2018年高考数学试题分类汇编之立体几何
2018年高考文科数学分类汇编:专题八立体几何(最新整理)

MC 平面 PBD,OP 平面 PBD,所以 MC∥平面 PBD.
4.解:(Ⅰ)∵ PA PD ,且 E 为 AD 的中点,∴ PE AD . ∵底面 ABCD 为矩形,∴ BC∥AD , ∴ PE BC . (Ⅱ)∵底面 ABCD 为矩形,∴ AB AD . ∵平面 PAD 平面 ABCD ,∴ AB 平面 PAD . ∴ AB PD .又 PA PD , ∴ PD 平面 PAB ,∴平面 PAB 平面 PCD . (Ⅲ)如图,取 PC 中点 G ,连接 FG,GD .
7.解:如图,在正三棱柱 ABC−A1B1C1 中,设 AC,A1C1 的中点分别为 O,O1,
则 OB⊥OC,OO1⊥OC,OO1⊥OB,以{OB,OC,OO1}为基底,建立空间直角坐标 系 O−xyz.
(1)求异面直线 BP 与 AC1 所成角的余弦值; (2)求直线 CC1 与平面 AQC1 所成角的正弦 值.
8.【2018 浙江卷 19】如图,已知多面体 ABCA1B1C1, A1A,B1B,C1C 均垂直于平面 ABC,∠ABC=120°, A1A=4,C1C=1,AB=BC=B1B=2. (Ⅰ)证明:AB1⊥平面 A1B1C1; (Ⅱ)求直线 AC1 与平面 ABB1 所成的角的正弦 值.
在 Rt△DAM 中,AM=1,故 DM= AD2 AM 2 = 13 .因为 AD⊥平面 ABC, 故 AD⊥AC.
在 Rt△DAN 中,AN=1,故 DN= AD2 AN 2 = 13 .
1 MN
在等腰三角形 DMN 中,MN=1,可得 cos DMN 2
13
.
DM 26
所以,异面直线 BC 与 MD 所成角的余弦值为 13 .
A. 2
2
B. 3
2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编——立体几何1.(北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(C)A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.(北京)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG ∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.3.(江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.4. (江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.5.(全国1卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R=,则该圆柱的表面积为:=10π.故选:D.6.(全国1卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()BA.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.7.(全国1卷)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()CA.8 B.6C.8D.8【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1==2.可得BB1==2.所以该长方体的体积为:2×=8.故选:C.8.(全国1卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AB=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.9.(全国2卷)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()CA.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),=(﹣2,2,1),=(0,﹣2,0),设异面直线AE与CD所成角为θ,则cosθ===,sinθ==,∴tanθ=.∴异面直线AE与CD所成角的正切值为.故选:C.10.(全国2卷)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为8π.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA=4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V==8π.故答案为:8π.11. (全国2卷)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.【解答】(1)证明:∵AB=BC=2,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=,在△COM中,OM==.S=××=,S△COM==.=V C﹣POM⇒,设点C到平面POM的距离为d.由V P﹣OMC解得d=,∴点C到平面POM的距离为.12.(全国3卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()AA.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.13.(全国3卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C==,OO′==2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:=18.故选:B.14.(全国3卷)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CD⊥平面AMD,CD⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.15.(上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()CA.4 B.8 C.12 D.16【解答】解:根据正六边形的性质可得D1F1⊥A1F1,C1A1⊥A1F1,D1B1⊥A1B1,E1A1⊥A1B1,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E和D1一样,故有2×6=12,故选:C.16.(上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos .17.(天津)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为.