2018年高考数学试题分类汇编之立体几何

合集下载

2018年高考文科数学分类汇编:专题八立体几何(最新整理)

2018年高考文科数学分类汇编:专题八立体几何(最新整理)

MC 平面 PBD,OP 平面 PBD,所以 MC∥平面 PBD.
4.解:(Ⅰ)∵ PA PD ,且 E 为 AD 的中点,∴ PE AD . ∵底面 ABCD 为矩形,∴ BC∥AD , ∴ PE BC . (Ⅱ)∵底面 ABCD 为矩形,∴ AB AD . ∵平面 PAD 平面 ABCD ,∴ AB 平面 PAD . ∴ AB PD .又 PA PD , ∴ PD 平面 PAB ,∴平面 PAB 平面 PCD . (Ⅲ)如图,取 PC 中点 G ,连接 FG,GD .
7.解:如图,在正三棱柱 ABC−A1B1C1 中,设 AC,A1C1 的中点分别为 O,O1,
则 OB⊥OC,OO1⊥OC,OO1⊥OB,以{OB,OC,OO1}为基底,建立空间直角坐标 系 O−xyz.
(1)求异面直线 BP 与 AC1 所成角的余弦值; (2)求直线 CC1 与平面 AQC1 所成角的正弦 值.
8.【2018 浙江卷 19】如图,已知多面体 ABCA1B1C1, A1A,B1B,C1C 均垂直于平面 ABC,∠ABC=120°, A1A=4,C1C=1,AB=BC=B1B=2. (Ⅰ)证明:AB1⊥平面 A1B1C1; (Ⅱ)求直线 AC1 与平面 ABB1 所成的角的正弦 值.
在 Rt△DAM 中,AM=1,故 DM= AD2 AM 2 = 13 .因为 AD⊥平面 ABC, 故 AD⊥AC.
在 Rt△DAN 中,AN=1,故 DN= AD2 AN 2 = 13 .
1 MN
在等腰三角形 DMN 中,MN=1,可得 cos DMN 2
13

DM 26
所以,异面直线 BC 与 MD 所成角的余弦值为 13 .
A. 2
2
B. 3

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编——立体几何1.(北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(C)A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.(北京)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG ∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.3.(江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.4. (江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.5.(全国1卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R=,则该圆柱的表面积为:=10π.故选:D.6.(全国1卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()BA.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.7.(全国1卷)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()CA.8 B.6C.8D.8【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1==2.可得BB1==2.所以该长方体的体积为:2×=8.故选:C.8.(全国1卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AB=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.9.(全国2卷)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()CA.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),=(﹣2,2,1),=(0,﹣2,0),设异面直线AE与CD所成角为θ,则cosθ===,sinθ==,∴tanθ=.∴异面直线AE与CD所成角的正切值为.故选:C.10.(全国2卷)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为8π.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA=4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V==8π.故答案为:8π.11. (全国2卷)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.【解答】(1)证明:∵AB=BC=2,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=,在△COM中,OM==.S=××=,S△COM==.=V C﹣POM⇒,设点C到平面POM的距离为d.由V P﹣OMC解得d=,∴点C到平面POM的距离为.12.(全国3卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()AA.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.13.(全国3卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C==,OO′==2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:=18.故选:B.14.(全国3卷)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CD⊥平面AMD,CD⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.15.(上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()CA.4 B.8 C.12 D.16【解答】解:根据正六边形的性质可得D1F1⊥A1F1,C1A1⊥A1F1,D1B1⊥A1B1,E1A1⊥A1B1,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E和D1一样,故有2×6=12,故选:C.16.(上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos .17.(天津)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为.【解答】解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=.则四棱锥A1﹣BB1D1D的体积为:=.故答案为:.18.(天津)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=.∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角.在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=.∴直线CD与平面ABD所成角的正弦值为.19.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()CA.2 B.4 C.6 D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.20.(浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.21.(浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1==,tanθ3=,SN≥SO,∴θ1≥θ3,又sinθ3=,sinθ2=,SE≥SM,∴θ3≥θ2.故选:D.22.(浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【解答】(I)证明:∵A1A⊥平面ABC,B1B⊥平面ABC,∴AA1∥BB1,∵AA1=4,BB1=2,AB=2,∴A1B1==2,又AB1==2,∴AA12=AB12+A1B12,∴AB1⊥A1B1,同理可得:AB1⊥B1C1,又A1B1∩B1C1=B1,∴AB1⊥平面A1B1C1.(II)解:取AC中点O,过O作平面ABC的垂线OD,交A1C1于D,∵AB=BC,∴OB⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,﹣,0),B(1,0,0),B1(1,0,2),C1(0,,1),∴=(1,,0),=(0,0,2),=(0,2,1),设平面ABB1的法向量为=(x,y,z),则,∴,令y=1可得=(﹣,1,0),∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.。

立体几何文-2018年高考题和高考模拟题数学(文)分项版汇编

立体几何文-2018年高考题和高考模拟题数学(文)分项版汇编

5.立体几何1 .【2018年浙江卷】已知四棱锥SABCD勺底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为0 1, SE与平面ABCD所成的角为0 2,二面角SABC的平面角为0 3,贝UA. 0 1< 0 2< 0 3B. 0 3< 0 2< 0 1C. 0 1<0 3< 0 2D. 0 2< 0 3< 0 1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系. 详解:设。

