按键控制灯亮灭

合集下载

鱼缸按键控制

鱼缸按键控制
1键=P3.2A灯=P1.2
2键=P3.3B灯=P1.3
3键=P3.4C灯=P1.4
4键=P3.5D灯=P1.5;F灯=P1.6
蜂鸣器=P1.7
按键全部低电平输入,正常为高电平,
控制位全部高电平输出,低电平不工作。*/
#include<reg51.h>
#define uint unsigned int
beep();
LED4 = 0;
LED5 = 0;
}
if (key==3)
key=0;
else
key++;
while(!K4);
for(a=0;a<500;a++);
}
}
}
{
uint n;
while(!K1|!K2|!K3|!K4)
{
bi(70); //发出按键音
while(!K1|!K2|!K3|!K4); //等待按键松开
for(n=0;n<2000;n++); //等待按键稳定松开
bi(70);
while(!K1|!K2|!K3|!K4);
for(n=0;n<2000;n++);
/*四个按键控制
按键1:按一下A灯亮,再按A灯灭;
按键2,按一下B灯亮,再按B灯灭;
按键3,按一下C灯亮,再按C灯灭,
按键4,循环按键,一次D灯亮,二次F灯亮,三次DF全亮,四次全灭;
四个按键控制五个IO口输出,硬件经三极管驱动继电器以便控制更大功率的设置。
每按一次键蜂鸣器响一下
I/O控制位:控制位:
}
if(!K2)
{
for(a=0;a<500;a++);

基于单片机的单键单灯亮-灭控制系统设计

基于单片机的单键单灯亮-灭控制系统设计

交流调速课程设计说明书设计题目:基于单片机的单键单灯亮/灭控制系统设计指导教师: xxxxx设计者: xxxx学号: xxxxxxxxx系别:机械工程学院班级:目录一、题目 (1)二、内容要求 (1)三、总体方案设计思路 (1)四、电路原理图 (1)五、程序 (2)六、课程设计心得体会···························· (3)七、参考文件 (4)1题目:基于单片机的单键单灯亮/灭控制系统设计2内容要求:选用单片机为控制核心,用一个按钮控制一只LED 灯的点亮和熄灭。

要求上电后,按一次按钮,灯点亮;再按一次,灯熄灭;第三次案又点亮,如此循环。

3总体方案设计思路:程序通过if判断语句,判断输入引脚,当输入引脚为低电平时,满足if语句判断条件,当条件满足时,通过取反指令,控制输出引脚,LED灯亮灭切换。

通过while循环语句,确定有效按键。

4电路原理图:5程序:#include<reg51.h> //单片机头文件sbit key=P1^0; //按键输入引脚定义sbit led=P2^0; //led灯输出引脚定义main () //主函数{while(1) //死循环{if (key==0) //按键判断低电平有效{led=~led; //灯取反}while(key==0); //按键上升沿等待}}6课程设计心得体会在整个设计中我懂得了许多东西,了解了单片机的电器原理,掌握了单片机的调试的基本原理,特别是单片机的编程技术,对C语言编程和汇编语言编程有了深入的理解,熟悉了单片机开发仪的操作。

对于本次课程设计对基于单片机的单键单灯亮/灭控制系统设计。

单片机独立按键控制led灯实验原理

单片机独立按键控制led灯实验原理

主题:单片机独立按键控制LED灯实验原理目录1. 概述2. 单片机独立按键控制LED灯实验原理3. 实验步骤4. 结语1. 概述单片机在现代电子设备中起着至关重要的作用,它可以通过编程实现各种功能。