【解答】解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=.则四棱锥A1﹣BB1D1D的体积为:=.故答案为:.18.(天津)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=.∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角.在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=.∴直线CD与平面ABD所成角的正弦值为.19.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()CA.2 B.4 C.6 D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.20.(浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.21.(浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1==,tanθ3=,SN≥SO,∴θ1≥θ3,又sinθ3=,sinθ2=,SE≥SM,∴θ3≥θ2.故选:D.22.(浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【解答】(I)证明:∵A1A⊥平面ABC,B1B⊥平面ABC,∴AA1∥BB1,∵AA1=4,BB1=2,AB=2,∴A1B1==2,又AB1==2,∴AA12=AB12+A1B12,∴AB1⊥A1B1,同理可得:AB1⊥B1C1,又A1B1∩B1C1=B1,∴AB1⊥平面A1B1C1.(II)解:取AC中点O,过O作平面ABC的垂线OD,交A1C1于D,∵AB=BC,∴OB⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,﹣,0),B(1,0,0),B1(1,0,2),C1(0,,1),∴=(1,,0),=(0,0,2),=(0,2,1),设平面ABB1的法向量为=(x,y,z),则,∴,令y=1可得=(﹣,1,0),∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.。
立体几何文-2018年高考题和高考模拟题数学(文)分项版汇编

5.立体几何1 .【2018年浙江卷】已知四棱锥SABCD勺底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为0 1, SE与平面ABCD所成的角为0 2,二面角SABC的平面角为0 3,贝UA. 0 1< 0 2< 0 3B. 0 3< 0 2< 0 1C. 0 1<0 3< 0 2D. 0 2< 0 3< 0 1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系. 详解:设。
为正方形也仞的中心』耐为也中点,过迟作恥的平行线肿,交仞干形过。
作QM垂直跻于M连接旳朗 g则$0垂直于底面册CDQA/垂直干血,因此=fl1#zSF(7 = G3I Z SM0=%从而tan兔二空二空』tan禺二空」tan虬二弓因为SN >SO f E0 > 0M ?所以tan0t> tanS a>tan0j即■EW1EC^OAF =B丄工內筈血,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面2.[ 2018年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是俯视图A. 2B. 4C. 6D. 8[答案】C[解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为 1 , 2,梯形的高为2,因此几何体的体积为器(1+2)X2X2=6选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等•3.[ 2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为【答案】CH—j •樽I T ―- 2 -------- H【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数一详解:由三视團可得四棱锥卩—^CD}在四棱锥卩-佔仞中,PD =21AD=21CD = 2t AB = l,由勾股定理可知:“ =2^2, PC = 迈FB =玉B€=VS,®]在四棱锥中’直角三甬形有zdPA^APC^APAS共三个,故选C.«ff点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解4.【2018年新课标I卷文】在长方体厂工:中,「' ,—与平面处:匚:「所成的角为.,则该长方体的体积为A. '、B. .C. .D.【答案】C【解折】分析:首先画出长方体朋CD -金爲GL利用题中条件」得到^3=30;根^AB=2,求得= 2V3,可以确走=2V2,之后利用长方体的体积公式详解:在长方体朋仞—&民G6中,连接如根据线面甬的定义可知乙忙』二占叭因为胭=2,所以BG = 迅从而求得爼=2V2,所臥该长方体的体积为$二Z其2 X 2屈"妊故选U点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果5.【2018年新课标I卷文】已知圆柱的上、下底面的中心分别为1 ,,过直线'的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A 12jSnB 12nC 8^5TT D10n【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积•详解:根据题意,可得截面是边长为•的正方形,结合圆柱的特征,可知该圆柱的底面为半径是•的圆,且高为•,所以其表面积为%•二:+ .「上,一 V,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和• 6 .【2018年全国卷川文】设叙,閉;.『:■饭是同一个半径为4的球的球面上四点,阳聘为等边三角形且其面积为妝矣,则三棱锥紀朋£体积的最大值为A. B. C. D.【答案】B【解析】分析:作虱DjhjMO 2球的交点,点皿为三角形ABC的重心,判断出当DM丄平面AB时,三棱锥D-ABCft积最犬,然后进行计算可得中详解:如團所示,点M为三角形ABC的重心E为AC中点,当DM丄平面ABtM,三樓锥D-ABcf*积最犬,此时j 00 = OB = R = 4 »L砒-—?1B3= 9^5,A AH-"点就为三甬开乡ABC的重心』2:、BM = qEE =2V3; Rtfi ABC中,有=嗣阶一册丁=2^ -r™ = 0D + 0M = 4 + 2 = 6,毗ju旷尹潦汀」诙,故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当刚」平面审朦时,三棱锥皿閑廉体积最大很关键,由M为三角形ABC的重心,计算得到訓二;菖二祸再由勾股定理得到0M进而得到结果,属于较难题型。