为正方形也仞的中心』耐为也中点,过迟作恥的平行线肿,交仞干形过。

作QM垂直跻于M连接旳朗 g则$0垂直于底面册CDQA/垂直干血,因此=fl1#zSF(7 = G3I Z SM0=%从而tan兔二空二空』tan禺二空」tan虬二弓因为SN >SO f E0 > 0M ?所以tan0t> tanS a>tan0j即■EW1EC^OAF =B丄工內筈血,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面2.[ 2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是俯视图A. 2B. 4C. 6D. 8[答案】C[解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为 1 , 2,梯形的高为2,因此几何体的体积为器(1+2)X2X2=6选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等•3.[ 2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为【答案】CH—j •樽I T ―- 2 -------- H【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数一详解:由三视團可得四棱锥卩—^CD}在四棱锥卩-佔仞中,PD =21AD=21CD = 2t AB = l,由勾股定理可知:“ =2^2, PC = 迈FB =玉B€=VS,®]在四棱锥中’直角三甬形有zdPA^APC^APAS共三个,故选C.«ff点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解4.【2018年新课标I卷文】在长方体厂工:中,「' ,—与平面处:匚:「所成的角为.,则该长方体的体积为A. '、B. .C. .D.【答案】C【解折】分析:首先画出长方体朋CD -金爲GL利用题中条件」得到^3=30;根^AB=2,求得= 2V3,可以确走=2V2,之后利用长方体的体积公式详解:在长方体朋仞—&民G6中,连接如根据线面甬的定义可知乙忙』二占叭因为胭=2,所以BG = 迅从而求得爼=2V2,所臥该长方体的体积为$二Z其2 X 2屈"妊故选U点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果5.【2018年新课标I卷文】已知圆柱的上、下底面的中心分别为1 ,,过直线'的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A 12jSnB 12nC 8^5TT D10n【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积•详解:根据题意,可得截面是边长为•的正方形,结合圆柱的特征,可知该圆柱的底面为半径是•的圆,且高为•,所以其表面积为%•二:+ .「上,一 V,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和• 6 .【2018年全国卷川文】设叙,閉;.『:■饭是同一个半径为4的球的球面上四点,阳聘为等边三角形且其面积为妝矣,则三棱锥紀朋£体积的最大值为A. B. C. D.【答案】B【解析】分析:作虱DjhjMO 2球的交点,点皿为三角形ABC的重心,判断出当DM丄平面AB时,三棱锥D-ABCft积最犬,然后进行计算可得中详解:如團所示,点M为三角形ABC的重心E为AC中点,当DM丄平面ABtM,三樓锥D-ABcf*积最犬,此时j 00 = OB = R = 4 »L砒-—?1B3= 9^5,A AH-"点就为三甬开乡ABC的重心』2:、BM = qEE =2V3; Rtfi ABC中,有=嗣阶一册丁=2^ -r™ = 0D + 0M = 4 + 2 = 6,毗ju旷尹潦汀」诙,故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当刚」平面审朦时,三棱锥皿閑廉体积最大很关键,由M为三角形ABC的重心,计算得到訓二;菖二祸再由勾股定理得到0M进而得到结果,属于较难题型。

立体几何型解答题——高考数学试题汇编(2018年全国卷)

立体几何型解答题——高考数学试题汇编(2018年全国卷)

【立体几何型解答题高考数学试题汇编(2018年全国卷)】理科试题【2018年全国卷Ⅰ理科第18题】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中 点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且.BF DF ⊥ (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【2018年全国卷Ⅱ理科第20题】如图,在三棱锥P ABC -中,AB BC ==PA PB ==4,PC AC ==O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30,求PC 与平面PAM 所成角的正弦值.【2018年全国卷Ⅲ理科第19题】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.C AAA文科试题【2018年全国卷Ⅰ文科第18题】如图,在平行四边形ABCM 中, 3,AB AC ==ACM ∠90,=以AC 为折痕将ACM ∆折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面;ABC(2)Q 为线段AD 上一点,P 为线段BC 上一点,且2,3BP DQ DA ==求三棱锥Q ABP-的体积.【2018年全国卷Ⅱ文科第20题】如图,在三棱锥P ABC -中,AB BC ==PA PB ==4,PC AC ==O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2,MC MB =求点C 与平面POM 的距离.【2018年全国卷Ⅲ文科第19题】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ; (2)在线段AM 上是否存在点,P 使得MC平面PBD ?说明理由.BAA。

高考数学真题分类汇编专题11:空间几何体(基础题)

高考数学真题分类汇编专题11:空间几何体(基础题)

2018年高考数学真题分类汇编专题11:空间几何体(基础题)1.(2018•卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图。

圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.2【答案】B【解析】【解答】解:画出圆柱侧面展开图如图:错误!未找到引用源。

