高考数学-立体几何知识点与例题讲解-题型、方法技巧

高考数学-立体几何知识点与例题讲解-题型、方法技巧
高考数学-立体几何知识点与例题讲解-题型、方法技巧

O(∩_∩)O 立体几何知识点and 例题讲解 O(∩_∩)O

一、知识点

<一>常用结论

1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线

平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面

面平行.

3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面

垂直.

4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的

射影垂直;(4)转化为线与形成射影的斜线垂直. 5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直. 7.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉=

112233222222123

123

a b a b a b a a a

b b b

++++++.

8.异面直线所成角:cos |cos ,|a b θ=r r =1212122222

2

2

1

1

1

222||

||

||||

x x y y z z a b a b x y z x y z ++?=?++?++r r

r

r

(其中θ(090θ<≤o o

)为异面直线a b ,

所成角,,a b r r 分别表示异面直线a b ,的方向向量) 9.直线AB 与平面所成角:sin

||||

AB m

arc AB m β?=(m 为平面α的法向量).

10、空间四点A 、B 、C 、P 共面OC z OB y OA x OP ++=?,且 x + y + z = 1 11.二面角l αβ--的平面角

cos

||||m n arc m n θ?=或cos ||||

m n

arc m n π?-(m ,n 为平面α,β的法向量).

12.三余弦定理:设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所

成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 13.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则

,A B d =||AB AB AB =?222212121()()()x x y y z z =-+-+-.

14.异面直线间的距离: ||

||

CD n d n ?=

(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).

15.点B 到平面α的距离:||

||

AB n d n ?=

(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 16.三个向量和的平方公式:2

2

2

2()222a b c a b c a b b c c a ++=+++?+?+?

222

2||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++?+?+?

17. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有

222

2123l l l l =++222123cos cos cos 1θθθ?++=222123sin sin sin 2θθθ?++=.

(立体几何中长方体对角线长的公式是其特例).

18. 面积射影定理 'cos S S θ

=.(平面多边形及其射影的面积分别是S 、'

S ,它们所在平面所成锐二面角的θ).

19. 球的组合体(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组

合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3) 球与正四面体的组合体: 棱长为a 的正四面体的内切球的半径为

612a ,外接球的半径为64

a . 20. 求点到面的距离的常规方法是什么?(直接法、体积法)

21. 求多面体体积的常规方法是什么?(割补法、等积变换法) 〈二〉温馨提示:

1.在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及义? ① 异面直线所成的角、直线与平面所成的角、二面角的取值范围依次

.

② 直线的倾斜角、到的角、与的夹角的取值范围依次是

③ 反正弦、反余弦、反正切函数的取值范围分别是.

〈三〉解题思路:

1、平行垂直的证明主要利用线面关系的转化:

线∥线线∥面面∥面

判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面

←→?←→??→??←→?←→?←?

??←→?←→?

线

面平行的判定

: a b b a a ∥,面,∥面???ααα

a

b

α

线面平行的性质: αααβαβ∥面,面,∥?=? b a b 三垂线定理(及逆定理):

P A A O P O ⊥面,为在内射影,面,则αααa ?

a OA a PO a PO a AO

⊥⊥;⊥⊥??

α

a

P

O

线面垂直:

a b a c b c b c O a ⊥,⊥,,,⊥?=?αα

a

O

α b c

面面垂直:

a a ⊥面,面⊥αββα

?? 面⊥面,,,⊥⊥αβαβαβ

=??l l aaa α a

l

β

a b a b ⊥面,⊥面∥αα?

面⊥,面⊥∥αβαβ

a a ? a b

α

2、三类角的定义及求法

(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

θαα=时,∥或0b o

b ?

()二面角:二面角的平面角,30180

αβθθ--<≤l o o

(三垂线定理法:A ∈α作或证AB ⊥β于B ,作BO ⊥棱于O ,连AO ,则AO ⊥棱l ,∴∠AOB 为所求。)

三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。 ③计算大小(解直角三角形,或用余弦定理)。

二、题型与方法

【考点透视】

不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成。 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】

考点1 点到平面的距离

求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.

例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.

考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.

解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .

ABC △为正三角形,AO BC ∴⊥.

A

B C

D

1

A

1

C

1

B

A

C D

1

A

1

C O

F

正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,

AO ∴⊥平面11BCC B .

连结1B O ,在正方形11BB C C 中,O D ,分别为

1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.

在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .

(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .

1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.