立体几何型解答题——高考数学试题汇编(2018年全国卷)

【立体几何型解答题高考数学试题汇编(2018年全国卷)】理科试题【2018年全国卷Ⅰ理科第18题】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中 点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且.BF DF ⊥ (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【2018年全国卷Ⅱ理科第20题】如图,在三棱锥P ABC -中,AB BC ==PA PB ==4,PC AC ==O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30,求PC 与平面PAM 所成角的正弦值.【2018年全国卷Ⅲ理科第19题】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.C AAA文科试题【2018年全国卷Ⅰ文科第18题】如图,在平行四边形ABCM 中, 3,AB AC ==ACM ∠90,=以AC 为折痕将ACM ∆折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面;ABC(2)Q 为线段AD 上一点,P 为线段BC 上一点,且2,3BP DQ DA ==求三棱锥Q ABP-的体积.【2018年全国卷Ⅱ文科第20题】如图,在三棱锥P ABC -中,AB BC ==PA PB ==4,PC AC ==O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2,MC MB =求点C 与平面POM 的距离.【2018年全国卷Ⅲ文科第19题】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ; (2)在线段AM 上是否存在点,P 使得MC平面PBD ?说明理由.BAA。
高考数学真题分类汇编专题11:空间几何体(基础题)

2018年高考数学真题分类汇编专题11:空间几何体(基础题)1.(2018•卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图。
圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.2【答案】B【解析】【解答】解:画出圆柱侧面展开图如图:错误!未找到引用源。
,故答案为:B。
【分析】侧面上MN的最短距离就是圆柱的侧面展开图MCDE中的MN,其中MC=2,CN=4,在直角三角形MCN中求出MN.2.(2018•卷Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.错误!未找到引用源。
B.12πC.错误!未找到引用源。
D.错误!未找到引用源。
【答案】B【解析】【解答】解:设上下半径为r,则高为2r,∴错误!未找到引用源。
则圆柱表面积为错误!未找到引用源。
,故答案为:B.【分析】由圆柱的轴截面是面积为8的正方形,得到圆柱的高为8,底面直径为8,由此求圆柱的表面积.3.(2018•卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面错误!未找到引用源。
所成的角都相等,则错误!未找到引用源。
截此正方体所得截面面积的最大值为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【答案】A【解析】【解答】解:如图截面,S=6错误!未找到引用源。
,故答案为:A.【分析】由正方体的每条棱所在直线与平面错误!未找到引用源。
所成的角相等,得到平面错误!未找到引用源。
与其中一条对角线垂直,此时截面与相应侧面构成正三棱锥,再求出截面面积的最大值.4.(2018•卷Ⅰ)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1CC1所成的角为30°,则该长方体的体积为()A.8 B.6错误!未找到引用源。
2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何1.在某四棱锥的三视图中,侧面中直角三角形的个数为3个。
解决方法是通过对应的直观图,得出三角形PCD不是直角三角形,同时通过计算得出侧面中有三个直角三角形,分别为△PAB,△PBC和△PAD。
2.在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,E,F分别为AD,PB的中点。
需要证明PE⊥BC,平面PAB⊥平面PCD和EF∥平面PCD。
证明过程中,需要利用几何图形的性质,如平面PAD⊥平面ABCD,底面ABCD为矩形,可得BC∥AD等。
3.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为4/3.解决方法是通过计算正方体中间四边形的边长,然后计算出棱锥的高和棱长,最后通过公式计算出多面体的体积。
4.在平行六面体ABCD-A1B1C1D1中,需要证明AB∥平面A1B1C和平面ABB1A1⊥平面A1BC。
证明过程中,需要利用平行六面体的性质,如AB∥A1B1等。
在平行四边形ABCM中,由XXX可知∠ABC=∠ACB,又∠XXX°,所以∠ABM=∠CBM,即BM=CM,所以四边形ABB1M和四边形CC1BM是菱形,进而可得AB1⊥XXX,AC1⊥CM,所以AB1∥AC1,又因为XXX⊥AC,所以AB1⊥AC,即AB1是平面ABC的法线,同理可得AD是平面ACD的法线,所以平面ACD⊥平面ABC。
2)若BM=2,求AD的长度。
因为AB=AC=3,所以BC=3,又因为BM=2,所以MC=1,由勾股定理可得AM=√8,又因为AB⊥DA,所以AD=√AB^2+BD^2,又因为ABCD是平行四边形,所以BD=AC=3,所以AD=√18,即AD=3√2.题目:求直线AC1与平面ABB1所成角的正弦值。
解答:I)证明:因为A1A垂直于平面ABC,B1B垂直于平面ABC,所以A1A∥B1B。
由于A1A=4,B1B=2,AB=2,所以A1B1=2.又因为AB1⊥A1B1,同理可得AB1⊥B1C1,且A1B1∩B1C1=B1,所以AB1⊥平面A1B1C1.II)解:取AC的中点O,过O作平面ABC的垂线OD,交A1C1于D。
2018年高考文科数学分类汇编:专题八立体几何

