四.随机过程的功率谱密度
功率谱密度公式推导

功率谱密度公式推导功率谱密度(Power Spectral Density,简称PSD)是指一个信号的功率在频率域上的分布。
它在信号处理、通信系统、噪声分析等领域都有着重要的应用。
在本文中,将对功率谱密度的定义、性质以及推导进行详细讨论。
首先,我们来定义功率谱密度。
假设有一个零均值的随机过程(零均值是为了简化推导),我们用x(t)表示这个随机过程,并假设它的均方值为E[|x(t)|^2] = Rxx(0)。
为了分析这个随机过程在频率域上的特性,我们将其进行傅里叶变换。
傅里叶变换的定义如下:X(f) = ∫(x(t) * e^(-j2πft) dt)其中,X(f)表示信号x(t)在频率f上的复振幅(振幅和相位)。
根据傅里叶变换的定义,我们可以得到信号在频率f上的功率P(f)的定义如下:P(f) = |X(f)|^2根据随机过程的定义,我们知道x(t)是一个随机变量,它的取值在每个时间点上都是随机的。
因此,X(f)也是一个随机变量。
我们只知道X(f)的均方值(即P(f))是一个确定的量,但我们无法准确地知道X(f)在每个时刻上的取值。
为了能够更好地描述X(f)的统计性质,我们可以引入概率密度函数。
假设X(f)的实部和虚部分别为Xr(f)和Xi(f),我们定义X(f)的概率密度函数为fX(x)。
根据概率密度函数的定义,我们可以得到X(f)的均方值为:E[|X(f)|^2] = ∫(|x|^2 * fX(|x|^2) dx)然后,根据功率的定义,我们可以得到:E[|X(f)|^2] = P(f)综上所述,我们可以得到功率谱密度PSD的定义如下:PSD(f) = ∫(|x|^2 * fX(|x|^2) dx)对于一个随机过程来说,我们可以通过计算其自相关函数Rxx(t)来得到其功率谱密度。
自相关函数定义如下:Rxx(t) = E[x(t) * x*(t-τ)]其中,E[•]表示对随机变量取均值的操作,τ表示一个时间延迟。
功率谱密度

功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。
一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。
功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。
数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。
谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。
保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。
有两个重要区别:1。
功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。
(随机的频域序列)2。
功率概念和幅度概念的差别。
此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
热心网友回答提问者对于答案的评价:谢谢解答。
频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。
频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。
频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。
功率谱是个什么概念?它有单位吗?随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。
一般用具有统计特性的功率谱来作为谱分析的依据。
功率谱与自相关函数是一个傅氏变换对。
功率谱具有单位频率的平均功率量纲。
随机过程的自相关函数与其功率谱密度是傅里叶变换关系

随机过程的自相关函数与其功率谱密度是傅里叶变换关系随机过程是一个随时间变化的信号,每个时间点上都有一定的随机性。
我们可以用一个随机变量来描述每个时间点上的取值。
这个随机变量的集合就是一个随机过程。
自相关函数是用来描述随机过程在不同时间点上的相关性的函数。
它表示了随机过程在不同时间点上的取值之间的相关程度。
具体来说,自相关函数R(t1,t2)表示了时刻t1和t2上的信号值之间的相关性。
它的定义如下:R(t1,t2)=E[X(t1)X(t2)]其中,X(t1)和X(t2)是随机过程在时刻t1和t2上的取值,E[.]表示期望操作。
功率谱密度是用来描述随机过程在频域上的特性的函数。
它表示了随机过程在不同频率上的功率分布情况。
具体来说,功率谱密度S(f)表示了随机过程在频率f上的功率。