在1AA D △中,由等面积法可求得455

AF =,

又1122AG AB ==, 210sin 4

455AG AFG AF ∴===∠.

所以二面角1A A D B --的大小为10arcsin 4

(Ⅲ)1A BD △中,1

115226A BD BD A D A B S ===∴=△,,,1BCD S =△.

在正三棱柱中,1A 到平面11BCC B 的距离为3. 设点C 到平面1A BD 的距离为d . 由1

1

A BCD C A BD V V --=,得111

33

3

BCD

A BD S S d =△△,

1322

BCD A BD S d S ∴=

=

△△.

∴点C 到平面1A BD 的距离为22

解法二:(Ⅰ)取BC 中点O ,连结AO .

ABC △为正三角形,AO BC ∴⊥.

在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,

AD ∴⊥平面11BCC B .

取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,

(110)D -,,,1(023)A ,,,(003)A ,

,,1(120)B ,,, 1(123)AB ∴=-,,,(210)BD =-,,,1(1

23)BA =-,,. 12200AB BD =-++=,111430AB BA =-+-=,

z A

B

C D

1

A

1

C

O F

y

1AB BD ∴⊥,11AB BA ⊥.

1AB ∴⊥平面1A BD .

(Ⅱ)设平面1A AD 的法向量为()x y z =,,n . (113)AD =--,,,1(020)AA =,,.

AD ⊥n ,1AA ⊥n ,

100AD AA ?=?∴?

=??,,n n 3020x y z y ?-+-=?∴?=?

?,,03y x z =??∴?=-??,. 令1z =得(301)=-,,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD , 1AB ∴为平面1A BD 的法向量.

cos

1

3364222AB AB AB -->===-n n .

∴二面角1A A D B --的大小为6arccos 4

(Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量, 1(200)(123)BC AB =-=-,,,,,.

∴点C 到平面1A BD 的距离11

222

22

BC AB d AB -===.

小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法. 考点2 异面直线的距离

此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离. 例2已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为

AB BC 、的中点,求CD 与SE 间的距离.

思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:

如图所示,取BD 的中点F ,连结EF ,SF ,CF ,

EF ∴为BCD ?的中位线,EF ∴∥CD CD ∴,∥面SEF ,

CD ∴到平面SEF 的距离即为两异面直线间的距离.

又 线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,

2,2,62

1

,62=====∴SC DF CD EF CD 3

3222621312131=????=????=

∴-SC DF EF V CEF S 在Rt SCE ?中,3222=+=CE SC SE

在Rt SCF ?中,30224422=++=+=CF SC SF

又3,6=∴=

?SEF S EF

由于h S V V SEF CEF S SEF C ??=

=?--3

1

,即332331=

??h ,解得332=h 故CD 与SE 间的距离为

3

3

2. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离

此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 例3. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解答过程:

解析一 BD ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求

点O 平面11D GB 的距离,

1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,

又?11D B 平面11D GB

∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,

作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1?中,2222

1

2111=??=??=

?AO O O S OG O . B

A

C

D

O

G

H 1

A 1

C 1D

1

B 1O

又3

62,23212111=∴=??=??=

?OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于3

6

2. 解析二 BD ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.

设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则

,由于63222

1

,111111=??=

=?--D GB GBB D D GB B S V V

3

4

222213111=

????=-GBB D V ,

,3

6

26

4=

=

∴h 即BD 到平面11D GB 的距离等于

3

6

2. 小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 考点4 异面直线所成的角

此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点.

例4、如图,在Rt AOB △中,π6

OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,

且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ;

(II )求异面直线AO 与CD 所成角的大小.

思路启迪:(II )的关键是通过平移把异面直线转化到一个三角形内. 解答过程:解法1:(I )由题意,CO AO ⊥,BO AO ⊥,

BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =, CO ∴⊥平面AOB ,

又CO ?平面COD .

∴平面COD ⊥平面AOB .

(II )作DE OB ⊥,垂足为E ,连结CE (如图),则,DE AO ∥ CDE ∴∠是异面直线AO 与CD 所成的角.

O

C

A

D

B

E

O

C

A D

B x y

z

在Rt COE △中,2CO BO ==,112

OE BO ==,

225CE CO OE ∴=+=.

又132

DE AO ==.

∴在Rt CDE △中,515tan 3

3

CE CDE DE

===.

∴异面直线AO 与CD 所成角的大小为15arctan 3

解法2:(I )同解法1.