《2018年高考文科数学分类汇编》 第八篇:立体几何 -、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为O i ,O 2,过直线OQ 2的平面截该圆柱所得的截面是面积为 8的正方形,则该圆柱的表面积为所成的角为30,则该长方体的体积为4. 【2018全国二卷9】在正方体ABCD A 1B 1C 1D 1中,E 为棱C 。
的中点,则异面直线 AE 与 CD 所成角的正切值为5. 【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹 进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼 的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是6. [ 2018全国三卷12】设A ,B ,C,D 是同一个半径为 4的球的球面上四点, △ ABC 为等A . 12 2nB . 12nC. 8 2nD . 10n2. 【2018全国一卷9】某圆柱的高为 2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点 N 在左视图上的对应点为B ,则在A . 2 17 B. 2.5 C . 3D . 23.【2018全国一卷10】在长方体ABCDAi B 1C 1D 1 中,AB BC 2 , AG 与平面 B^CQA . 8B . 6 2C . 8 2A .2C 」2D.2俯视方向边三角形且其面积为 9 3,则三棱锥D ABC 体积的最大值为 B . 18 3C. 24.3 D . 54 . 37. 【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数 为8.【2018浙江卷3】某几何体的三视图如图所示(单位: cm ),则该几何体的体积(单位:cm 3)是A . 2B . 4C. 6D . 89. 【2018浙江卷8】已知四棱锥 SABCD 的底面是正方形,侧棱长均相等, E 是线段AB 上 SE 与BC 所成的角为01, SE 与平面ABCD 所成的角为 込 二面角S-AB- C 的平面角为 03,则 A . 0<62<(3B . 03 W0 <01C . 010.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂 直于底面的四棱锥为阳马•设AA ?是正六棱柱的一条侧棱,如图,若 阳马以该正六棱柱的顶点为顶点, 以AA ?为底面矩形的一边,则这样 的阳马的个数是( )(A ) 4( B )8 (C ) 12( D ) 16二、填空题1. 【2018全国二卷16】已知圆锥的顶点为 S ,母线SA , SB 互相垂直,SA 与圆锥底面所成A . 12.3A.1B.2C.3D.4第8题图的点(不含端点),设角为30,若△ SAB的面积为8,则该圆锥的体积为______________ .2. 【2018天津卷11】如图,已知正方体 ABCDAB2D 1的棱长为1,则四棱锥 A i -BB 1D 1D 的 体积为 ___________第〔11〕题團3. 【2018江苏卷10】如图所示,正方体的棱长为 积为 ______三、解答题1.【2018全国一卷18】如图,在平行四边形 ABCM 中,AB AC 3 , / ACM 90,以AC为折痕将厶ACM 折起,使点M 到达点D 的位置,且 AB 丄DA . (1) 证明:平面 ACD 丄平面ABC ;2(2) Q 为线段AD 上一点,P 为线段BC 上一点,且BP DQ - DA ,求三棱锥Q ABP3 的体积.O 为AC 的中点.(1)证明:PO 平面ABC ;(2)若点M 在棱BC 上,且MC 2MB ,求点C 到平面POM 的距离.2,以其所有面的中心为顶点的多面体的体2.【2018全国二卷19】如图,在三棱锥P ABC 中,ABBC 2 2 , PA PB PC AC 4 ,叭 __________ Ci(第10強)3. 【2018全国三卷19】如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是C D 上异于C,D的点.(1)证明:平面AMD丄平面BMC ;(2)在线段AM上是否存在点P,使得MC //平面PBD ?说明理由.4. 【2018北京卷18】如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD丄平面ABCD, PAL PD, PA=PD, E, F 分别为AD, PB 的中点.(I )求证:PE L BC;(n )求证:平面PAB丄平面PCD(川)求证:EF//平面PCD5. 【2018天津卷17】如图,在四面体ABCD中,△ ABC是等边三角形,平面ABC L平面ABD, 点M 为棱AB 的中点,AB=2, AD=2 3 , / BAD=90°.(I )求证:AD L BC;(n )求异面直线BC与MD所成角的余弦值;(川)求直线CD与平面ABD所成角的正弦值.8.【20i8浙江卷i9】如图,已知多面体 ABCAB i C i , A i A , B i B , GC均垂直于平面 ABC,/ ABC=i20 ° A i A=4, C i C=i , AB=BC=B i B=2.(I )证明:AB i 丄平面A i B i C i ;(H )求直线 AC i 与平面ABB i 所成的角的正弦值.6.【2018江苏卷15】在平行六面体 ABCD 求证:(1) AB// 平面 A i B i C ; (2)平面 ABB i A i 平面 ABC . BiG -A B i C i D i 中,AA| AB, AB|7.【20i8江苏卷22 (附加题)】如图,在正三棱柱 别为A i B i ,BC 的中点. (1) 求异面直线BP 与AC i 所成角的余弦值; (2) 求直线CG 与平面AQC i 所成角的正弦值. ABC-A i B i C i 中,AB=AA i =2,点 P , Q 分(第22腿)a参考答案 一、 选择题 1.B2.B3.C4.C5.A6.B7.C二、 填空题1.82.-3.-33三、 解答题1•解:(1)由已知可得,BAC =90°, BA 丄AC .又BA 丄AD ,所以 AB 丄平面 ACD. 又AB 平面ABC,所以平面ACD 丄平面ABC.(2)由已知可得, DC=CM=AB=3, DA=3.2 . 2又 BP DQ -DA ,所以 BP 2 2 .3 作QE 丄AC,垂足为E,则QE P 1 DC .3由已知及(1)可得DC 丄平面 ABC,所以QE 丄平面ABC, QE=1.因此,三棱锥Q ABP 的体积为 1 1 丄 3 2 2 sin 45 1 . 3 29.【2018上海卷17】已知圆锥的顶点为 P ,底面圆心为 O ,半径为28.C9.D10.DV Q ABP—QE S ^ABP 32解:(1)因为AP=CF=AC=4, O 为AC 的中点,所以 OP 丄AC ,且OP=2.3 .连结OB .