其中,控制LED灯是单片机实验中常见的任务之一。

本文将介绍单片机独立按键控制LED灯的实验原理及实验步骤,希望对初学者有所帮助。

2. 单片机独立按键控制LED灯实验原理单片机独立按键控制LED灯的实验原理主要涉及到单片机的输入输出端口及按键和LED的连接方式。

在单片机实验中,按键与单片机的输入端口相连,LED与单片机的输出端口相连。

通过按键的按下和松开来改变单片机输出端口电平,从而控制LED的亮灭。

3. 实验步骤为了完成单片机独立按键控制LED灯的实验,需要按照以下步骤进行操作:步骤一:准备材料- 单片机板- 按键- LED灯- 连线- 电源步骤二:搭建电路- 将按键与单片机的输入端口相连- 将LED与单片机的输出端口相连- 连接电源步骤三:编写程序- 使用相应的单片机开发软件编写程序- 程序中需要包括按键状态检测和LED控制的部分步骤四:烧录程序- 将编写好的程序烧录到单片机中步骤五:运行实验- 按下按键,观察LED的亮灭情况- 确保按键可以正确控制LED的亮灭4. 结语通过上述实验步骤,我们可以实现单片机独立按键控制LED灯的功能。

这个实验不仅可以帮助学习者了解单片机的输入输出端口控制,还可以培养动手能力和程序设计能力。

希望本文对单片机实验初学者有所帮助,谢谢阅读!实验步骤在进行单片机独立按键控制LED灯实验时,需要按照一定的步骤进行操作,以确保实验能够顺利进行并取得预期的效果。

下面将详细介绍实验步骤,帮助读者更好地理解和掌握这一实验过程。

1. 准备材料在进行单片机独立按键控制LED灯实验前,首先需要准备相应的材料。

这些材料包括单片机板、按键、LED灯、连线和电源。

在选择单片机板时,需要根据具体的实验需求来确定,常见的有51单片机、Arduino等,不同的单片机板具有不同的特性和使用方法,因此需要根据实验要求来选择适合的单片机板。