它的定义如下:S(f)=,F{R(t)},^2其中,R(t)是随机过程的自相关函数,F{.}表示傅里叶变换操作。
自相关函数和功率谱密度之间存在一个重要的关系,即它们通过傅里叶变换相关联。
具体来说,自相关函数是功率谱密度的傅里叶变换的模的平方,而功率谱密度是自相关函数的傅里叶变换的伪谱密度。
这个关系可以用下面的公式表示:R(t1, t2) = ∫S(f)e^(j2πft)df其中,∫表示积分操作,e^(j2πft)是复指数函数,代表了频率f上的旋转。
这个关系的意义是,自相关函数和功率谱密度提供了从时域到频域和从频域到时域的映射。
我们可以通过自相关函数计算功率谱密度,也可以通过功率谱密度计算自相关函数。
总结起来,自相关函数和功率谱密度是通过傅里叶变换相关联的重要概念。
自相关函数描述了随机过程在不同时刻上的相关性,而功率谱密度描述了随机过程在不同频率上的功率分布情况。
它们的傅里叶变换关系提供了从时域到频域和从频域到时域的映射。
这个关系在信号处理和随机过程分析中具有重要的应用价值。
(解答)《随机过程》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题解答1、 设∑=-=Nk k k kn U n X 1)cos(2ασ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。
解:计算均值函数和相关函数如下0)}{cos(2)cos(2}{)(11=-=⎭⎬⎫⎩⎨⎧-==∑∑==Nk k k k N k k k k n X U n E U n E X E n ασασμ∑∑∑∑∑∑======-=--=--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=Ni i i N i i i i i i Ni Nj j j i i j i N j j j j N i i i i X m n U m U n E U m U n E U m U n E m n R 12121111)](cos[)}cos(){cos(2)}cos(){cos(2)cos(2)cos(2),(ασαασαασσασασ因此可知,},1,0,{ ±=n X n 是平稳随机过程。
2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程,A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。
(1) 试画出此过程的样本函数,并问样本函数是否连续? (2) 试求此过程的相关函数,并问该过程是否均方连续? 解:(1)样本函数不连续。
(2)令:012≥>t t ,下面求相关函数:)(221)(212210)(1212211212121211212212122112221122121121212cos cos )]}(cos[)]({cos[21!)]([)]}(cos[)]({cos[)1(21))]}()(()(cos[))]()(()(2)({cos[21))]}()(()(cos[))]()(()({cos[21))}(cos())({cos(}{))}(cos())(cos({)}()({),(t t t t k t t k kX e t t e t t t t e k t t t t t t t t t t t t t t t E t t t t t t t t E t t t t E A E t t t t A E t X t X E t t R ----∞=--⋅=⋅-++=⋅-⋅-++-=-+-+-+++=-+-++++=++⋅=++==∑λλλωωωωλωωηηπωηηππηωηηπωηηπωπηωπηωπηωπηω因为:t t t R ωξ2cos ),(=因此该过程是均方连续的随机过程。
第四章 平稳随机过程的谱分析

1 2
S
X
(
)e
j
d
自相关函数和功率谱密度皆为偶函数
若随机过程X t是平稳的,自相关函数绝对可积,则自相关函数
jt
ddt
1
2
XX
()
x(t)e jt dtd
1
2
X
X
()X
* X
()d
1
2
X
X
()
2d
4.1、平稳随机过程的功率谱密度 ❖功率谱
功率型信号:能量无限、平均功率有限的信号
P lim 1 T s(t) 2 dt T 2T T 其能谱不存在,而功率谱存在
持续时间无限长的信号一般能量无限
4.1、平稳随机过程的功率谱密度
❖如何计算随机信号的平均功率?
2)时域计算方法
任一样本函数的平均功率为
W
lim
T
1 2T
T x2(t, )dt
T
随机过程的平均功率为
W
E[W
]
lim
T
1 2T
T E{X 2(t)}dt
T
若为各态历经过程:
W =W
4.1、平稳随机过程的功率谱密度 ❖如何计算随机信号的平均功率?
