点线面的投影0
点线面的投影工程图学

d b
举例: 试作一直线MN与AB、CD两直线相交 , 且平行 EF 能否作?有几条?
e ’
(m ’)
(a’) b’
d
’
分析
作图环节
X
f ’
c n’ ’
ac f
(1)过m’作直线 O m’n’平行e’f’
, 且与c’d’交于 (2) n’由n’求得n
复杂--展为平面
1. 展开
V a
●
X
ax
a● H
Z
az
O
ay
Y
不动
W a
●
Y
ay
V a
●
X ax
向下翻
Z
向右翻
az
A
●
a● H
●a
O
W
ay
Y
2. 投影规律
Z
V
a
●
az
A
X ax
●
●a
W O
a●
ay
H Y
a ●
X ax
a●
Z az
a
●
O
Y
ay
ay
Y
从投影展开图能够看出: (1) aa⊥OX轴 aa⊥OZ轴
返回
§2.3 直线旳投影(续)
四、两直线旳相对位置
1. 两直线平行
b' d'
b
V
d
a
B
c
A
C
D
a' c'
a
c
c b
a
dH
d b
投影特征:
点线面的投影

2.4 平面的投影
1. 平面的表示法
c
●
c
●
c
●
●c
c
●
a●
a●
a●
d a●
a●
●
● b
● b
● b
●b
●b
●b
●b
●b
●b
●b
a●
a●
a●
●d a●
a●
●c
●c
●c
●c
●c
不在同一 直线及 直线上的 线外一 三个点 点
度量性较差。
平行投影法
投影特性
投影大小与物体和投影面之间的距离无关。 度量性较好。 工程图样多数采用正投影法绘制。
投影法小结
画透视图
中心投影法
投影法
斜投影法
平行投影法
正投影法
画斜轴测图
画工程图样 及正轴测图
2.2 点的投影
1. 点在一个投影面上的投影
P
过空间点A的投射线
与投影面P的交点即为点A A●
d bH
两直线相交吗?不相交!
为什么?交点不符合一个点的投影规律!
V
b′
1′
c′
3′(4′) ●
●
●
d′
a′
2′ Ⅳ Ⅰ ●
B
●
A C D ●Ⅲ●Ⅱ
●4
d
●
c
●
3
1(2)
b
H
c′
3 ′(4′)
●
1′
● ●
2′
a′
X
a
●4
●
空间几何中的点线面的投影

空间几何中的点线面的投影在空间几何中,投影是一种常见的几何现象。
当我们将一个三维物体投影到一个平面上时,就形成了物体在平面上的投影。
投影可以用来描述物体的形状、大小和位置,并在设计、建筑、绘画等领域有着广泛的应用。
本文将探讨空间几何中的点线面的投影。
一、点的投影在空间几何中,点的投影是最简单的形式。
当我们将一个点投影到一个平面上时,投影点与原点和平面上的投影点连线构成一条垂线。
投影点表示了点在平面上的位置。
投影点的坐标可以通过相似三角形关系来求解。
设点的坐标为P(x, y, z),平面的方程为ax + by + cz + d = 0。
过点P作平面的垂线,与平面的交点为Q(x', y', z')。
根据相似三角形关系,我们可以得到以下的投影坐标公式:x' = x - (ad+bc)/(a^2+b^2+c^2)y' = y - (bd+ac)/(a^2+b^2+c^2)z' = z - (cd+ab)/(a^2+b^2+c^2)通过这些公式,我们可以求得点P在平面上的投影坐标。
二、线的投影线的投影是点的投影的延伸。
当一条直线在空间中移动时,其投影在平面上会呈现出不同的形态。
我们可以通过线的投影来观察直线在平面上的位置关系以及交点的情况。
对于一条直线,我们可以通过将直线上的点进行投影,形成一系列位于平面上的点,连接这些点就可以得到直线的投影。
直线在平面上的投影也可以用参数方程表示,该参数方程描述了直线上每个点在平面上的投影坐标。
三、面的投影面的投影是最复杂的形式。
当一个三维面体在空间中移动时,其投影在平面上会形成一个多边形。
投影多边形可以用来描述面体在平面上的形状和大小。
对于一个面体,我们可以将其每个点进行投影,从而形成一个多边形的顶点集合。
连接这些顶点,即可得到面的投影多边形。
投影多边形可以通过面体的参数方程和平面的方程来求解。
总结:在空间几何中,点线面的投影是一种常见的几何现象。
建筑工程制图点线面的投影平面