msp430Led按键控制灯亮程序

msp430Led按键控制灯亮程序

1.Led灯控制程序#include "msp430g2553.h"void main( void ){// Stop watchdog timer to prevent time out resetWDTCTL = WDTPW + WDTHOLD; //关闭看门狗//P1DIR = 0x41;//P1OUT = 0x41; //程序点亮led1//P1DIR |=BIT0+BIT6;//P1OUT |=BIT0+BIT6; //程序点亮led2P1DIR |=BIT0;P1OUT |=BIT0;P1DIR |=BIT6;P1OUT &=~BIT6;while(1){P1OUT ^=BIT0;P1OUT ^=BIT6;__delay_cycles(1000000);} //led交替亮,持续1s2.Led按键控制灯亮#include "msp430g2553.h"void main( void ){// Stop watchdog timer to prevent time out resetWDTCTL = WDTPW + WDTHOLD;//关闭看门狗P1DIR &=~BIT3;P1DIR |=BIT0;P1IES |=BIT3;P1IE |=BIT3;_EINT();_BIS_SR(LPM0_bits+GIE);}#pragma vector=PORT1_VECTOR__interrupt void PORT1_ISR(void){int i;char pushkey;pushkey=P1IFG&BIT3;//第三位中断标志位for(i=0;i<1000;i++)//短暂延时软件去抖if((P1IN&pushkey)==pushkey){P1IFG=0;//中断标志清零return;}if(P1IFG&BIT3)//判断按键是否按下{P1OUT^=BIT0;}P1IFG=0;return;}3.矩阵键盘和数码管程序#include <msp430g2553.h>#include"Key&Display.h"//unsigned char Receive(void);void main( void ){// Stop watchdog timer to prevent time out resetWDTCTL = WDTPW + WDTHOLD;Init_4lines_Mode();//初始化4线工作模式Send_Command(CH452_RESET);//CH452芯片内部复位Send_Command(KeyDisplay_ON);//允许显示驱动并启动键盘扫描//开中断,P2.0接CH452的DOUT引脚,当有键按下时,DOUT上产生由高到低的脉冲// P2SEL &= ~(BIT6+BIT7);P2IE|=BIT0;P2IES|=BIT0;P2IFG&=~BIT0;_EINT();while(1){}}//中断处理函数#pragma vector = PORT2_VECTOR//中断处理程序,接收到DOUT脉冲信号时,运行之__interrupt void Port2(void){unsigned char Keyvalue;Send_Command(CH452_GET_KEY);//单片机向CH452发送读取按键代码命令Keyvalue=Key_Read();// Keyvalue=Receive();switch(Keyvalue){case 0x40://按键K0按下{Send_Command( NDis1); //第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis00);//第0位数码管显示0break;}case 0x41://按键K1按下{Send_Command( NDis1); //第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis01);//第0位数码管显示1break;}case 0x42://按键K2按下{Send_Command( NDis1); //第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis02);//第0位数码管显示2break;}case 0x43://按键K3按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis03);//第0位数码管显示3break;}case 0x48://按键K4按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis04);//第0位数码管显示4break;}case 0x49://按键K5按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis05);//第0位数码管显示5break;}case 0x4A://按键K6按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis06);//第0位数码管显示6break;}case 0x4B://按键K7按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis07);//第0位数码管显示7break;}case 0x50://按键K8按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis08);//第0位数码管显示8break;}case 0x51://按键K9按下{Send_Command( NDis1);//第1位数码管不显示//Send_Command(Dis10);Send_Command(Dis09);//第0位数码管显示9break;}case 0x52://按键K10按下{Send_Command(Dis00);//第0个数码管显示字符"0"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x53://按键K11按下{Send_Command(Dis01);//第0个数码管显示字符"1"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x58://按键K12按下{Send_Command(Dis02);//第0个数码管显示字符"2"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x59://按键K13按下{Send_Command(Dis03);//第0个数码管显示字符"3"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x5A://按键K14按下{Send_Command(Dis04);//第0个数码管显示字符"4"Send_Command(Dis11);//第1个数码管显示字符"1"break;}case 0x5B://按键K15按下{Send_Command(Dis05);//第0个数码管显示字符"5"Send_Command(Dis11);//第1个数码管显示字符"1"break;}default:break;}P2IFG&=~BIT0;}4.红灯0.2秒闪一次,绿灯0.8秒闪一次#include <msp430g2553.h>void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDT BCSCTL1 &=~XTS; //配置时钟BCSCTL3 |=LFXT1S_2;IFG1 &=OFIFG;P1DIR |=BIT0+BIT6; // P1.0,P1.6 output P1OUT &=~BIT0; // P1.0,P1.6置0 P1OUT &=~BIT6;TACCR0 = 12000-1; //1秒定时,产生中断TACCR1 = 2400; //频率0.2*12000,定时0.2秒TACCR2 = 9600; //定时0.8秒TACTL = TASSEL_1 + MC_1+TAIE; // ACLK, 增计数模式TACCTL1 |=CCIE; // TACCR1中断使能TACCTL2 |=CCIE; // TACCR1中断使能_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt}// Timer_A3 Interrupt Vector (TA0IV) handler#pragma vector=TIMER0_A1_VECTOR__interrupt void Timer_A(void){switch( TA0IV ){case 2: P1OUT ^= BIT0; // 捕获/比较寄存器TACCR1break;case 4: P1OUT ^= BIT6;break; // 捕获/比较寄存器TACCR2case 10: break; // 未使用,计数达到TACCRO时执行中断,即1秒执行一次}}5.PMW波控制led灯亮度#include "msp430g2553.h"void main( void ){// Stop watchdog timer to prevent time out resetWDTCTL = WDTPW + WDTHOLD;P1DIR |=BIT6; //方向寄存器P1SEL |=BIT6; //功能寄存器TACTL=TASSEL_2+MC_1+ID_0; //定时器A控制寄存器选择增计数模式TACCTL1 |=OUTMOD_3; //捕获/比较控制寄存器TACCR0=1000-1;TACCR1=10;_BIS_SR(CPUOFF);}。

使用按键控制LED灯亮—按键控制LED灯亮灭程序编写

使用按键控制LED灯亮—按键控制LED灯亮灭程序编写

9课Βιβλιοθήκη 任务编写由一个按键按制一个 LED 灯,当 按键按下时,LED 灯亮再按时 LED 灯 灭的 C 语言程序。
单片机技术及应用
单片机技术及应用
1
工作任务
任务要求:
当独立按
键 key 按下时, 发光二极管
LED 点亮,松 开按键 key 时 发光二极管
LED 熄灭。
任务分析:
按下
P3.0端口为“0”


按键Key
序 控
松开
P3.0端口为“0”