2020/5/20
6
4.1、平稳随机过程的功率谱密度
❖傅立叶变换
则 x(t)的傅立叶变换为:
X () x(t)e jt dt
其反变换为:
x(t) 1 X ()e jt d
2
频谱密度存在的条件为:
频谱密度
x(t)dt
2020/5/即20 信号为绝对可积信号
包含:振幅谱 相位谱
求各样本函数功率谱密度的统计平均
第4章随机信号的功率谱密度

T 2T T
lim 1
2
T
1 2T
E[ XT (, ) 2 ]d
1
2
GX
()d
(4.1.11)
随机过程的平均功率W可以由它的均方值的时间平均得 到,也可以由它的功率谱密度在整个频率域上积分得到。
若X(t)为平稳过程时,均方值为常数,可写成:
xT (t, )e jt dt
T T
xT (t, )e jt dt
X T (, ) 2 X T (, ) X T (, )
GX
()
lim
T
E
1 2T
T T
xT (t1, )e jt1dt1
T T
xT
(t2
,
)e
jt2
xT
(t
)
x(t), t
0,
t
T
T
对于有限持续时间的xT(t),傅里叶变换是存在的,有:
XT ()
xT
(t)e
jt dt
T T
xT
(t)e
jt dt
xT
(t)
1
2
XT
()e
jt d
(4.1.6) (4.1.7)
称 XT ()为xT (t)的频谱函数,也简称为频谱。
由傅立叶反变换,x(t)可以表示为
则可以得到
x(t) 1
2
X
X
(
)e
jt
d
[x(t)]2dt
1
x(t)
第4章 随机信号的功率谱密度

确知信号的能量谱密度与功率谱密度 非周期信号的能量为: ∵ 非周期信号的能量为:
1 W = lim ∫ x ( t )dt = T → ∞ −T 2π
T 2 T
∫
∞
−∞
| X T ( ω ) | dω = ∫ | X T ( f ) | df
−∞
2
∞
2
其中, 为一付氏变换对; 其中 xT ( t ) ⇔ XT ( ω ) 为一付氏变换对
为功率型平稳随机信号。 设 X( t )为功率型平稳随机信号。 由于随机信号的每一样本函数( 或实现) 由于随机信号的每一样本函数 ( 或实现 ) 都是一个确 因此, 定的时间函数 x(t , ξ i ) ,因此,对于每个样本函数都可以求 得对应的功率谱密度函数, 得对应的功率谱密度函数,即 | xT (t , ξi ) |2 | XT (ω , ξi ) |2 GX (ω , ξ i ) = lim = lim , T →∞ T →∞ 2T 2T
称为白噪声过程 简称白噪声 白噪声过程, 白噪声。 的平稳过程 N( t ),称为白噪声过程,简称白噪声。 W 其中, 为正实常数,单位: 其中, N 0 为正实常数,单位: Hz
白噪声的功率谱函数和自相关函数为: 白噪声的功率谱函数和自相关函数为:
N0 G N ( ω ) = 2 , ω ∈ ( −∞ ,+∞ ) N0 R N (τ ) = δ (τ ) 2
1 G X ( ω ) = lim T → ∞ 2T
+∞
∫
T −t
−T − t
[∫
T −T
T
−T
R X ( t , t + τ )dt ] e − jωτ d τ
1 = ∫ [ lim − ∞ T → ∞ 2T
功率谱密度的定义

功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。
一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。
功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。
数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。
功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。
如何用MATLAB绘制功率谱密度图形?随机产生一次数据x=randn(1,1024*8)求功率谱密度。
如何应用MATLAB画出来横坐标为频率(Frequency(hz)))纵坐标为功率谱密度(Power Spectrum Magn itude (dB))的图形?MATLAB程序为:function [t,omg,FT,IFT] = prefourier(Trg,N,OMGrg,K)% 输入参数:% Trg : 二维矢量,两个元素分别表示时域信号的起止时间;% N : 时域抽样数量;% OMGrg: 二维矢量,两个元素分别表示频谱的起止频率;% K : 频域抽样数量。