(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,, (0023)OA ∴=,,,(21

3)CD =-,,, cos OA CD OA CD OA CD

∴<>=

,6642322

=

=.

∴异面直线AO 与CD 所成角的大小为6arccos 4

小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:??

? ??2,0π.

考点5 直线和平面所成的角

此类题主要考查直线与平面所成的角的作法、证明以及计算.线面角在空间角中占有重要地位,是高考的常考内容.

例5. 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,

22BC =,3SA SB ==.

(Ⅰ)证明SA BC ⊥;

(Ⅱ)求直线SD 与平面SAB 所成角的大小.

考查目的:本小题主要考查直线与直线,直线与平面的位置关系,

二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解答过程:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .

因为SA SB =,所以AO BO =,

又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.

D

B

C

A

S

O

D

B

C

A

S

(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由22AD BC ==,3SA =

,2AO =,得

1SO =,11SD =. SAB △的面积2

2

11122

2S AB

SA AB ??

=-= ???

连结DB ,得DAB △的面积21

sin13522

S AB AD =

= 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得

1211

33

h S SO S =,解得2h =. 设SD 与平面SAB 所成角为α,则222sin 1111h SD α===.

所以,直线SD 与平面SBC 所成的我为22arcsin 11

解法二:

(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD . 因为SA SB =,所以AO BO =.

又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.

如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,

(200)A ,,,(020)B ,,,(020)C -,,,(001)S ,,,(201)SA =-,,,

(0220)CB =,,,0SA CB =,所以SA BC ⊥.

(Ⅱ)取AB 中点E ,2202

2

E ?? ? ?

??

,,, 连结SE ,取SE 中点G ,连结OG ,2214

4

2G ?? ? ?

??

,,. 221442OG ??= ? ???,,,22122SE ??= ? ?

??

,,,(220)AB =-

,,.

0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.

所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余. (2220)D ,,,(2221)DS =-,,.

22cos 11

OG DS OG DS

α=

=

,22sin 11β=,

D

B

C

A

S

O

E

G

y

x

z

所以,直线SD 与平面SAB 所成的角为22arcsin 11

小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值. 考点6 二面角

此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点,应重视.

例6.如图,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.

(I )证明BC PQ ⊥;

(II )求二面角B AC P --的大小.

命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力. 过程指引:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ α

β=,所以CO α⊥,

又因为CA CB =,所以OA OB =.

而45BAO ∠=,所以45ABO ∠=,90AOB ∠=, 从而BO PQ ⊥,又CO PQ ⊥,

所以PQ ⊥平面OBC .因为BC ?平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ α

β=,

BO α?,所以BO β⊥.

过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.

由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=, 不妨设2AC =,则3AO =,3sin 302

OH AO ==

. 在Rt OAB △中,45ABO BAO ∠=∠=,所以3BO AO ==,

A

B

C

Q α

β P A

B C

Q

α

β P

O

H

于是在Rt BOH △中,3

tan 232

BO

BHO OH

∠=

==. 故二面角B AC P --的大小为arctan 2.

解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图).

因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=. 不妨设2AC =,则3AO =,1CO =. 在Rt OAB △中,45ABO BAO ∠=∠=, 所以3BO AO ==. 则相关各点的坐标分别是

(000)O ,,,(300)B ,,,(030)A ,,,(001)C ,

,. 所以(330)AB =-,,,(031)AC =-,,.

设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ?=??=??,得33030x y y z ?-=??-+=?

?,

取1x =,得1(113)n =,,.

易知2(100)n =,,是平面β的一个法向量.

设二面角B AC P --的平面角为θ,由图可知,12n n θ=<>,. 所以121215

cos 5

||||51n n n n θ=

==?.

故二面角B AC P --的大小为5

arccos

5

. 小结:本题是一个无棱二面角的求解问题.解法一是确定二面角的棱,进而找出二面角的平面角.无棱二面角棱的确定有以下三种途径:①由二面角两个面内的两条相交直线确定棱,②由二面角两个平面内的两条平行直线找出棱,③补形构造几何体发现棱;解法二则是利用平面向量计算的方法,这也是解决无棱二面角的一种常用方法,即当二面角的平面角不易作出时,可由平面向量计算的方法求出二面角的大小. 考点7 利用空间向量求空间距离和角

众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性.

例7.如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==.

A

B

C Q

α

β P

O

x

y

z

(1)求证:1E B F D ,,,四点共面; (2)若点G 在BC 上,2

3

BG =

,点M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ; (3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.