2
程序设计流程
一、流程图
二、按键软件延时消抖
1.延时程序编写
void delay(uint x)//ms延时函数 { uchar i; while(x--) for(i=0;0<i<123;i++)
下载程序及硬件调试
1.下载程序
2.连接电路
电路连接表
控制端口
连接位置
P1.0
VD26
P3.0
KEY1
3.硬件调试
7
成果展示及评价
•学生进行作品展示
8
任务小结
•学生小结:小组代表总结本组的学习心得,学会了什么, 还有什么没有理解等等。 •教师小结:教师对每组的成果进行点评,并对本节课的知识 点进行总结。
while(1) {
if(key==0) { delay(10); if(key==0) { 灯亮;} } } else {灯灭;} }
4 程序仿真调试
一、利用Proteuse软件绘制电路图
步骤: 打开Protues 软件 创建工程 创建文件 放置元件 连接电路 保存
二、装载Hex文件并仿真

pyqt框架实现按键控制led灯的亮灭状态实验总结

pyqt框架实现按键控制led灯的亮灭状态实验总结

pyqt框架实现按键控制led灯的亮灭状态实验总结下文以中括号内的主题为中心,详细探讨了使用PyQt框架实现按键控制LED灯的亮灭状态实验,涵盖了实验目的、实验背景、实验步骤、实验结果与分析以及对实验的总结。