,故答案为:B。

【分析】侧面上MN的最短距离就是圆柱的侧面展开图MCDE中的MN,其中MC=2,CN=4,在直角三角形MCN中求出MN.2.(2018•卷Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.错误!未找到引用源。

B.12πC.错误!未找到引用源。

D.错误!未找到引用源。

【答案】B【解析】【解答】解:设上下半径为r,则高为2r,∴错误!未找到引用源。

则圆柱表面积为错误!未找到引用源。

,故答案为:B.【分析】由圆柱的轴截面是面积为8的正方形,得到圆柱的高为8,底面直径为8,由此求圆柱的表面积.3.(2018•卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面错误!未找到引用源。

所成的角都相等,则错误!未找到引用源。

截此正方体所得截面面积的最大值为()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

【答案】A【解析】【解答】解:如图截面,S=6错误!未找到引用源。

,故答案为:A.【分析】由正方体的每条棱所在直线与平面错误!未找到引用源。

所成的角相等,得到平面错误!未找到引用源。

与其中一条对角线垂直,此时截面与相应侧面构成正三棱锥,再求出截面面积的最大值.4.(2018•卷Ⅰ)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1CC1所成的角为30°,则该长方体的体积为()A.8 B.6错误!未找到引用源。

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何1.在某四棱锥的三视图中,侧面中直角三角形的个数为3个。

解决方法是通过对应的直观图,得出三角形PCD不是直角三角形,同时通过计算得出侧面中有三个直角三角形,分别为△PAB,△PBC和△PAD。

2.在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,E,F分别为AD,PB的中点。

需要证明PE⊥BC,平面PAB⊥平面PCD和EF∥平面PCD。

证明过程中,需要利用几何图形的性质,如平面PAD⊥平面ABCD,底面ABCD为矩形,可得BC∥AD等。

3.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为4/3.解决方法是通过计算正方体中间四边形的边长,然后计算出棱锥的高和棱长,最后通过公式计算出多面体的体积。

4.在平行六面体ABCD-A1B1C1D1中,需要证明AB∥平面A1B1C和平面ABB1A1⊥平面A1BC。

证明过程中,需要利用平行六面体的性质,如AB∥A1B1等。

在平行四边形ABCM中,由XXX可知∠ABC=∠ACB,又∠XXX°,所以∠ABM=∠CBM,即BM=CM,所以四边形ABB1M和四边形CC1BM是菱形,进而可得AB1⊥XXX,AC1⊥CM,所以AB1∥AC1,又因为XXX⊥AC,所以AB1⊥AC,即AB1是平面ABC的法线,同理可得AD是平面ACD的法线,所以平面ACD⊥平面ABC。

2)若BM=2,求AD的长度。

因为AB=AC=3,所以BC=3,又因为BM=2,所以MC=1,由勾股定理可得AM=√8,又因为AB⊥DA,所以AD=√AB^2+BD^2,又因为ABCD是平行四边形,所以BD=AC=3,所以AD=√18,即AD=3√2.题目:求直线AC1与平面ABB1所成角的正弦值。

解答:I)证明:因为A1A垂直于平面ABC,B1B垂直于平面ABC,所以A1A∥B1B。

由于A1A=4,B1B=2,AB=2,所以A1B1=2.又因为AB1⊥A1B1,同理可得AB1⊥B1C1,且A1B1∩B1C1=B1,所以AB1⊥平面A1B1C1.II)解:取AC的中点O,过O作平面ABC的垂线OD,交A1C1于D。

2018年高考文科数学分类汇编:专题八立体几何

2018年高考文科数学分类汇编:专题八立体几何

《2018年高考文科数学分类汇编》 第八篇:立体几何 -、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为O i ,O 2,过直线OQ 2的平面截该圆柱所得的截面是面积为 8的正方形,则该圆柱的表面积为所成的角为30,则该长方体的体积为4. 【2018全国二卷9】在正方体ABCD A 1B 1C 1D 1中,E 为棱C 。