因为AB=BC= AC ,所以△ ABC 为等腰直角三角形,且 OB 丄AC , OB=-AC 2 2 =2.由 OP 2 OB 2 PB 2 知,OP 丄 OB.由OP 丄OB , OP 丄AC 知PO 丄平面 ABC(2)作CH 丄OM ,垂足为 H .又由(1)可得 OP 丄CH, 所以CH 丄平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知 OC=-AC =2,CM=-BC=4^2,/ACB=45°2 3 3 所以 OM=U , CH=OC MC Sin ACB =<^ . 3 OM 5所以点C 到平面POM 的距离为 □.53•解:(1)由题设知,平面 CMD 丄平面ABCD ,交线为CD.因为BC 丄CD, BC 平面ABCD,所以BC 丄平面 CMD , 故 BC 丄DM . 因为M 为C D 上异于C, D 的点,且DC 为直径,所以 DM 丄 CM .又BC A CM=C,所以DM 丄平面BMC .而DM 平面 AMD ,故平面 AMD 丄平面 BMC . (2)当P 为AM 的中点时,MC //平面 PBD.证明如下:连结 AC 交BD 于O .因为ABCD 为矩形,所以 O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC // OP. MC 平面PBD, OP 平面PBD ,所以 MC //平面PBD.4•解:(I): PA PD ,且 E 为 AD 的中点,••• PE AD .•••底面 ABCD 为矩形,• BC // AD , • PE BC .(□)•••底面 ABCD 为矩形,二 AB AD •1/•••平面PAD 平面ABCD, • AB 平面PAD.••• AB PD .又PA PD ,••• PD 平面PAB,•平面PAB 平面PCD.(川)如图,取PC中点G,连接FG,GD .1••• F,G 分别为PB和PC 的中点,• FG// BC,且FG - BC .2•••四边形ABCD为矩形,且E为AD的中点,1•- ED// BC,DE -BC ,2•ED// FG,且ED FG,•四边形EFGD为平行四边形,•EF// GD.又EF 平面PCD , GD 平面PCD ,•EF // 平面PCD.5•解:(I)证明:由平面ABC丄平面ABD,平面ABC A平面ABD=AB, AD丄AB,可得AD 丄平面ABC,故AD丄BC.(H)解:取棱AC的中点N,连接MN , ND.又因为M为棱AB的中点,故MN // BC.所以/ DMN (或其补角)为异面直线BC与MD所成的角.在Rt A DAM 中,AM=1,故DM=. AD2AM2= 13 .因为AD 丄平面ABC,故AD 丄AC.在Rt A DAN 中,AN=1,故DN^ AD2AN2= . 13.在等腰三角形 DMN 中,MN=1,可得cos DMN所以,异面直线 BC 与MD 所成角的余弦值为 』.26(川)解:连接 CM •因为△ ABC 为等边三角形,M 为边AB 的中点,故CM 丄AB , CM= ,3 •又因为平面 ABC 丄平面ABD ,而CM 平面ABC,故CM 丄平面ABD.所以,/ CDM 为直线CD 与平面ABD 所成的角.在 Rt A CAD 中,CC=. N CL AD 2 =4. 在 Rt A CMD 中,sin CDMCM 3 CD 4 .所以,直线CD 与平面ABD 所成角的正弦值为-246•证明: (i )在平行六面体 ABCDA i B i CiD i 中,AB / A i B i .因为AB 平面A I B I C , A 1B 1平面A i B i C , 所以AB//平面A i B i C. (2)在平行六面体 ABCDA i B i C i D i 中,四边形 平行四边形.又因为AA i =AB,所以四边形 ABB i A i 为菱形, 因此AB 丄A i B .又因为 AB i 丄 B i C i , BC / B i Ci , 所以AB i 丄BC.又因为 A i B A BC=B , A i B 平面 A i BC, BC 平面 A i BC , 所以AB i 丄平面A i BC. 因为ABi 平面ABB i A i , 所以平面ABBiA i 丄平面A i BC.7•解:如图,在正三棱柱 ABC- A i B i C i 中,设 AC , A i C i 的中点分别为 O , O i ,贝U OB 丄OC , uun LUT UUUUOO i 丄OC , OO i 丄OB ,以{OB,OC,OOi }为基底,建立空间直角坐标系o-xyz.因为 AB=AA i =2,12MN 帀 DM "26所以A(0, 1,0),B(..3,0,0),C(0,1,0),A(0, INkB^.. 3,0,2 ),G(0,1,2)(1)因为P为A I B I的中点,所以 2 2uur 3 1 uuuirBP ( , ,2), AC i (0,2,2)从而 2 2,mu ujun ,_ icos BP,AC u | JBJP ACJ L1 41沁故|BP | |AC i |.5 2、2 203 10因此,异面直线BP与AC i所成角的余弦值为20(2)因为Q为BC的中点,所以Q(¥1,0)uur AQ 因此(J,2,0)JUJUACujj(0,2,2), CC i (0,0,2)设n=( x, y,z)为平面AQC i的一个法向量, UULTAQ nJUJU 则AC i n 0,°,即3y 0,2y 2z 0.不妨取n 3, 1,1),设直线CC i与平面AQC i所成角为,sin 则UUJU |cosCCi,n 1需逻所以直线CC1与平面AQC1所成角的正弦值为58•解:方法一:(I)由AB 2,AA 4,BB i 2,AA AB, BB i AB 得AB AB 2^2,所以AB i2 2 2AB i AA i.故AB i AB i.由BC 2 , BB i 2, CC i i, BB i BC,CC i BC 得B i C i ,5 ,由AB BC 2, ABC i20 得AC 2 . 3 ,由CC i AC,得AC i ,所以 2 2AB i B i C i2AC i,故AB i B i C i因此AB i平面A i B i C i.(n)如图,过点C i作GD A1B1,交直线A\B1于点D,连结AD .由AB i 平面A i B i C i得平面ABQ i 平面ABB i ,由C i D A3 得C i D 平面ABB i,所以C i AD是AC i与平面ABB i所成的角•由BC i 亦,AB 2血,AC i ^2i得cos GAB ^6,sin GAB 所以C i D 3,故sin GAD CD 39 .i i AC i i3i ~7*/39因此,直线AC 1与平面ABB 1所成的角的正弦值是 —13方法二:(I)如图,以 AC 的中点O 为原点,分别以射线 OB , OC 为x , y 轴的正半轴,建立空间直角坐标系 O-xyz.