一、实验目的本实验的目的是利用PyQt框架实现按键控制LED灯的亮灭状态,通过控制电路中的LED灯,达到对灯的开关进行控制的目的。

通过这个实验,我们可以了解PyQt框架的基本应用以及灯的电路控制原理。

二、实验背景随着科技的不断发展,图形化界面已经成为了现代软件设计的重要一环。

PyQt是Python语言的GUI编程解决方案之一,它结合了Qt库的功能和Python语言的灵活性,具有操作方便、界面友好等特点,被广泛应用于各个领域。

LED灯是现代电子设备中常见的一种指示灯。

通过控制LED灯的亮灭状态,我们可以在软件界面上显示不同的状态,从而提高用户体验。

三、实验步骤1. 确认实验所需硬件设备:一个LED灯、一个电阻、一个面包板、杜邦线等。

2. 搭建电路:将LED灯通过电阻连接到电源正极,并将其负极连接到面包板上。

3. 准备开发环境:安装Python和PyQt,并导入相关库文件。

4. 创建GUI窗口:使用PyQt框架创建一个窗口,并设置窗口大小、标题等属性。

5. 设计界面元素:在窗口中添加一个按钮,用于控制LED灯的亮灭状态。

6. 编写控制逻辑:通过编写相应的代码,实现点击按钮时灯亮灭的切换。

7. 运行程序:在终端中运行程序,查看窗口显示效果。

8. 调试与优化:根据实际情况进行调试,修复可能出现的bug,并对程序进行优化。

四、实验结果与分析经过以上步骤的实验操作,我们成功地使用PyQt框架实现了按键控制LED灯的亮灭状态。

通过点击按钮,我们可以对LED灯进行开关控制,从而在界面上显示不同的状态。

对于实验结果的分析,我们可以从以下几个方面进行讨论:1. 界面友好度:PyQt框架提供了丰富的控件和布局方式,使得界面的设计更加美观、直观。

day12:按键KEY1和KEY2控制LED灯的亮灭

day12:按键KEY1和KEY2控制LED灯的亮灭

day12:按键KEY1和KEY2控制LED灯的亮灭KEY1控制LED1,KEY2控制LED2bsp_led.h:/* 和LED功能模块相关的程序 */#ifndef __BSP_LED_H__#define __BSP_LED_H__#include "stm32f10x.h"/*宏定义*/#define GPIO_CLK_D4 RCC_APB2Periph_GPIOC // 时钟#define GPIO_PORT_D4 GPIOC // C端⼝#define GPIO_PIN_D4 GPIO_Pin_2 // PC2引脚#define GPIO_CLK_D5 RCC_APB2Periph_GPIOC // 时钟#define GPIO_PORT_D5 GPIOC // C端⼝#define GPIO_PIN_D5 GPIO_Pin_3 // PC2引脚/*参数宏定义*//*digitalTOGGLE(p,i)是参数宏定义,p表⽰LED的端⼝号,ODR是数据输出寄存器,查stm32f10x的官⽅中⽂⼿册的第8.2章的ODR寄存器,要点亮LED,根据原理图,要输出低电平0,C语⾔中,^表⽰异或,即a^b表⽰a和b不同时输出为1,相同时输出为0,⽐如0^1=1,1^1=0,0^0=0,这⾥为什么操作ODR,p是什么?查看stm32f10x.h⽂件,搜索GPIO_TypeDef就会明⽩,i是LED的引脚对应的位电平,经过digitalTOGGLE(p,i) {p->ODR ^= i;}之后,第⼀次p为0,i⼀直为1,第⼀次异或结果输出1,第⼆次输出0,第三次输出1,这样间断输出010101,灯不断亮灭*/#define digitalTOGGLE(p,i) {p->ODR ^= i;}#define LED1_TOGGLE digitalTOGGLE(GPIO_PORT_D4,GPIO_PIN_D4)#define LED2_TOGGLE digitalTOGGLE(GPIO_PORT_D5,GPIO_PIN_D5)/*配置GPIO*/void LED_GPIO_Config(void);#endif /*__BSP_LED_H__*/bsp_led.c:/* 和LED功能模块相关的程序头⽂件 */#include "./led/bsp_led.h" /*绝对路径,也可在Options for target中设置头⽂件*//*GPIO初始化*/void LED_GPIO_Config(void){/*外设结构体*/GPIO_InitTypeDef GPIO_InitStruct_D4, GPIO_InitStruct_D5;/*第⼀步:打开外设的时钟,看stm32f10x_rcc.c这个⽂件的RCC_APB2PeriphClockCmd函数介绍*/RCC_APB2PeriphClockCmd(GPIO_CLK_D4, ENABLE);/*第⼆步:配置外设的初始化结构体*/GPIO_InitStruct_D4.GPIO_Pin = GPIO_PIN_D4; // PC2的那盏LED灯(D4)的引脚GPIO_InitStruct_D4.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出模式GPIO_InitStruct_D4.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率GPIO_InitStruct_D5.GPIO_Pin = GPIO_PIN_D5; // PC3的那盏LED灯(D5)的引脚GPIO_InitStruct_D5.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出模式GPIO_InitStruct_D5.