的中点,则异面直线 AE 与 CD 所成角的正切值为5. 【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹 进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼 的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是6. [ 2018全国三卷12】设A ,B ,C,D 是同一个半径为 4的球的球面上四点, △ ABC 为等A . 12 2nB . 12nC. 8 2nD . 10n2. 【2018全国一卷9】某圆柱的高为 2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点 N 在左视图上的对应点为B ,则在A . 2 17 B. 2.5 C . 3D . 23.【2018全国一卷10】在长方体ABCDAi B 1C 1D 1 中,AB BC 2 , AG 与平面 B^CQA . 8B . 6 2C . 8 2A .2C 」2D.2俯视方向边三角形且其面积为 9 3,则三棱锥D ABC 体积的最大值为 B . 18 3C. 24.3 D . 54 . 37. 【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数 为8.【2018浙江卷3】某几何体的三视图如图所示(单位: cm ),则该几何体的体积(单位:cm 3)是A . 2B . 4C. 6D . 89. 【2018浙江卷8】已知四棱锥 SABCD 的底面是正方形,侧棱长均相等, E 是线段AB 上 SE 与BC 所成的角为01, SE 与平面ABCD 所成的角为 込 二面角S-AB- C 的平面角为 03,则 A . 0<62<(3B . 03 W0 <01C . 010.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂 直于底面的四棱锥为阳马•设AA ?是正六棱柱的一条侧棱,如图,若 阳马以该正六棱柱的顶点为顶点, 以AA ?为底面矩形的一边,则这样 的阳马的个数是( )(A ) 4( B )8 (C ) 12( D ) 16二、填空题1. 【2018全国二卷16】已知圆锥的顶点为 S ,母线SA , SB 互相垂直,SA 与圆锥底面所成A . 12.3A.1B.2C.3D.4第8题图的点(不含端点),设角为30,若△ SAB的面积为8,则该圆锥的体积为______________ .2. 【2018天津卷11】如图,已知正方体 ABCDAB2D 1的棱长为1,则四棱锥 A i -BB 1D 1D 的 体积为 ___________第〔11〕题團3. 【2018江苏卷10】如图所示,正方体的棱长为 积为 ______三、解答题1.【2018全国一卷18】如图,在平行四边形 ABCM 中,AB AC 3 , / ACM 90,以AC为折痕将厶ACM 折起,使点M 到达点D 的位置,且 AB 丄DA . (1) 证明:平面 ACD 丄平面ABC ;2(2) Q 为线段AD 上一点,P 为线段BC 上一点,且BP DQ - DA ,求三棱锥Q ABP3 的体积.O 为AC 的中点.(1)证明:PO 平面ABC ;(2)若点M 在棱BC 上,且MC 2MB ,求点C 到平面POM 的距离.2,以其所有面的中心为顶点的多面体的体2.【2018全国二卷19】如图,在三棱锥P ABC 中,ABBC 2 2 , PA PB PC AC 4 ,叭 __________ Ci(第10強)3. 【2018全国三卷19】如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是C D 上异于C,D的点.(1)证明:平面AMD丄平面BMC ;(2)在线段AM上是否存在点P,使得MC //平面PBD ?说明理由.4. 【2018北京卷18】如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD丄平面ABCD, PAL PD, PA=PD, E, F 分别为AD, PB 的中点.(I )求证:PE L BC;(n )求证:平面PAB丄平面PCD(川)求证:EF//平面PCD5. 【2018天津卷17】如图,在四面体ABCD中,△ ABC是等边三角形,平面ABC L平面ABD, 点M 为棱AB 的中点,AB=2, AD=2 3 , / BAD=90°.(I )求证:AD L BC;(n )求异面直线BC与MD所成角的余弦值;(川)求直线CD与平面ABD所成角的正弦值.8.【20i8浙江卷i9】如图,已知多面体 ABCAB i C i , A i A , B i B , GC均垂直于平面 ABC,/ ABC=i20 ° A i A=4, C i C=i , AB=BC=B i B=2.(I )证明:AB i 丄平面A i B i C i ;(H )求直线 AC i 与平面ABB i 所成的角的正弦值.6.【2018江苏卷15】在平行六面体 ABCD 求证:(1) AB// 平面 A i B i C ; (2)平面 ABB i A i 平面 ABC . BiG -A B i C i D i 中,AA| AB, AB|7.【20i8江苏卷22 (附加题)】如图,在正三棱柱 别为A i B i ,BC 的中点. (1) 求异面直线BP 与AC i 所成角的余弦值; (2) 求直线CG 与平面AQC i 所成角的正弦值. ABC-A i B i C i 中,AB=AA i =2,点 P , Q 分(第22腿)a参考答案 一、 选择题 1.B2.B3.C4.C5.A6.B7.C二、 填空题1.82.-3.-33三、 解答题1•解:(1)由已知可得,BAC =90°, BA 丄AC .又BA 丄AD ,所以 AB 丄平面 ACD. 又AB 平面ABC,所以平面ACD 丄平面ABC.(2)由已知可得, DC=CM=AB=3, DA=3.2 . 2又 BP DQ -DA ,所以 BP 2 2 .3 作QE 丄AC,垂足为E,则QE P 1 DC .3由已知及(1)可得DC 丄平面 ABC,所以QE 丄平面ABC, QE=1.因此,三棱锥Q ABP 的体积为 1 1 丄 3 2 2 sin 45 1 . 3 29.【2018上海卷17】已知圆锥的顶点为 P ,底面圆心为 O ,半径为28.C9.D10.DV Q ABP—QE S ^ABP 32解:(1)因为AP=CF=AC=4, O 为AC 的中点,所以 OP 丄AC ,且OP=2.3 .连结OB .因为AB=BC= AC ,所以△ ABC 为等腰直角三角形,且 OB 丄AC , OB=-AC 2 2 =2.由 OP 2 OB 2 PB 2 知,OP 丄 OB.由OP 丄OB , OP 丄AC 知PO 丄平面 ABC(2)作CH 丄OM ,垂足为 H .又由(1)可得 OP 丄CH, 所以CH 丄平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知 OC=-AC =2,CM=-BC=4^2,/ACB=45°2 3 3 所以 OM=U , CH=OC MC Sin ACB =<^ . 3 OM 5所以点C 到平面POM 的距离为 □.53•解:(1)由题设知,平面 CMD 丄平面ABCD ,交线为CD.