告》名称:单容水箱液位过程控制班级:2011级自动化过程控制方向姓名:学号:目录前言一.过程控制概述 (2)二.THJ-2型高级过程控制实验装置 (3)三.系统组成与工作原理 (5)(一)外部组成 (5)(二)输入模块ICP-7033和ICP-7024模块 (5)(三)其它模块和功能 (8)四.调试过程 (9)(一)P调节 (9)(二)PI调节 (10)(三)PID调节 (11)五.心得体会 (13)前言现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。

首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。

通过对基础训练设施的集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。

其次,工程实训的内容应一定程度地体现技术发展的时代特征。

为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。

应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。

第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。

以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

本次工程实践就是针对单容水箱液位进行恒高度控制通过调试,来熟悉THJ-2型高级过程控制实验装置。

通过本次工程实践,来熟悉工业过程控制的工作流程以及其控制原理。

过程控制实验报告

过程控制实验报告

过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。

2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。

过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。

过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。

3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。

实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。

(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。

(3) 将执行器与控制器连接,并调试执行器的控制参数。

(4) 在控制软件中设置控制策略和控制目标,并启动控制器。

(5) 监测被控制物理过程的状态,并记录相关数据。

(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。

4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。

实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。

5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。

通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。

在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。

过程控制系统仿真实习报告

过程控制系统仿真实习报告

过程控制系统仿真实习报告一、实习目的与要求本次实习旨在通过使用MATLAB/Simulink仿真工具,对过程控制系统进行仿真研究,加深对控制理论的理解,提高控制系统设计和分析的能力。

实习要求如下:1. 熟练掌握MATLAB/Simulink的基本操作和仿真功能。

2. 了解过程控制系统的原理和常见控制策略。

3. 能够运用MATLAB/Simulink对过程控制系统进行建模、仿真和分析。

二、实习内容与过程1. 实习准备在实习开始前,先对MATLAB/Simulink进行学习和了解,掌握其基本的使用方法和功能。

同时,对过程控制系统的原理和常见控制策略进行复习,为实习做好充分的准备。

2. 实习过程(1) 第一个仿真项目:水箱液位控制系统在这个项目中,我们首先建立水箱液位的数学模型,然后根据该模型在Simulink中搭建仿真模型。

我们分别设计了单容、双容和三容水箱的液位控制系统,并分析了控制器参数对系统过渡过程的影响。

通过调整控制器参数,我们可以得到满意的控制效果。

(2) 第二个仿真项目:换热器温度控制系统在这个项目中,我们以换热器温度控制系统为研究对象,根据自动控制系统的原理,利用降阶法确定对象的传递函数。

在Simulink中,我们搭建了单回路、串级和前馈-反馈控制系统模型,并采用常规PID、实际PID和Smith预测器对系统进行仿真。

通过对比不同控制策略的仿真曲线,我们分析了各种控制策略的优缺点。

(3) 第三个仿真项目:基于模糊PID的控制系统在这个项目中,我们以工业锅炉燃烧过程控制系统为研究对象,利用模糊PID控制器优化锅炉燃烧过程控制系统的主要三个子系统:蒸汽压力控制系统、炉膛负压控制系统、燃料与空气比值系统的被控对象的函数。

通过仿真,我们优化了控制器的参数,使得系统在加入扰动后能够快速恢复稳定的状态。

三、实习收获与体会通过本次实习,我对MATLAB/Simulink仿真工具有了更深入的了解,掌握了其在过程控制系统仿真中的应用。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。

它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。

在工业生产中,过程控制系统起到了至关重要的作用。

本实验旨在了解过程控制系统的基本原理、组成以及操作。

二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。

三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。

四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。

在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。

通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。

当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。

在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。

实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。

通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。

五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。

我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。

实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。

然而,本次实验还存在一些不足之处。

首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。

其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。

二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。

2、计算机及相关软件用于编程、监控和数据采集分析。

三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。

其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。

常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。

四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。

(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。

(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。

(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。

2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。

设置温度设定值和控制算法参数。

(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。

五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。

(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。

快速性分析:计算液位达到设定值所需的时间。

过程控制系统实验报告

过程控制系统实验报告

《过程控制系统实验报告》院-系:专业:年级:学生姓名:学号:指导教师:2015 年6 月过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验一单容水箱液位定值控制实验学时课程名称过程控制系统实验与课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以与震荡曲线。