命题意图:本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力. 过程指引:解法一:

(1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1A E D N ==,

12CF ND ==.

因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形. 从而EN AD ∥,1FD CN ∥.

又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥. 因此,1E B F D ,,,四点共面.

(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,

tan tan BM BG BGM BG CFB ==∠∠23

132

BC BG

CF ==?=. 因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥. 又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B . (3)如图,连结EH .

因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠.

因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB ==∠∠

22

22

33113

32BC BM

BC CF ==?

=

++,

tan 13EM MH θ==.

解法二:

(1)建立如图所示的坐标系,则(301)BE =,,,(032)BF =,,,1(333)BD =,,, 所以1BD BE BF =+,故1BD ,BE ,BF 共面. 又它们有公共点B ,所以1E B F D ,,,四点共面.

(2)如图,设(00)M z ,,,则203GM z ??=- ???

,,, C

B

A

G H

M

D

E F 1B

1A

1D

1

C

N

C

B

A

G H

M

D

E

F

1B

1A 1D

1

C

z

y

x

而(032)BF =,,,由题设得2

3203

GM BF z =-+=, 得1z =.

因为(001)M ,,,(301)E ,,,有(300)ME =,,,

又1(003)BB =,,,(030)BC =,,,所以10ME BB =,0ME BC =,从而1ME BB ⊥,ME BC ⊥. 故ME ⊥平面11BCC B .

(3)设向量(3)BP x y =,,⊥截面1EBFD ,于是BP BE ⊥,BP BF ⊥.

而(301)BE =,,,(032)BF =,,,得330BP BE x =+=,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,.

又(300)BA =,,⊥平面11BCC B ,所以BP 和BA 的夹角等于θ或πθ-(θ为锐角). 于是1

cos 14

BP BA BP BA

θ=

=

. 故tan 13θ=.

小结:向量法求二面角的大小关键是确定两个平面的法向量的坐标,再用公式求夹角;点面距离一般转化为AB 在面BDF 的法向量n 上的投影的绝对值.

考点8 简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断.

例8 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚

线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.

[思路启迪]设四边形一边AD ,然后写出六棱柱体积,利用均值不等式,求出体积取最值时AD 长度即可. 解答过程:如图(2)设AD =a ,易知∠ABC =60°,且∠ABD =30°?AB =3a . BD =2a ?正六棱柱体积为V .

V =a a 360sin 2121

62?????)-(=a a ?2

212

9)-(

a a a 4)21)(21(8

9--≤3

3289)(? . 当且仅当 1-2a =4a ? a =6

1

时,体积最大,

此时底面边长为1-2a =1-2×61=3

2

.

∴ 答案为6

1

.

N

M

C

B

A

考点9.简单多面体的侧面积及体积和球的计算

棱柱侧面积转化成求矩形或平行四边形面积,棱柱侧面积转化成求三角形的面积. 直棱柱体积V 等于底面积与高的乘积. 棱锥体积V 等于3

1

Sh 其中S 是底面积,h 是棱锥的高. 典型例题

例9 .(2006年全国卷Ⅱ)已知圆O 1是半径为R 的球O 的一个小圆,且圆O 1的面积与球O 的表面积的比值为

9

2

,则线段OO 1与R 的比值为 . 命题目的:①球截面的性质;②球表面积公式. 过程指引:依面积之比可求得

R

r

,再在Rt △OO 1A 中即得 解答过程:设小圆半径为r ,球半径为R

则92422=R r ππ ? 9242

2=R

r ? 32

2=R r ∴ cos ∠OAO 1=

3

2

2=R r 而

3

1

981sin 1=-==αR OO 故填3

1

<二>选择题辨析

[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)

②直线在平面外,指的位置关系:平行或相交

③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)

④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) [注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行) ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)

R

r A

O 1

O

③垂直于同一平面的两条直线平行.(√)

[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]

⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上

[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)

④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件) [注]:①一个棱锥可以四各面都为直角三角形.

②一个棱柱可以分成等体积的三个三棱锥;所以棱柱

棱柱3V S h

V ==

[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等

iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. [注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否

全等) ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:A B ⊥CD ,AC ⊥BD ? BC ⊥AD. 令b AC c AD a AB ===,,

得c a c b AD BC c AD a b AB AC BC -=??=-=-=,,已知()()

0,0=-?=-?c a b b c a

0=-?c b c a 则0=?AD BC .

iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取AC 中点'O ,则⊥?⊥'⊥'AC AC O B AC o o ,平面=∠?⊥?'FGH BO AC B O O 90°易知EFGH 为平行四边形?EFGH 为长方形.若对角线等,则EFGH FG EF ?=为正方形.