因为BC 丄CD, BC 平面ABCD,所以BC 丄平面 CMD , 故 BC 丄DM . 因为M 为C D 上异于C, D 的点,且DC 为直径,所以 DM 丄 CM .又BC A CM=C,所以DM 丄平面BMC .而DM 平面 AMD ,故平面 AMD 丄平面 BMC . (2)当P 为AM 的中点时,MC //平面 PBD.证明如下:连结 AC 交BD 于O .因为ABCD 为矩形,所以 O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC // OP. MC 平面PBD, OP 平面PBD ,所以 MC //平面PBD.4•解:(I): PA PD ,且 E 为 AD 的中点,••• PE AD .•••底面 ABCD 为矩形,• BC // AD , • PE BC .(□)•••底面 ABCD 为矩形,二 AB AD •1/•••平面PAD 平面ABCD, • AB 平面PAD.••• AB PD .又PA PD ,••• PD 平面PAB,•平面PAB 平面PCD.(川)如图,取PC中点G,连接FG,GD .1••• F,G 分别为PB和PC 的中点,• FG// BC,且FG - BC .2•••四边形ABCD为矩形,且E为AD的中点,1•- ED// BC,DE -BC ,2•ED// FG,且ED FG,•四边形EFGD为平行四边形,•EF// GD.又EF 平面PCD , GD 平面PCD ,•EF // 平面PCD.5•解:(I)证明:由平面ABC丄平面ABD,平面ABC A平面ABD=AB, AD丄AB,可得AD 丄平面ABC,故AD丄BC.(H)解:取棱AC的中点N,连接MN , ND.又因为M为棱AB的中点,故MN // BC.所以/ DMN (或其补角)为异面直线BC与MD所成的角.在Rt A DAM 中,AM=1,故DM=. AD2AM2= 13 .因为AD 丄平面ABC,故AD 丄AC.在Rt A DAN 中,AN=1,故DN^ AD2AN2= . 13.在等腰三角形 DMN 中,MN=1,可得cos DMN所以,异面直线 BC 与MD 所成角的余弦值为 』.26(川)解:连接 CM •因为△ ABC 为等边三角形,M 为边AB 的中点,故CM 丄AB , CM= ,3 •又因为平面 ABC 丄平面ABD ,而CM 平面ABC,故CM 丄平面ABD.所以,/ CDM 为直线CD 与平面ABD 所成的角.在 Rt A CAD 中,CC=. N CL AD 2 =4. 在 Rt A CMD 中,sin CDMCM 3 CD 4 .所以,直线CD 与平面ABD 所成角的正弦值为-246•证明: (i )在平行六面体 ABCDA i B i CiD i 中,AB / A i B i .因为AB 平面A I B I C , A 1B 1平面A i B i C , 所以AB//平面A i B i C. (2)在平行六面体 ABCDA i B i C i D i 中,四边形 平行四边形.又因为AA i =AB,所以四边形 ABB i A i 为菱形, 因此AB 丄A i B .又因为 AB i 丄 B i C i , BC / B i Ci , 所以AB i 丄BC.又因为 A i B A BC=B , A i B 平面 A i BC, BC 平面 A i BC , 所以AB i 丄平面A i BC. 因为ABi 平面ABB i A i , 所以平面ABBiA i 丄平面A i BC.7•解:如图,在正三棱柱 ABC- A i B i C i 中,设 AC , A i C i 的中点分别为 O , O i ,贝U OB 丄OC , uun LUT UUUUOO i 丄OC , OO i 丄OB ,以{OB,OC,OOi }为基底,建立空间直角坐标系o-xyz.因为 AB=AA i =2,12MN 帀 DM "26所以A(0, 1,0),B(..3,0,0),C(0,1,0),A(0, INkB^.. 3,0,2 ),G(0,1,2)(1)因为P为A I B I的中点,所以 2 2uur 3 1 uuuirBP ( , ,2), AC i (0,2,2)从而 2 2,mu ujun ,_ icos BP,AC u | JBJP ACJ L1 41沁故|BP | |AC i |.5 2、2 203 10因此,异面直线BP与AC i所成角的余弦值为20(2)因为Q为BC的中点,所以Q(¥1,0)uur AQ 因此(J,2,0)JUJUACujj(0,2,2), CC i (0,0,2)设n=( x, y,z)为平面AQC i的一个法向量, UULTAQ nJUJU 则AC i n 0,°,即3y 0,2y 2z 0.不妨取n 3, 1,1),设直线CC i与平面AQC i所成角为,sin 则UUJU |cosCCi,n 1需逻所以直线CC1与平面AQC1所成角的正弦值为58•解:方法一:(I)由AB 2,AA 4,BB i 2,AA AB, BB i AB 得AB AB 2^2,所以AB i2 2 2AB i AA i.故AB i AB i.由BC 2 , BB i 2, CC i i, BB i BC,CC i BC 得B i C i ,5 ,由AB BC 2, ABC i20 得AC 2 . 3 ,由CC i AC,得AC i ,所以 2 2AB i B i C i2AC i,故AB i B i C i因此AB i平面A i B i C i.(n)如图,过点C i作GD A1B1,交直线A\B1于点D,连结AD .由AB i 平面A i B i C i得平面ABQ i 平面ABB i ,由C i D A3 得C i D 平面ABB i,所以C i AD是AC i与平面ABB i所成的角•由BC i 亦,AB 2血,AC i ^2i得cos GAB ^6,sin GAB 所以C i D 3,故sin GAD CD 39 .i i AC i i3i ~7*/39因此,直线AC 1与平面ABB 1所成的角的正弦值是 —13方法二:(I)如图,以 AC 的中点O 为原点,分别以射线 OB , OC 为x , y 轴的正半轴,建立空间直角坐标系 O-xyz.由题意知各点坐标如下:A(0, 73,0), B(1,0,0), A(0, >/3,4), B 1(1,0,2),C 1(0j3,1), uuu L uuu L uuu L 因此 AB 1 (1,J3,2), AB (1,J3, 2), AG (0,2 J 3, 3),来源学所以AB 1 平面A 1B 1C 1.uuu - uur 由(I)可知 AG (0,2、3,1), ABAC 1与平面ABB 1所成的角的正弦值是 一熒13(n)设直线 AC 1与平面ABB 1所成的角为设平面 ABB 1 的法向量 n (x, y, z). uurAB uuu BB 10,即 0, x ◎ 0,可取2z 0, (,3,1,0).所以sinuuu|cos 〔ACu,叩 4AC4|AC 1 | |n|3913uuu 由AB 1 uuuAB 1 0 得 A 1B 1. uuu 由AB 1 uuuAG 0得AB 1AC 1.- uuu(1, .3,0), BB 1 (0,0,2), 因此,直线9•解:⑴依题意可知:圆锥的高度为op 42 22 2 3,所以其体积为:V 1 r2h 1222 3 ^3 。