% 输出参数:% t : 抽样时间;% omg : 抽样频率;% FT : 实现傅里叶变换的矩阵~U~及系数;% IFT : 实现傅里叶逆变换的矩阵~V~及系数。
T = Trg(2)-Trg(1);t = linspace(Trg(1),Trg(2)-T/N,N)';OMG = OMGrg(2)-OMGrg(1);omg = linspace(OMGrg(1),OMGrg(2)-OMG/K,K)';FT = T/N*exp(-j*kron(omg,t.'));IFT = OMG/2/pi/K*exp(j*kron(t,omg.'));end在另一个脚本文件中:clc;clear ;close all;N=1024*8;K=500;OMGrg=[0,100];Trg=[0,1];[t,omg,FT,IFT] = prefourier(Trg,N,OMGrg,K);% f0=10;% f=sin(2*pi*f0*t);f=randn(N,1);F=FT*f;figure;plot(t,f);figure;plot(omg/2/pi,abs(F).^2);高斯白噪声的功率谱理论上为一直线,除非它是在某些特定情况下成立,比如经过了滤波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在以后,如不加说明,都指双边带功率谱密度。
平稳随机过程的自相关函数和功率谱密度的对应关系:
X( t )
R X ( )
SX ( )
a S X ( )
2
aX (t )
dX ( t ) dt
a RX ( )
2
d 2 RX ( ) d 2
2n d RX ( ) (1) n d 2 n
确定信号的频谱和能量谱
设信号s(t)为非周期实函数,且满足: 1)
2)
s(t)在内只有有限个第一类间断点和极值点。
s(t ) dt
,即s(t)绝对可积;
那么,s(t)的傅立叶变换存在,为
S ( ) s(t )e jt dt
又称为频谱密度,也简称为频谱。 信号s(t)可以用频谱表示为
T 2
X X (T , ) d
两边同除以2T可得
1 2T 1 T x (t )dt 2T * 2
T 2
X X (T , ) d
2ห้องสมุดไป่ตู้
取集合平均可得
1 E 2T 1 E T x (t )dt 2T *2
T 2
X X (T , ) d
2
随机过程的平均功率
2 E X ( T , ) X 1 T 1 d 2 lim E x ( t ) dt lim T 2T T 2 T 2T
功率谱密度
1 P lim T 2T
1 E x ( t ) dt T 2
1 s (t ) 2
S ( )e jt d
信号s(t)的总能量为
E s 2 (t )dt
根据帕塞瓦尔定理:对能量有限信号,时域内信号的 能量等于频域内信号的能量。即 2 1 2 E s (t )dt S ( ) d 2 其中
2S X ()
d n X( t ) dn t
2n S X ()
S ( 0 )
X(t )e j0 t
RX ( )e j0
例
已知零均值平稳过程X(t)的
6 S X ( ) 4 , 求RX ( )与DX t . 2 5 4
2
6 2 6 2 解:S X ( ) 4 2 5 4 ( 2 1)( 2 4) A B 2 2 1 4 6 2 6 6 2 24 A 2 | 2 1 2, B 2 | 2 4 8 4 3 1 3
随机过程的功率谱密度
2014-10-15
1
引言
在许多领域的理论与实际应用中,广泛应用到傅立叶变 换这一工具。一方面由于确定性信号的频谱、线性系统的频 率响应等具有鲜明的物理意义。另一方面,在时域上计算确 定性信号通过线性系统必须采用大量的卷积运算,转换到频 域上分析时,可以变换成简单的乘积运算,从而使运算量大 为减少,因而傅立叶变换是确定性信号分析的重要工具。 在随机信号分析领域能否应用傅立叶变换,随机信号是否 存在某种谱特征?回答是可以,不过在随机信号情况下,必 须进行某种处理以后,才能应用傅立叶分析这一工具。因为 一般随机信号的样本函数不满足傅立叶变换的绝对可积条件 ,即 x(t ) dt
S XY () RXY ( )
互谱密度的性质
互功率谱密度性质 性质1:
S XY () SYX () S () S ()
* YX * XY
性质2:互谱密度的实部是偶函数,虚部是 奇函数。
Re[ S XY ( )] Re[SYX ( )] Re[SYX ( )] Re[S XY ( )] Im[ S XY ( )] Im[SYX ( )] Im[SYX ( )] Im[S XY ( )]