注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立] ②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]

③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立] ④若a 为非零向量,则00=?a .(√)[这里用到)0(≠b b λ之积仍为向量]

B C

D

A

a

b

c

F

E

H G

B

C

D

A

O'

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

立体几何知识点题型整理

立体几何总结(1)空间几何体的知识点: (2)点、直线、面的位置关系: (3)空间直角坐标系: 考点一空间几何体与三视图 1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.画直观图时,与坐标轴平行的线段仍平行,与x轴、z轴平行的线段长度不变,与y轴平行的线段长度减半. 题型一三视图的考察 1、(2009·海南、宁夏) 一个棱锥的三视图如图,则该棱锥的全面积( 单位:cm2) 为( ) A.48+12 2 B.48+24 2 C.36+12 2 D.36+24 2 2、如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( ) A.6 3 B.9 3 C.12 3 D.18 3 【方法技巧】 1.求三棱锥体积时,可多角度地选择方法.如体积分割、体积差等积转化法是常用的方法.2.与三视图相结合考查面积或体积的计算时,解决时先还原几何体,计算时要结合平面图形,不要弄错相关数量. 3.求不规则几何体的体积常用分割或补形的思想将不规则几何体转化为规则几何体以易于求解. 4.对于组合体的表面积要注意其衔接部分的处理.

题型二 平面图的直观图(斜二测面法) 1、如图所示的直观图,其平面图形的面积为 ( ) A .3 B.32 2 C .6 D .3 2 2、如图所示为一平面图形的直观图,则这个平面图形可能是 ( ) 答案 :C 题型四 其他类型:展开、投影、截面、旋转体等 1 、面积为3的等边三角形绕其一边中线旋转所得圆锥的侧面积是________. 答案 :2π 2、 如图,长方体ABCD -A1B1C1D1 中,交于顶点A 的三条棱长分别为AD =3 ,AA1 =4 ,AB =5 ,则从A 点沿表面到 C1 的最短距离为 ( ) A .5 2 B.74 C .4 5 D .310 考点三 球与空间几何体的“切”“接”问题 1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的内切球其棱长为球的直径. 3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线. 4.正四面体的外接球与内切球的半径之比为3∶1. 若正四面体的棱长为 a a R a a 12 6 ,46 ,36的半径为 正四面的内切球 径正四面体的外接球的半则正四面体的高为= (熟悉常见的补体,特殊的几何体如正三棱柱、正四棱柱、正六棱柱,注意如何确定球心的位置) 1.已知三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球的半径为( )A.3 B.6 C.36 D.9 2、在三棱锥BCD A -中,5,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为( )A.π102 B. π54 C. π21 D. π43 变式:在三棱锥BCD A -中,5,4,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为————(π2 77 ) 2、棱长为2的正四面体(四个面均为正三角形)外接球的表面积是( ) A π3 B π3 C π33 D π2 3 3、在三棱柱C B A ABC '''-中,已知ABC A A 平面⊥',2='==A A AC AB ,32=BC ,且此三棱柱的各个顶点都在一个球面上,则球的表面积为__________.

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

全国高考文科数学立体几何综合题型汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

立体几何知识点与例题讲解、题型、方法技巧

啊没立体几何知识点和例题讲解 一、知识点 <一>常用结论 1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同 与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行. 3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直. 4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为 线与另一线的射影垂直;(4)转化为线与形成 射影的斜线垂直. 5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.

7.夹角公式 :设a =1 2 3 (,,)a a a ,b =1 2 3 (,,)b b b ,则cos 〈a ,b 〉 . 8.异面直线所成角: cos |cos ,| a b θ=r r = |||||| a b a b ?=?r r r r (其中θ(090θ<≤o o )为异面直线a b ,所成角,,a b r r 分别表示异面直线a b ,的方向向量) 9.直线AB 与平面所成角:sin ||||AB m arc AB m β?=u u u r u r u u u r u r (m u r 为平面α的法向量). 10、空间四点A 、B 、C 、P 共面z y x ++=?,且 x + y + z = 1 11.二面角l αβ--的平面角 cos ||||m n arc m n θ?=u r r u r r 或cos ||||m n arc m n π?-u r r u r r (m u r ,n r 为平面α,β的法向量). 12.三余弦定理:设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1 θ,AB 与AC 所成的角为2 θ,AO 与AC 所成的角为θ.则12 cos cos cos θθθ=. 13.空间两点间的距离公式 若A 111(,,)x y z ,B 222 (,,)x y z ,则 ,A B d =||AB =u u u r = 14.异面直线间的距离: |||| CD n d n ?=r (12 ,l l 是两异面直线,其公垂向量为n r ,C D 、分别是1 2 ,l l 上任一点,d 为1 2 ,l l 间的距离). 15.点B 到平面α的距离:|| || AB n d n ?=u u u r u u r r (n r 为平面α的法向量,AB 是经过面α的一条斜线,A α∈).