2、使用比例积分控制进行流量控制,能够得到稳定曲线。

设定不同的积分参数,进行比较。

3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。

设定不同的积分参数,进行比较。

三、实验原理(1)控制系统结构单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。

水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。

被调量为水位H。

使用P,PI , PID控制,看控制效果,进行比较。

控制策略使用PI、PD、PID调节。

测量或控测量或控制量使用PLC端使用ADAM端四、实验内容与步骤1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。

这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。

3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。

注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。

对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。

4、打开设备电源。

包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。

5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。

6、启动计算机,启动组态软件,进入测试项目界面。

过程控制系统实验报告

过程控制系统实验报告

南京工程学院实验报课程名称:过程控制系统 ____________ 实验项目名称:单容对象的控制及参数整定双容对象的控制及参数整定串级系统的控制及参数整定实验学生班级:________________________________ 实验学生学号:________________________________ 实验时间:____________________________________ 实验地点:____________________________________实验成绩评定:________________________________ 指导老师签字:________________________________自动化学院实验一单容对象的控制及参数整定、实验目的1、熟悉单容对象的数学模型及其阶跃响应曲线。

2、根据由实际测得的单容对象的阶跃响应曲线,用相关的方法确定对象参数。

3、根据经验整定法确定单容对象控制器参数。

、实验设备PC机、MatLab软件三、实验原理一阶惯性环节的响应曲线是一单调上升的指数函数,如下图所示。

当由实验求得图中所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是单容对象的时间常数T,该时间常数T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T o同样的,输入输出的比值就可以确定对象增益。

从而确定单容对象的参数。

经验整定法,书本p110。

四、实验内容和步骤1、使用MatLab 进行模拟仿真。

仿真图如下:“乐骗咼寧*斥闵国Reddy11 1 1I15s+1►iode452、系统稳定后(测量值基本不变化),改变操作量值,获取单容对象的响应曲线如下图。

3、根据经验整定方法,确定系统的P, PI, PID控制器。

在实验界面中控制器部分设置相应参数,同样获取系统的阶跃响应曲线。

①P控制器ScopeOS e A□务®►■阿下[瓯mJ―3畀瞪国总射团阖曝五、实验结果分析1、从实验结果分析单容对象控制中P, PI,PID控制器的特点?2、实验的收获和体会实验二双容对象的控制及参数整定一、实验目的1、熟悉双容对象的数学模型及其阶跃响应曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《过程控制系统》实验报告学院:电气学院_________________专业:自动化_________________班级:__________ 1505 _______________姓名及学号:任杰311508070822 __________日期:201863 ______________________实验一、单容水箱特性测试实验目的1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。

2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。

实验设备1. THJ-FCS 型高级过程控制系统实验装置2. 计算机及相关软件。

3. 万用电表一只。

实验原理图1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位h,控制量(输入量)是流入水箱中的流量Q1,手动阀V和M的开度都为定值,Q为水箱中流出的流量。

根据物料平衡关系,在平衡状态时Q10 Q200 (式2-1),动态时,则有Q1 Q2——,dt (式2-2)式中v为水箱的贮水容积,理为水贮存量的变化率,它与h的关dt-J\ / -J h系为dV Adh,即——A—(式2-3),A为水箱的底面积。

把式(2-3)代入dt dt可改写为Q 1 - A dh ,AR s 也 dt dt KQ 1或乞(式2-5 )式中T AR sQ 1 s Ts 1它与水箱的底面积 A 和V 的R s 有关, (式 2-5 )为单容水箱的传递函数。

若令 Q 1 S R 0 =,R o 常数,则式2-5可表示为 H S -/TS KR o 对上式取拉氏反变换得ht KR 01 et/T (式 2-6) KR o ,因 而有 K h /R o =输出稳态/阶跃输入, h T KR 0 1 e 1 0.632KR 。

0.632h ,式2-6表示一阶惯性响应曲线是一单基于Q 2 R S h , R s 为阀V 2的液阻,(式2-4) 切线与稳态值交点所对应的时间就是 K 和T 后,就能求得单容水箱的传递函 图中OB 即为对象的滞后时间 T ,BC 为对象的时间常数T ,所得的传递函数为H s Q i s Ke s。