2008_2018年江苏高考数学立体几何真题汇编

2008_2018年江苏高考数学立体几何真题汇编

A B CD EF 2008-2018江苏高考数学立体几何真题汇编(2008年第16题)在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点,求证:(1)直线EF ∥平面ACD(2)平面EFC ⊥平面BCD证明:(1)⎭⎬⎫E ,F 分别为AB ,BD 的中点⇒EF ∥AD 且AD ⊂平面ACD ,EF ⊄平面ACD ⇒直线EF ∥平面ACD (2)⎭⎬⎫⎭⎬⎫CB =CD F 是BD 的中点 ⇒ CF ⊥BD ⎭⎬⎫AD ⊥BD EF ∥AD ⇒ EF ⊥BD ⇒直线BD ⊥平面EFC 又BD ⊂平面BCD ,所以平面EFC ⊥平面BCDB C₁(2009年第16题)如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C .求证:(1)EF∥平面ABC(2)平面A1FD⊥平面BB1C1C证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC,因为EF⊄平面ABC,BC⊂平面ABC,所以EF∥平面ABC(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1,又A1D⊂平面A1B1C1,故CC1⊥A1D,又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C⊂平面BB1C1C故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,故平面A1FD⊥平面BB1C1CPA BC D D P A B CF E (2010年第16题)如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.证明:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC .由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ⊂平面PCD ,所以BC ⊥平面PCD . 因为PC ⊂平面PCD ,故PC ⊥BC .解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则:易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等.又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍.由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC ,因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F .易知DF =2 2 ,故点A 到平面PBC 的距离等于2.(方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h .因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°.从而AB =2,BC =1,得△ABC 的面积S △ABC =1.由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3. 因为PD ⊥平面ABCD ,DC ⊂平面ABCD ,所以PD ⊥DC .又PD =DC =1,所以PC =PD 2+DC 2=2.由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC =2 2. 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3,得h =2, 故点A 到平面PBC 的距离等于2.(2011年第16题)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD证明:(1)在△PAD中,∵E,F分别为AP,AD的中点,∴BC∥AB,又∵EF ⊄平面PCD,PD⊂平面PCD,∴直线EF∥平面PCD(2)连接BD. ∵AB=AD,∠BAD=60°,∴△PAD为正三角形∵F是AD的中点,∴BF⊥AD,∵平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,∴BF⊥平面PAD又∵BF⊂平面BEF,∴平面BEF⊥平面PAD(2012年第16题)如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D、E分别是棱BC、CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.证明:(1)∵是ABC-A1B1C1直三棱柱,∴CC1⊥平面ABC又∵AD⊂平面ABC,∴CC1⊥AD又∵AD⊥DE,CC1,DE⊂平面ADE,CC1∩DE=E∴平面ADE⊥平面BCC1B1(2)∵A1B1=A1C1,F为B1C1的中点,∴A1F⊥B1C1∵CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1∴CC1⊥A1F又∵CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1∴A1F⊥平面BCC1B1,由(1)知AD⊥平面BCC1B1,∴A1F∥AD又∵AD⊂平面ADE,A1F ⊄平面ADE,∴A1F∥平面ADES GA BC E F(2013年第16题)如图,在三棱锥S -ABC 中,平面平面SAB ⊥平面SBC ,AB ⊥BC ,AB =AS ,过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ;(2)BC ⊥SA .证:(1)∵SA =AB 且AF ⊥SB ,∴F 为SB 的中点.又∵E ,G 分别为SA ,SC 的中点,∴EF ∥AB ,EG ∥AC .又∵AB ∩AC =A ,AB 面SBC ,AC ⊂面ABC ,∴平面EFG ∥平面ABC .