2、功率谱密度是ω 的实函数。 3、对于实随机过程来说,功率谱密度是ω 的偶函数,即
S X ()=S X (-)
截取函数 xT (t ) 为t的实函数,根据傅立叶变换的性质
* XX (T , ) X X (T , )
于是
* X X (T , ) X X (T , ) X X (T , ) 2
x(t )
x(t ) xT (t ) 0
t T 其他
-T T
t
截取函数的傅立叶变换
X X (T , ) xT (t )e
jt
dt
1 xT (t ) 2
2
X X (T , )e jt d
截取函数应满足帕塞瓦定理
1 x ( t ) dt T 2
X (T , ) X X (T , ) X X (T , )
* X
2
4、功率谱密度可积,即
S X ( )d
功率谱密度与自相关函数
功率谱密度的表达式为
2 E X X (T , ) S X ( ) lim T 2T
其中
X X (T , ) xT (t )e jt dt
由
E[ X (t1 ) X (t2 )] RX (t1, t2 ) , T t1, t2 T
1 S X ( ) lim T 2T
T
T t T t
T
T
T
RX (t1 , t2 )e j (t2 t1 ) dt1dt2
得
1 S X ( ) lim T 2T
2 范数 范数
x 1 x1 x2 xn x 2 ( x1 x2 xn )
xi x max 1i n
2 2 2 1 2
p 范数, p 1
显然
x p ( x1 x2
p
p
xn
p
)
1
p
x 1和 x 2 是 x p 在p 1和p 2时的特例
(2) (齐次性) x x ,x R , R;
n
(3) (三角不等式 ) x y x y ,x, y Rn .
则称 x 为向量x的范数.
在向量空间 Rn (C n )中, 设x ( x1 , x2 ,, xn )T
常用的向量 x的范数有
1 范数
e
a|t |
2a 2 2 a
| | 2| |
2 8 S X ( ) 2 2 , 1 4
2 X |0|
R X ( ) e 2e
2|0|
DX (t ) RX (0) m = e 2e
0=1
联合平稳随机过程的互谱密度
T
T
x(t ) dt
二阶规范量,若模可积定义为
x(t ) 2
否则定义为
x(t ) dt
2
1 x(t ) 2 lim T 2T
T
T
x(t ) dt
2
向量范数
定义1. 对于n维向量空间 Rn中任意一个向量 x,
若存在唯一一个实数x R与x对应,且满足
(1) (正定性) x 0, 且x Rn , x 0 x 0;
S ( )
2
称为s(t)的能量谱密度(能谱密度)。
有限能量信号: 在的条件
s 2 (t )dt
是能量谱密度存
随机信号的功率
样本函数x(t)不满足绝对可积的条件,但功率是有限的 1 T 2 P lim x(t ) dt T 2T T 因此,可以研究随机过程的功率谱。 样本函数x(t)的截取函数
互谱密度的性质
互功率谱密度性质 性质3:若X(t),Y(t)互相正交,互谱密度为零
性质4:若X(t),Y(t)是互不相关的两个随机过
2、 若随机过程广义平稳
P
1 2
S X ( )d
2 E x (t )
1 2
S X ( )d
功率谱密度的性质
1、功率谱密度为非负的,即
S X () 0
2 E X X (T , ) S X ( ) lim T 2T
定义两随机过程的互功率为
1 PXY (T ) 2T 1 2T
T
T T
xT (t ) yT (t )dt x(t ) y (t )dt
T
应用帕塞瓦定理
1 PXY (T ) 2T
T
T
x(t ) y (t )dt
* XX (T , ) X Y (T , ) d 2T
1 2
互功率谱密度定义为
1 * S XY ()= lim E X X (T , ) X Y (T , ) T 2T
互谱密度与互相关函数
1、对于实随机过程X(t)、Y(t)有
S XY ()= A RXY (t , t ) e j d
-
2、若X(t),Y(t)联合平稳,有
互谱密度
定义两个截取函数 xT (t ) , yT (t) 为
x(t ) xT (t ) 0
t T 其他
y (t ) yT (t ) 0
t T 其他
二者满足绝对可积的条件,则
xT (t ) yT (t )
X X (T , ) X Y (T , )
确定信号的大小、能量和功率 6.1确定信号的大小、能量和功率
通常用信号在其定义域内的总量来表示信号的大小,