Ts 1式(2-2 )得 Q 1 Q 2 A dh (式 2-4 ) dt调上升的指数函数如下图2-2所示当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的 63%所对应的时间,就是水箱的时间常数T 。

该时间常数T 也可以通过 坐标原点对响应曲线作切线, 时间常数T ,由响应曲线求得 数如式(如果对象的阶跃响应曲线为图2-3,贝恠此曲线的拐点D 处作一切线,它与时 间轴交于B 点,与响应稳态值的渐近线交于 A 点。

四、 实验内容与步骤本实验选择上水箱作为被测对象(也可选择中水箱或下水箱)。

实验之前先 将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将上水出水阀门F1-9 开至适当开度,其余阀门均关闭。

1、 接通控制柜和控制台的相关电源,并启动磁力驱动泵,接通空压机电源。

控制柜无需接线。

2、 打开作上位控制的PC 机,点击“开始”菜单,选择弹出菜单中的“ SIMATIC'选项,再点击弹出菜单中的“ WINCC ,再选择弹出菜单中的“ WINCC CONTROL CENTER 5.0 ,进入WINCC 资源管理器,打开组态好的上位监控程序,点击管理 器工具栏上的“激活(运行)”按钮,进入实验主界面。

3、鼠标左键点击实验项目“一阶单容水箱对象特性测试实验”,系统进入正常的测试状态。

4 •在上位机实验界面窗口给定阀门开度值(既可拉动输出值旁边的滚动条,也可直接在输出值显示框中输入阀门开度值),使水箱的液位处于某一平衡位置。

5•在上位机实验界面窗口改变给定的阀门开度值,使其输出有一个正(或负)阶跃增量的变化(此增量不宜过大,以免水箱中水溢出),使水箱液位上升或下降,经过一定时间的调节后,水箱的液位进入新的平衡状态。

6. 观察上位机监控界面上水箱液位的历史曲线和阶跃响应曲线。

在上位机实验界面改变阀门开度值,使其输出有一正(或负)阶跃增量的变化,使水箱液位上升或下降,经过一定时间的调节后,水箱的液位进入新的平衡状态。

曲线图如下五、实验结果与分析1. 单容水箱特性测试结构框图干扰 删出单容水箱特性测试结构框图5*2. 分析计算单容水箱液位对象时的参数和传递函数由实验原理及结构框图可知,单容水箱液位对象的传递函数为H s K Q 1 s Ts 1由机理建模的方法可以列写其微分方程HH s 有Q 0巨化简后得Q7R 2 1 AsR 2 ,所以K R 2,T AR 2。