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率/*第三步:调⽤外设初始化函数,把配置好的结构体成员写到寄存器⾥⾯*/GPIO_Init(GPIO_PORT_D4, &GPIO_InitStruct_D4);GPIO_Init(GPIO_PORT_D5, &GPIO_InitStruct_D5);}bsp_key.h:#ifndef __BSP_KEY_H__#define __BSP_KEY_H__#include "stm32f10x.h"#define KEY_ON 1#define KEY_OFF 0// 按键相关的宏定义#define GPIO_CLK_KEY1 RCC_APB2Periph_GPIOA // 端⼝A时钟#define GPIO_PORT_KEY1 GPIOA // A端⼝#define GPIO_PIN_KEY1 GPIO_Pin_0 // PA0引脚#define GPIO_CLK_KEY2 RCC_APB2Periph_GPIOC // 端⼝C时钟#define GPIO_PORT_KEY2 GPIOC // C端⼝#define GPIO_PIN_KEY2 GPIO_Pin_13 // PC13引脚// 配置GPIOvoid KEY_GPIO_Config(void);// 按键扫描,看按键是否被按下,如果按下返回KEY_ON,否则返回KEY_OFF(进⾏宏定义)uint8_t KEY_SCAN(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);#endif /* __BSP_KEY_H__ */bsp_key.c:#include "./key/bsp_key.h"/* 按键初始化 */void KEY_GPIO_Config(void){/*外设结构体*/GPIO_InitTypeDef GPIO_InitStruct_KEY1, GPIO_InitStruct_KEY2;/*第⼀步:打开外设的时钟,看stm32f10x_rcc.c这个⽂件的RCC_APB2PeriphClockCmd函数介绍*/RCC_APB2PeriphClockCmd(GPIO_CLK_KEY1|GPIO_CLK_KEY2, ENABLE); // 按下KEY1或KEY2/*第⼆步:配置外设的初始化结构体*/GPIO_InitStruct_KEY1.GPIO_Pin = GPIO_PIN_KEY1; // KEY1的引脚GPIO_InitStruct_KEY1.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输出模式(引脚电平由外部决定) GPIO_InitStruct_KEY1.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率GPIO_InitStruct_KEY2.GPIO_Pin = GPIO_PIN_KEY2; // KEY1的引脚GPIO_InitStruct_KEY2.GPIO_Mode = GPIO_Mode_IN_FLOATING; // 浮空输出模式(引脚电平由外部决定) GPIO_InitStruct_KEY2.GPIO_Speed = GPIO_Speed_10MHz; // 引脚速率/*第三步:调⽤外设初始化函数,把配置好的结构体成员写到寄存器⾥⾯*/GPIO_Init(GPIO_PORT_KEY1, &GPIO_InitStruct_KEY1);GPIO_Init(GPIO_PORT_KEY2, &GPIO_InitStruct_KEY2);}/* 按键扫描(检测按键是否被按下):GPIOx为端⼝,GPIO_Pin为引脚 */uint8_t KEY_SCAN(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin){/*查看stm32f10x_gpio.h⽂件最后⾯的函数,这个函数表⽰读引脚的输⼊电平(按键触发后输⼊的)*/// 这个函数,如果按键按下,则输出1.8V⾼电平,置1,否则为0if(GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) == KEY_ON){// 如果⼀直按着就进⼊死循环while(GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) == KEY_ON);// 放开按键就置1return KEY_ON;}else{// 否则置0return KEY_OFF;}}main.c:#include "stm32f10x.h"#include "./led/bsp_led.h"#include "./key/bsp_key.h"// 延迟函数void delay(unsigned int i){for(; i!=0; i--);}int main(void){/*GPIO初始化,在程序来到main函数的时候,系统时钟已经配置成72MHz*/LED_GPIO_Config(); // LED初始化KEY_GPIO_Config(); // KEY初始化while(1){// 如果按下KEY1,则D4亮灭,KEY1对应的是PA0,A端⼝的第1个引脚if(KEY_SCAN(GPIOA, GPIO_PIN_KEY1) == KEY_ON){LED1_TOGGLE;}// 如果按下KEY2,则D5亮灭,KEY2对应的是PC13,C端⼝的第14个引脚if(KEY_SCAN(GPIOC, GPIO_PIN_KEY2) == KEY_ON){LED2_TOGGLE;}}}实验现象:程序烧录到板⼦中,⼀开始LED1和LED2都是亮的(应该都是灭的才对),按下KEY1控制LED1的亮和灭,按下KEY2控制LED2的亮和灭============================================下⾯是默认情况下LED2和LED2都是熄灭的情况:main.c/*KEY控制LED亮灭实验,LED⼀开始默认都熄灭,等按下KEY1或KEY2后才能亮*/#include "stm32f10x.h"#include "./led/bsp_led.h"#include "./key/bsp_key.h"// 延迟函数void Delay(unsigned int time){for(;time!=0;time--);}int main(void){uint8_t count = 1;KEY_GPIO_Config();while(1){// LED默认情况下是灭的,等按下KEY1或KEY2时,对应的LED才会亮if(KEY_SCAN(GPIO_PORT_KEY1, GPIO_PIN_KEY1) == KEY_ON){if(count == 1){LED_GPIO_Config(); // 按下KEY1时两个LED都亮LED2_TOGGLE; // 让LED2灭(其实是亮-->灭),时间很短,⼈眼分辨不出来count++;}else{LED1_TOGGLE;}}if(KEY_SCAN(GPIO_PORT_KEY2, GPIO_PIN_KEY2) == KEY_ON){if(count == 1){LED_GPIO_Config(); // 按下KEY2时两个LED都亮LED1_TOGGLE; // 让LED1灭(其实是亮-->灭),时间很短,⼈眼分辨不出来count++;}else{LED2_TOGGLE;}}}}。