(2)∵平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =BC ,AF ⊂平面ASB ,AF ⊥SB .∴AF ⊥平面SBC .又∵BC ⊂平面SBC ,∴AF ⊥BC .又∵AB ⊥BC ,AF ∩AB =A ,∴BC ⊥平面SAB .又∵SA ⊂平面SAB ,∴BC ⊥SA .(2014年第16题)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.证明:(1)∵D,E为PC,AC中点∴DE∥PA∵PA ⊄平面DEF,DE⊂平面DEF∴PA∥平面DEF(2)∵D,E为PC,AC中点∴DE=PA2=3∵E,F为AC,AB中点∴EF=BC2=4∴DE2+EF2=DF2∴∠DEF=90°,∴DE⊥EF ∵DE∥PA,PA⊥AC∴DE⊥AC∵AC∩EF=E∴DE⊥平面ABC∵DE⊂平面BDE,∴平面BDE⊥平面ABC.A BC 1DE A 1 B 1 C(2015年第16题)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E求证:(1)DE ∥平面A A 1CC 1(2) BC 1⊥AB 1证明:(1)由题意知,E 为B 1C 的中点,又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面A A 1C 1C ,AC ⊂平面A A 1C 1C ,所以DE ∥平面A A 1C 1C(2)因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC因为AC ⊂平面ABC ,所以AC ⊥CC 1,又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C ,所以AC ⊥平面BCC 1B 1,又因为BC 1⊂平面BCC 1B 1,所以BC 1⊥AC因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C ,所以BC 1⊥平面B 1AC ,又因为AB 1 ⊂平面B 1AC ,所以BC 1⊥A B 1A 1B 1 F(2016年第16题)如图,在直三棱柱ABC -A 1B 1C 1中,D 、E 分别为AB 、BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC -A 1B 1C 1中,A 1C 1∥AC在△ABC 中,因为D 、E 分别为AB ,BC 的中点,∴DE ∥AC ,于是DE ∥A 1C 1又∵DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F ,∴直线DE ∥平面A 1C 1F(2)在直三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1,∵A 1C 1⊂平面A 1B 1C 1,∴A 1A ⊥A 1C 1又∵A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1,∴A 1C 1⊥平面ABB 1A 1∵B 1D ⊂平面ABB 1A 1,∴A 1C 1⊥B 1D又∵B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1,∴B 1D ⊥平面A 1C 1F∵B 1D ⊂平面B 1DE∴平面B 1DE ⊥平面A 1C 1FABCDEF(2017年第15题)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD .求证:(1)EF∥平面ABC;(2)AD⊥AC证明:(1)在平面内,∵AB⊥AD,EF⊥AD∴EF∥AB又∵EF ⊄平面ABC,AB⊂平面ABC∴EF∥平面ABC(2)∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BDBC⊂平面BCD,BC⊥BD∴BC⊥平面ABD∵AD⊂平面ABD∴BC⊥AD又∵AB⊥AD,BC∩AB=B ,AB⊂平面ABC,BC⊂平面ABC∴AD⊥平面ABC又∵AC⊂平面ABC,∴AD⊥ACD 1C 1B 1A 1D C B A(2018年第15题)在平行六面体ABCD -A 1B 1C 1 D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ;(2)平面ABB 1 A 1⊥平面A 1BC证明:(1)平行六面体ABCD -A 1B 1C 1 D 1中,AB ∥A 1B 1 ⎭⎪⎬⎪⎫AB ∥A 1B 1 A 1B 1⊂平面A 1B 1C AB ⊄平面A 1B 1C ⇒ AB ∥平面A 1B 1C(2)⎭⎬⎫平行六面体ABCD -A 1B 1C 1 D 1 AB ∥A 1B 1 ⇒四边形A 1B 1BA 为菱形⇒AB 1⊥A 1B ⎭⎬⎫平行六面体ABCD -A 1B 1C 1 D 1 ⇒BC ∥B 1C 1 AB 1⊥B 1C 1 ⇒ AB 1⊥BC ⎭⎪⎬⎪⎫AB 1⊥A 1BAB 1⊥BCA 1B ∩BC =B AB 1⊂平面A 1BCBC ⊂平面A 1BC ⇒ AB 1⊥平面A 1BC⎭⎬⎫AB 1⊥平面A 1BC AB 1⊂平面A 1B 1BA ⇒平面ABB 1 A 1⊥平面A 1BC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。

(A)1 (B)2 (C)3 (D)4
2.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为

(A)1 (B)2 (C)3 (D)
4
3.(浙江)(3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是

侧视图
俯视图
正视图

2
2
11

A.2 B.4 C.6 D.8
4.(全国卷一文)(5
)已知圆柱的上、下底面的中心分别为1O,2O,过直线12OO的平面截该圆柱所得
的截面是面积为8的正方形,则该圆柱的表面积为
A.122π B.12π C.82π D.10π
5.(全国卷一文)(9)某圆柱的高为2,底面周长为16
,其三视图如右图.圆柱表面上的点M在正视图