由题意知各点坐标如下:A(0, 73,0), B(1,0,0), A(0, >/3,4), B 1(1,0,2),C 1(0j3,1), uuu L uuu L uuu L 因此 AB 1 (1,J3,2), AB (1,J3, 2), AG (0,2 J 3, 3),来源学所以AB 1 平面A 1B 1C 1.uuu - uur 由(I)可知 AG (0,2、3,1), ABAC 1与平面ABB 1所成的角的正弦值是 一熒13(n)设直线 AC 1与平面ABB 1所成的角为设平面 ABB 1 的法向量 n (x, y, z). uurAB uuu BB 10,即 0, x ◎ 0,可取2z 0, (,3,1,0).所以sinuuu|cos 〔ACu,叩 4AC4|AC 1 | |n|3913uuu 由AB 1 uuuAB 1 0 得 A 1B 1. uuu 由AB 1 uuuAG 0得AB 1AC 1.- uuu(1, .3,0), BB 1 (0,0,2), 因此,直线9•解:⑴依题意可知:圆锥的高度为op 42 22 2 3,所以其体积为:V 1 r2h 1222 3 ^3 。
2008_2018年江苏高考数学立体几何真题汇编

A B CD EF 2008-2018江苏高考数学立体几何真题汇编(2008年第16题)在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点,求证:(1)直线EF ∥平面ACD(2)平面EFC ⊥平面BCD证明:(1)⎭⎬⎫E ,F 分别为AB ,BD 的中点⇒EF ∥AD 且AD ⊂平面ACD ,EF ⊄平面ACD ⇒直线EF ∥平面ACD (2)⎭⎬⎫⎭⎬⎫CB =CD F 是BD 的中点 ⇒ CF ⊥BD ⎭⎬⎫AD ⊥BD EF ∥AD ⇒ EF ⊥BD ⇒直线BD ⊥平面EFC 又BD ⊂平面BCD ,所以平面EFC ⊥平面BCDB C₁(2009年第16题)如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C .求证:(1)EF∥平面ABC(2)平面A1FD⊥平面BB1C1C证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC,因为EF⊄平面ABC,BC⊂平面ABC,所以EF∥平面ABC(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1,又A1D⊂平面A1B1C1,故CC1⊥A1D,又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C⊂平面BB1C1C故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,故平面A1FD⊥平面BB1C1CPA BC D D P A B CF E (2010年第16题)如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.证明:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC .由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ⊂平面PCD ,所以BC ⊥平面PCD . 因为PC ⊂平面PCD ,故PC ⊥BC .解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则:易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等.又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍.由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC ,因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F .易知DF =2 2 ,故点A 到平面PBC 的距离等于2.(方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h .因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°.从而AB =2,BC =1,得△ABC 的面积S △ABC =1.由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3. 因为PD ⊥平面ABCD ,DC ⊂平面ABCD ,所以PD ⊥DC .又PD =DC =1,所以PC =PD 2+DC 2=2.由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC =2 2. 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3,得h =2, 故点A 到平面PBC 的距离等于2.(2011年第16题)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD证明:(1)在△PAD中,∵E,F分别为AP,AD的中点,∴BC∥AB,又∵EF ⊄平面PCD,PD⊂平面PCD,∴直线EF∥平面PCD(2)连接BD. ∵AB=AD,∠BAD=60°,∴△PAD为正三角形∵F是AD的中点,∴BF⊥AD,∵平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,∴BF⊥平面PAD又∵BF⊂平面BEF,∴平面BEF⊥平面PAD(2012年第16题)如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D、E分别是棱BC、CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.证明:(1)∵是ABC-A1B1C1直三棱柱,∴CC1⊥平面ABC又∵AD⊂平面ABC,∴CC1⊥AD又∵AD⊥DE,CC1,DE⊂平面ADE,CC1∩DE=E∴平面ADE⊥平面BCC1B1(2)∵A1B1=A1C1,F为B1C1的中点,∴A1F⊥B1C1∵CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1∴CC1⊥A1F又∵CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1∴A1F⊥平面BCC1B1,由(1)知AD⊥平面BCC1B1,∴A1F∥AD又∵AD⊂平面ADE,A1F ⊄平面ADE,∴A1F∥平面ADES GA BC E F(2013年第16题)如图,在三棱锥S -ABC 中,平面平面SAB ⊥平面SBC ,AB ⊥BC ,AB =AS ,过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ;(2)BC ⊥SA .