3. 实验心得体会在此实验过程中,主要学习到的知识是单容过程的工作原理和在给扰动后恢 复平衡状态的过程。

在做实验的过程中,由于前期指导老师已经将实验所用系统 调至一个稳态,我们需要做的工作是给一个扰动通过手动调节阀门开度使系统稳 定在一个新的平衡状态。

总体感觉实验比较简单,但是所包含的理论知识却不少。

在实验过程中更加体会到了理论联系实际的重要性。

我也意识到了在专业课学习 中不仅要认真学会理论知识,更要理论联系实验,认真把握好每次做实验的机会, 认真实验,更加深入的理解理论知识。

五、 思考题1. 在实验进行过程中,为什么不能任意改变出水口阀开度的大小?答 因为在实验过程中,任意改变出水口阀开度会影响出水流量的大小。

在入 水量不变的情况下,这样会使实验记录的数据和图形与实际相差较远。

2. 用响应曲线法确定对象的数学模型时,其精度与那些因素有关?答 因为系统用到了仪表,因此与仪表的精度有关,同时与出水阀开度的大 小有关。

并和放大系数K 、时间常数T 以及纯滞后时间有关。

另外,也会受实其参数确定过程如下:根据图式 ,八 dH 为 Q o Q i A - dt设阀门液阻为R验室电压的波动与测试软件的影响。

3、如果采用中水箱做实验,其响应曲线与上水箱的曲线有什么异同?并分析差异原因。

答:若采用中水箱做实验,它的响应曲线要比上水箱变化的慢。

原因:因为中水箱的回路比上水箱的回路要长,上升相同的液位高度中水箱要更长的时间。

实验原理实验二、上水箱液位PID 整定实验实验目的1、 了解单容液位定值控制系统的结构与组成。

2、 掌握单容液位定值控制系统调节器参数的整定和投运方法。

3、 研究调节器相关参数的变化对系统静、动态性能的影响。

4、 了解P 、PI 、PD 和PID 四种调节器分别对液位控制的作用。

5、 掌握在FCS 控制系统中现场检测信号的传送和控制信号的网络传输路径二、 实验设备1. THJ-FCS 型高级过程控制系统实验装置。

2. 计算机及相关软件。

3. 万用电表一只。

(«> (b)图1上水箱单容液位定值控制系统(a)结构图(b)方框图本实验系统结构图和方框图如图3-6所示。

被控量为上水箱(也可采用中水 箱或下水箱)的液位高度,实验要求它的液位稳定在给定值。

将压力传感器LT1检 测到的上水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制 气动调节阀的开度,以达到控水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。

四、实验内容与步骤实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将上水箱出水阀门F1-9开至适当开度,其余阀门均关闭。

1、接通控制柜和控制台电源电源,并启动磁力驱动泵和空压机。

2、打开作上位控制的PC机,,进入的实验主界面。

3、鼠标左键点击实验项目“上水箱液位PID整定实验”,系统进入正常的测试状态。

4、在上位机监控界面中点击“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过设定值或输出值旁边相应的滚动条或输出输入框来实现。

5、启动磁力驱动泵,磁力驱动泵上电打水,适当增加/减少输出量,使上水箱的液位平衡于设定值。

&按本章第一节中的经验法或动态特性参数法整定PI调节器的参数,并按整定后的PI参数进行调节器参数设置。

7、待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰:(1)突增(或突减)设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面两种仅供参考)(2)将气动调节阀的旁路阀F1-3或F1-4 (同电磁阀)开至适当开度;(3)将下水箱进水阀F1-8 开至适当开度;(改变负载)以上几种干扰均要求扰动量为控制量的5%〜15%,干扰过大可能造成水箱中水溢出或系统不稳定。

加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面两种干扰方法仍稳定在原设定值),观察计算机记录此时的设定值、输出值和参数。

8、分别适量改变调节器的P及I参数,重复步骤7,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。

9、分别用P、PD PID三种控制规律重复步骤4〜8,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。

五、实验结果与分析1. 单容水箱液位定值控制实验的结构框图2. 实验方法确定调节器的相关参数,整定过程如下通过经验法来确定PID参数,现设置比例系数K,通过观察响应曲线的变化,来确定是否需要添加积分环节I ;如果误差超过要求范围,则需要添加积分环节I 来消除余差;继续观察响应曲线若其动态性能不能达到要求则添加微分环节D,用以满足系统动静态参数要求。

3.实验曲线图及相关分析在系统稳定之后给以阶跃扰动,由于PID控制器的调节作用,系统趋于一个新的稳定状态,根据曲线图可以看出,该系统能够仍存在误差,但是误差在可允许的范围内,所以实验曲线图还是可以作为研究PID控制器作用的分析图。

4. 不同PID参数对系统产生的影响P:增大比例系数K,会使系统的振荡加剧,稳定性变差,但可以减小系统的稳定误差,加快系统的响应速度。

PI :加入积分环节的作用是消除余差,但积分环节会引起相角滞后,系统的动态性能恶化,随着积分作用的增强,控制器的控制作用增强,系统的稳定性逐渐减弱。

PID:加入微分环节作用是补偿对象滞后,使系统的稳定性得到改善,提高了响应速度,兼顾了动静态的控制要求。

5. 分析P、PI、PD PID,四种不同的控制方式对系统的影响P:增大比例系数K,会使系统的振荡加剧,稳定性变差,但可以减小系统的稳定误差,加快系统的响应速度。

PI :加入积分环节的作用是消除余差,但积分环节会引起相角滞后,系统的动态性能恶化,随着积分作用的增强,控制器的控制作用增强,系统的稳定性逐渐减弱。

PD微分作用通过提供超前作用使得被控过程趋于稳定,同时也减小了过渡过程的时间,改善了被控量动态响应的品质。

相关文档
最新文档