上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径
中,最短路径的长度为
A.217 B.25
C.3 D.2

6.(全国卷一文)(10
)在长方体1111ABCDABCD中,2ABBC,1AC与平面11BBCC所成的角

为30,则该长方体的体积为
A.8 B.62 C.82 D.83
7.(全国卷一理)(7)某圆柱的高为2,底面周长为16
,其三视图如图.圆柱表面上的点M在正视图上

的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,
最短路径的长度为

A.172 B.52 C.3 D.2
8.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方
体所得截面面积的最大值为
A.334 B.233 C.324 D.32

9.(全国卷二文)(9)在正方体1111ABCDABCD中,E为棱1CC的中点,则异面直线AE与CD所成角
的正切值为

A.22 B.32 C.52 D.72
10.(全国卷二理)(9
)在长方体1111ABCDABCD中,1ABBC,13AA,则异面直线1AD与1DB所

成角的余弦值为
A.15 B.56 C.55 D.22
11.(全国卷三文)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯
眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则
咬合时带卯眼的木构件的俯视图可以是

12.(全国卷三文)(12)设A,B,C,D是同一个半径为4的球的球面上四点,ABC△为等边三角
形且其面积为93,则三棱锥DABC体积的最大值为
A.123 B.183 C.243 D.543
13.(全国卷三理)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯
眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则
咬合时带卯眼的木构件的俯视图可以是

14.(全国卷三理)(10)设ABCD,,,是同一个半径为4的球的球面上四点,ABC△为等边三角形且
其面积为93,则三棱锥DABC体积的最大值为
A.123 B.183 C.243 D.543
二、填空题
1.(江苏)(10)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .
2.(天津文)(11)如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱柱A1–BB1D1D的体积为__________.
3.(天津理)(11) 已知正方体1111ABCDABCD的棱长为1,除面ABCD外,该正方体其余各面的中心分
别为点E,F,G,H,M(如图),则四棱锥MEFGH的体积为 .

4.(全国卷二文)(16)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30,若
SAB△
的面积为8,则该圆锥的体积为__________.
5.(全国卷二理)(16
)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角

为45°,若SAB△的面积为515,则该圆锥的侧面积为__________.

三、解答题
1.(北京文)(18)(本小题14分)
如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F
分别为AD,PB的中点.
(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.

2.(北京理)
(16)(本小题14分)

如图,在三棱柱ABC-111ABC中,1CC平面ABC,D,E,F,G分别为1AA,AC,11AC,1BB的中点,AB=BC=5,
AC=1AA=2.
(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.

3.(江苏)(15)(本小题满分14分)
在平行六面体1111ABCDABCD中,1111,AAABABBC.
求证:(1)11ABABC平面∥;(2)111ABBAABC平面平面.

4.
(浙江)(19)

(本题满分15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,

∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.

5.
(天津文)

(17)(本小题满分13分)

如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,
AD=23,∠BAD=90°.
(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;
(Ⅲ)求直线CD与平面ABD所成角的正弦值.

6.(天津理)(17)(本小题满分13分)
如图,ADBC∥且AD=2BC,ADCD,EGAD∥且EG=AD,CDFG∥且CD=2FG,
DGABCD平面
,DA=DC=DG=2.

(I)若M为CF的中点,N为EG的中点,求证:MNCDE∥平面;
(II)求二面角EBCF的正弦值;
(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.

7.(全国卷一文)(18)(12分)
如图,在平行四边形ABCM中,3ABAC,90ACM∠,以AC为折痕将△ACM折起,
使点M到达点D的位置,且ABDA⊥.
(1)证明:平面ACD⊥平面ABC;
(2)Q为线段AD上一点,P在线段BC上,且23BPDQDA,求三棱锥QABP的体积.
8.(全国卷一理)(18)(12分)
如图,四边形ABCD为正方形,,EF分别为,ADBC的中点,以DF为折痕把DFC△折起,
使点C到达点P的位置,且PFBF.
(1)证明:平面PEF平面ABFD;
(2)求DP与平面ABFD所成角的正弦值.

9.(全国卷二文)(19)(12分)
如图,在三棱锥PABC中,22ABBC,4PAPBPCAC,O为AC的中点.
(1)证明:PO平面ABC;
(2)若点M在棱BC上,且2MCMB,求点C到平面POM的距离.

10.(全国卷二理)(20)(12分)
如图,在三棱锥PABC中,22ABBC,4PAPBPCAC,O为AC的中点.
(1)证明:PO平面ABC;
(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦值.
P

A
O
C

B
M
11.(全国卷三文)(19)(12分)
如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.
(1)证明:平面AMD⊥平面BMC;
(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.

12.(全国卷三理)(19)(12分)
如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,
D
的点.
(1)证明:平面AMD⊥平面BMC;
(2)当三棱锥MABC体积最大时,求面MAB与面MCD所成二面角的正弦值.

相关文档
最新文档