证:(1)∵SA =AB 且AF ⊥SB ,∴F 为SB 的中点.又∵E ,G 分别为SA ,SC 的中点,∴EF ∥AB ,EG ∥AC .又∵AB ∩AC =A ,AB 面SBC ,AC ⊂面ABC ,∴平面EFG ∥平面ABC .(2)∵平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =BC ,AF ⊂平面ASB ,AF ⊥SB .∴AF ⊥平面SBC .又∵BC ⊂平面SBC ,∴AF ⊥BC .又∵AB ⊥BC ,AF ∩AB =A ,∴BC ⊥平面SAB .又∵SA ⊂平面SAB ,∴BC ⊥SA .(2014年第16题)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.证明:(1)∵D,E为PC,AC中点∴DE∥PA∵PA ⊄平面DEF,DE⊂平面DEF∴PA∥平面DEF(2)∵D,E为PC,AC中点∴DE=PA2=3∵E,F为AC,AB中点∴EF=BC2=4∴DE2+EF2=DF2∴∠DEF=90°,∴DE⊥EF ∵DE∥PA,PA⊥AC∴DE⊥AC∵AC∩EF=E∴DE⊥平面ABC∵DE⊂平面BDE,∴平面BDE⊥平面ABC.A BC 1DE A 1 B 1 C(2015年第16题)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E求证:(1)DE ∥平面A A 1CC 1(2) BC 1⊥AB 1证明:(1)由题意知,E 为B 1C 的中点,又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面A A 1C 1C ,AC ⊂平面A A 1C 1C ,所以DE ∥平面A A 1C 1C(2)因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC因为AC ⊂平面ABC ,所以AC ⊥CC 1,又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C ,所以AC ⊥平面BCC 1B 1,又因为BC 1⊂平面BCC 1B 1,所以BC 1⊥AC因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C ,所以BC 1⊥平面B 1AC ,又因为AB 1 ⊂平面B 1AC ,所以BC 1⊥A B 1A 1B 1 F(2016年第16题)如图,在直三棱柱ABC -A 1B 1C 1中,D 、E 分别为AB 、BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC -A 1B 1C 1中,A 1C 1∥AC在△ABC 中,因为D 、E 分别为AB ,BC 的中点,∴DE ∥AC ,于是DE ∥A 1C 1又∵DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F ,∴直线DE ∥平面A 1C 1F(2)在直三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1,∵A 1C 1⊂平面A 1B 1C 1,∴A 1A ⊥A 1C 1又∵A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1,∴A 1C 1⊥平面ABB 1A 1∵B 1D ⊂平面ABB 1A 1,∴A 1C 1⊥B 1D又∵B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1,∴B 1D ⊥平面A 1C 1F∵B 1D ⊂平面B 1DE∴平面B 1DE ⊥平面A 1C 1FABCDEF(2017年第15题)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD .求证:(1)EF∥平面ABC;(2)AD⊥AC证明:(1)在平面内,∵AB⊥AD,EF⊥AD∴EF∥AB又∵EF ⊄平面ABC,AB⊂平面ABC∴EF∥平面ABC(2)∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BDBC⊂平面BCD,BC⊥BD∴BC⊥平面ABD∵AD⊂平面ABD∴BC⊥AD又∵AB⊥AD,BC∩AB=B ,AB⊂平面ABC,BC⊂平面ABC∴AD⊥平面ABC又∵AC⊂平面ABC,∴AD⊥ACD 1C 1B 1A 1D C B A(2018年第15题)在平行六面体ABCD -A 1B 1C 1 D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ;(2)平面ABB 1 A 1⊥平面A 1BC证明:(1)平行六面体ABCD -A 1B 1C 1 D 1中,AB ∥A 1B 1 ⎭⎪⎬⎪⎫AB ∥A 1B 1 A 1B 1⊂平面A 1B 1C AB ⊄平面A 1B 1C ⇒ AB ∥平面A 1B 1C(2)⎭⎬⎫平行六面体ABCD -A 1B 1C 1 D 1 AB ∥A 1B 1 ⇒四边形A 1B 1BA 为菱形⇒AB 1⊥A 1B ⎭⎬⎫平行六面体ABCD -A 1B 1C 1 D 1 ⇒BC ∥B 1C 1 AB 1⊥B 1C 1 ⇒ AB 1⊥BC ⎭⎪⎬⎪⎫AB 1⊥A 1BAB 1⊥BCA 1B ∩BC =B AB 1⊂平面A 1BCBC ⊂平面A 1BC ⇒ AB 1⊥平面A 1BC⎭⎬⎫AB 1⊥平面A 1BC AB 1⊂平面A 1B 1BA ⇒平面ABB 1 A 1⊥平面A 1BC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。
(A)1 (B)2 (C)3 (D)4
2.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
(A)1 (B)2 (C)3 (D)
4
3.(浙江)(3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是
侧视图
俯视图
正视图
2
2
11
A.2 B.4 C.6 D.8
4.(全国卷一文)(5
)已知圆柱的上、下底面的中心分别为1O,2O,过直线12OO的平面截该圆柱所得
的截面是面积为8的正方形,则该圆柱的表面积为
A.122π B.12π C.82π D.10π
5.(全国卷一文)(9)某圆柱的高为2,底面周长为16
,其三视图如右图.圆柱表面上的点M在正视图
上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径
中,最短路径的长度为
A.217 B.25
C.3 D.2
6.(全国卷一文)(10
)在长方体1111ABCDABCD中,2ABBC,1AC与平面11BBCC所成的角
为30,则该长方体的体积为
A.8 B.62 C.82 D.83
7.(全国卷一理)(7)某圆柱的高为2,底面周长为16