标记的用法,用一个按键控制1个LED灯的亮灭,按键去抖

标记的用法,用一个按键控制1个LED灯的亮灭,按键去抖

标记的用法,用一个按键控制1个LED灯的亮灭,按键去抖我们学习怎么用一个按键K1控制1个LED灯的亮和灭两种状态。

按一次K1灯亮,再按一次K1灯灭。

再按一次又亮,再按一次又灭。

我们学习一下用一个bit变量来做一个标记,然后在按键的控制下,这个标记会变化,再根据这个标记的值,LED也输出不同的状态。

因为按键按下时可能会有抖动的情况,每次按下时,可能会发生了人难以觉察到的多次抖动,相当于一下子按下了很多次。

这会导致程序无法识别出您真正的按键意图。

但是抖动一般都是发生在刚按下键和松开键的时候,所以,我们只要避开这一段时间,等键稳定按下或者松开时,再去读它的值,一般就可以正确读取了。

所以,当读到第一次按键的值时,要延时等待一会,再处理。

在松开后,也延时一会,免得检测到松开的抖动以为又有按键。

(注,更复杂的应用,需要在按下延时之后重新验证按键,为了简化和方便理解,这个例程里没有这样做。

)另外,因为程序是循环运行的,当一次按键处理后,又会再循环回来继续检测,如果您的按键这时还没有松开,又会被读到一次新的按键,并做处理。

所以我们还要做一个特殊的处理,识别到一个按键并处理完成之后,还要等待这个按键松开后,再继续循环运行。

看程序:请根据例程里的注释理解程序。

请编译,进入仿真,全速运行,看结果。

全速后,由于light变量初始化时默认为0,所以灯是亮的。

按下K1,松开后,灯灭了;再按一次K1,松开后,灯灭了。

这个例子里,我们只用一个按键就控制了灯的亮灭,这种方法可以节省了硬件资源,也就是节省了硬件成本。

在实际项目设计中,有成本优势,产品就更具竞争力。

所以我们应该多学习类似的可以节省资源的方法。

作业:改为4个按键,分别控制4个LED 的亮和灭。

相当应用到多个房间的单键开关灯共用一个cpu处理。

tips:感谢大家的阅读,本文由我司收集整编。

仅供参阅!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按键控制灯亮灭实验:
一、下载代码
打开IAR751软件:
File------open----workspace
定位到目录,打开里面的工程。

打开工程后,如下图,进行设置下:
然后在workspace处选择:,然后直接debug
停止dbueg。

然后把该模块从仿真器上拔下,把另外一个模块连接到仿真器,按下仿真器的复位按钮,然后在workspace处选择
,然后debug再停止debug。

然后拔下模块。

二、操作模块
模块跳帽图:
1(多点配置中的小模块跳帽图):
Debug后模块首次启动测试顺序:
1,给SimpleControllerEB(也就是选择了SimpleControllerEB选项进行debug的模块)模块上好电池,开启电源开关,此时SimpleControllerEB模块的LED2闪烁。

2,按下SimpleControllerEB的up键,此时SimpleControllerEB模块的LED2熄灭,LED3闪烁数秒后一直保持常亮状态,表明该模块已经建立了zigbee网络。

3,等上一步中的LED3常亮后,按下up键,该步骤使SimpleControllerEB模块允许别的模块对其绑定。

(备注:该步骤必须在步骤4前完成,否则SimpleSwitchEB模块无法正常接入zigbee网络)
4,打开SimpleSwitchEB模块的电源,该模块的LED2闪烁。

按下该模块的up键,LED2灯熄灭,数秒后LED3进入快速闪烁状态,这表明该模块已经搜索到网络,并已加入到网络中。

5,再次按下SimpleSwitchEB的up键,正常情况下,SimpleControllerEB模块的LED1会闪烁一下,表明有设备与它建立了绑定。

6,到这里就可以交替按下SimpleSwitchEB的right键来控制SimpleControllerEB模块的LED1的交替亮灭了。

重启模块的情况说明:
重启SimpleControllerEB模块后,SimpleControllerEB模块直接完成步骤2的动作,此时测试顺序从步骤3开始。

重启SimpleSwitchEB模块后,SimpleSwitchEB模块直接完成步骤4的动作,此时测试顺序从步骤5开始。

相关文档
最新文档