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.

(1)证明:PO⊥平面ABC; --为30?,求PC与平面PAM所成角的正弦值.(2)若点M在棱BC上,且二面角M PA C 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD所在的平面与半圆弧?CD所在平面垂直,M是?CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC -体积最大时,求面MAB与面MCD所成二面角的正弦值. 2018年江苏理科: 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲ .

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中文科数学立体几何知识点总结材料

立体几何知识点整理(文科) 一. 直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α 方法二:用面面平行实现。 m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量l和向量m共线且l、 m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 方法三:用平面法向量实现。 若n为平面α的一个法向量,l n⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l l

方法二:用线面平行实现。 βαβαα //,////??? ? ???且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。

2019高考数学试题汇编之立体几何(原卷版)

专题04 立体几何 1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是 A.158 B.162 C.182 D.324

4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC , BC P 到平面ABC 的距离为___________. 6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长 方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方 体1111ABCD A B C D 挖去四棱锥O ?EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3 ,不考虑打印损耗,制作该模型所需原料的质量为___________g. 8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网 格纸上小正方形的边长为1,那么该几何体的体积为__________.

最新高中立体几何题型分类训练(附详细答案)(1)

立体几何题型分类解答 第一节空间简单几何体的结构与三视图、直观图 及其表面积和体积 一、选择题 1.(2009年绵阳月考)下列三视图所对应的直观图是( ) 2.(2010年惠州调研)下列几何体(如下列图)各自的三视图中,有且仅有两个视图相同的是( ) A.①②B.①③C.①④D.②④ 3.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( ) ①长方体②圆锥③三棱锥④圆柱 A.④③② B.②①③ C.①②③ D.③②④ 4.(2009年常德模拟)用单位立方块搭一个几何体,使它的主视图和俯视图如下图所示,则它的体积的最小值与最大值分别为( ) A.9与13 B.7与10 C.10与16 D.10与15 5.(2009年山东卷)一空间几何体的三视图如图所示,则该几何体的体积为( )

A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+23 3 二、填空题 6.在下列图的几何体中,有________个是柱体. 7.(2009年全国卷)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC=120°,则此球的表面积等于__________. 8.一个长方体共顶点的三个面的面积分别为2、3、6,这个长方体对角线的长是________. 三、解答题 9.如右图所示,在正三棱柱ABC —A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N.求: (1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长. 10.一几何体的表面展开图如右图,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的体积. 参考答案 1.C 2.解析:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D.

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱 四棱柱平行六面体 直平行 六面体长方体 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c·h+ 2S 底 V 棱柱 = S 底 ·h? 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱

所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 A B C D P O H

2007年高考理科数学“立体几何”题

2007年高考“立体几何”题 1.(全国Ⅰ) 如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A . 15 B . 25 C . 3 5 D . 45 解:如图,连接BC 1,A 1C 1,∠A 1BC 1是异面直线1A B 与1AD 所成的角,设AB=a ,AA 1=2a ,∴ A 1B=C 1B=5a , A 1C 1=2a ,∠A 1BC 1的余弦值为4 5 ,选D 。 一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知 正三棱柱的底面边长为2,则该三角形的斜边长为 . 解:一个等腰直角三角形DEF 的三个顶点分别在 正三棱柱的三条侧棱上,∠EDF=90°,已知 正三棱柱的底面边长为AB=2,则该三角形 的斜边EF 上的中线DG=3. ∴ 斜边EF 的长为23。 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD .已知45ABC =∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 解法一: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD . 因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 1 A A B 1B 1A 1D 1C C D C 1A C F A D B C A S

高考数学各题型解法:立体几何篇

2019年高考数学各题型解法:立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那 么它们的交线平行“。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为

相关文档
最新文档