,其三视图如图.圆柱表面上的点M在正视图上
的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,
最短路径的长度为
A.172 B.52 C.3 D.2
8.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方
体所得截面面积的最大值为
A.334 B.233 C.324 D.32
9.(全国卷二文)(9)在正方体1111ABCDABCD中,E为棱1CC的中点,则异面直线AE与CD所成角
的正切值为
A.22 B.32 C.52 D.72
10.(全国卷二理)(9
)在长方体1111ABCDABCD中,1ABBC,13AA,则异面直线1AD与1DB所
成角的余弦值为
A.15 B.56 C.55 D.22
11.(全国卷三文)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯
眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则
咬合时带卯眼的木构件的俯视图可以是
12.(全国卷三文)(12)设A,B,C,D是同一个半径为4的球的球面上四点,ABC△为等边三角
形且其面积为93,则三棱锥DABC体积的最大值为
A.123 B.183 C.243 D.543
13.(全国卷三理)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯
眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则
咬合时带卯眼的木构件的俯视图可以是
14.(全国卷三理)(10)设ABCD,,,是同一个半径为4的球的球面上四点,ABC△为等边三角形且
其面积为93,则三棱锥DABC体积的最大值为
A.123 B.183 C.243 D.543
二、填空题
1.(江苏)(10)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .
2.(天津文)(11)如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱柱A1–BB1D1D的体积为__________.
3.(天津理)(11) 已知正方体1111ABCDABCD的棱长为1,除面ABCD外,该正方体其余各面的中心分
别为点E,F,G,H,M(如图),则四棱锥MEFGH的体积为 .
4.(全国卷二文)(16)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30,若
SAB△
的面积为8,则该圆锥的体积为__________.
5.(全国卷二理)(16
)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角
为45°,若SAB△的面积为515,则该圆锥的侧面积为__________.
三、解答题
1.(北京文)(18)(本小题14分)
如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F
分别为AD,PB的中点.
(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.
2.(北京理)
(16)(本小题14分)
如图,在三棱柱ABC-111ABC中,1CC平面ABC,D,E,F,G分别为1AA,AC,11AC,1BB的中点,AB=BC=5,
AC=1AA=2.
(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.
3.(江苏)(15)(本小题满分14分)
在平行六面体1111ABCDABCD中,1111,AAABABBC.
求证:(1)11ABABC平面∥;(2)111ABBAABC平面平面.
4.
(浙江)(19)
(本题满分15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,
∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
5.
(天津文)
(17)(本小题满分13分)
如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,
AD=23,∠BAD=90°.
(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;
(Ⅲ)求直线CD与平面ABD所成角的正弦值.
6.(天津理)(17)(本小题满分13分)
如图,ADBC∥且AD=2BC,ADCD,EGAD∥且EG=AD,CDFG∥且CD=2FG,
DGABCD平面
,DA=DC=DG=2.
(I)若M为CF的中点,N为EG的中点,求证:MNCDE∥平面;
(II)求二面角EBCF的正弦值;
(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.
7.(全国卷一文)(18)(12分)
如图,在平行四边形ABCM中,3ABAC,90ACM∠,以AC为折痕将△ACM折起,
使点M到达点D的位置,且ABDA⊥.
(1)证明:平面ACD⊥平面ABC;
(2)Q为线段AD上一点,P在线段BC上,且23BPDQDA,求三棱锥QABP的体积.
8.(全国卷一理)(18)(12分)
如图,四边形ABCD为正方形,,EF分别为,ADBC的中点,以DF为折痕把DFC△折起,
使点C到达点P的位置,且PFBF.
(1)证明:平面PEF平面ABFD;
(2)求DP与平面ABFD所成角的正弦值.
9.(全国卷二文)(19)(12分)
如图,在三棱锥PABC中,22ABBC,4PAPBPCAC,O为AC的中点.
(1)证明:PO平面ABC;
(2)若点M在棱BC上,且2MCMB,求点C到平面POM的距离.
10.(全国卷二理)(20)(12分)
如图,在三棱锥PABC中,22ABBC,4PAPBPCAC,O为AC的中点.
(1)证明:PO平面ABC;
(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦值.
P
A
O
C
B
M
11.(全国卷三文)(19)(12分)
如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.
(1)证明:平面AMD⊥平面BMC;
(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.
12.(全国卷三理)(19)(12分)
如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,
D
的点.
(1)证明:平面AMD⊥平面BMC;
(2)当三棱锥MABC体积最大时,求面MAB与面MCD所成二面角的正弦值.