建筑结构分析中的应用
结构分析模型
投影平面用于建立建筑物的结构分析模型,通过对结构进行受力分析和稳定性分析,确 保建筑物的安全性和稳定性。
结构施工图
投影平面用于绘制建筑物的结构施工图,包括梁、板、柱等构件的尺寸、位置和连接方 式。
建筑设计和施工中的应用
建筑设计方案
投影平面用于表示建筑物的设计方案,通过在投影平面上绘制和调整设计方案, 可以更好地呈现建筑物的外观和内部空间效果。
当点的投影位于投影线的后方时,该 点被称为不可见点。
Part
03
线在投影平面上的投影
线在平面上的投影特性
真实性
当线段垂直于投影面时, 其在投影面上的投影反映 线段的实际长度。
积聚性
当线段平行于投影面时, 其在投影面上的投影积聚 为一点。
类似性
当线段与投影面形成一定 角度时,其在投影面上的 投影长度会缩短,但形状 保持与原线段相似。
投影平面概念
投影平面是用于将三维物体投影到二 维平面的几何面。在建筑工程制图中, 常用的投影平面有正投影平面、水平 投影面和侧投影面。
水平投影面是平行于观察者的视线, 将物体投影到水平平面上,通常用于 表达物体的顶部形状。
正投影平面是垂直于观察者的视线, 将物体投影到正对着的平面上,通常 用于表达物体的正面形状。
建筑施工图
投影平面用于绘制建筑物的建筑施工图,包括墙体的砌筑方式、门窗的安装位 置、地面的铺设等施工细节。
THANKS
感谢您的观看
距离保持
点在投影过程中,其与投 影平面的距离保持不变。
点在投影平面上的表示方法
实点
表示实际存在的点,用黑 色圆圈表示。
虚点
表示理论上的点,用空心 圆圈表示。
点线面的投影分析

点的投影规律: (1)点的正面投影和水平投影的连线
垂直于OX 轴。即ss’⊥ OX
(2)点的正面投影和侧面投影的连线
垂直于OZ 轴。即s’s” ⊥ OZ (3)点的水平投影到OX轴的距离等于
侧面投影到OZ 的距离。
退出 节目录
§2-3 立体表面上点、线、面的投影分析
一、点的投影分析
影面。
退出 节目录
§2-3 立体表面上点、线、面的投影分析
三、平面的投影分析
1.一般位置平面 投影特性:
(1)三个投影都不 反映平面实形。 (2)三个投影均对 投影轴倾斜。
退出 节目录
§2-3 立体表面上点、线、面的投影分析 三、平面的投影分析
2.投影面平行面 投影特性:
(1)在所平行 的投影面上投 影反映实形。 (2)其他两个 投影面上的投 影积聚为直线, 且分别平行于 相应的投影轴。
2.投影面平行面 投影特性:
(1)在所平行 的投影面上投 影反映实形。 (2)其他两个 投影面上的投 影积聚为直线, 且分别平行于 相应的投影轴。
平行于侧面的平面称为侧平面
退出 节目录
§2-3 立体表面上点、线、面的投影分析 三、平面的投影分析
3.投影面垂直面 投影特性:
(1)在所垂直的投 影面内投影积聚 为一段斜线。 (2)其他两个投影 面上的投影均为 缩小的类似形。
平行于侧面的直线称为侧平线
退出 节目录
§2-3 立体表面上点、线、面的投影分析
二、直线的投影分析
3.投影面垂直线 投影特性:
(1)在所垂直的 投影面上投影积 聚为一点。
(2)其他两个投 影面上的投影反 映实长,且分别 垂直于相应的投 影轴。
垂直于水平面的直线称为铅垂线
点线面的投影

b'
a' X
B b" W
Ao
a" b a
Y
2. 特殊位置直线
(1) 投影面平行线:平行于某一投影面而与另两投影面 倾斜的直线。
水平线(∥H面) 、正平线(∥V面) 、侧平线(∥W面) 投影面平行线的投影特性:
1) 在所平行的投影面上的投影反映实长; 2) 其它投影平行于相应的投影轴; 3)反映实长的投影与投影轴所夹的角度等于空间直线对相应
空间位置直线在三面体系中,对投影面的相对位置有三类:
一般位置直线 投影面平行线 投影面垂直线
统称为特殊位置直线
. 一般位置直线 对三个投影面都倾斜的直线为一般位置直线。
其投影特性: (1)一般位置直线的各面投影都与投影轴倾斜。 (2)一般位置直线的各面投影长度都小于实长。
2 . 直线的三面投影 直线的三面投影,可由直线上不同位置的 两个点的同面投影的连线来确定。
平面的投影。
Z
先画出各顶点的投
V
b'
B
c' b"
影,后将各点同面 投影依次连接,即 为平面的投影。
a' X
A b
a
O
C
a" c"
c Y
a'
x
a
z
b'
b"
c'
c"
a"
o
b
yw
c
yH
2.4.3 各种位置平面的投影特性
平面在三投影面体系中,按其对投影面的相对
位置可分为三类:
一般位置平面
投影面平行面
投影面垂直面 1. 一般位置平面
投影的基础知识 点线面的投影

主
左
视
圆图
视 图
柱
俯 视 图
主
左
视
三图
视 图
棱
柱
俯 视 图
如图,圆柱的正 视图和左视图都是长 方形,俯视图是圆。
正视图
左视图
俯视图
首页
主 视
四图 棱 锥
俯 视 图
左
主
左
视
视
视
图
球图
图
俯 视 图
画出如图所示四棱锥 的三视图。
解:四棱锥的三视图如图:
正
左
视
视
图
图
俯 视 图
首页
画出如图所示的正方形 和圆柱的三视图。
b″
a′
a′
a″( b″)
b′
b″
a
a(b)
b
a
b
图2-23 投影面垂直线的投影特性(续)
⑶一般位置直线
a′
z
a′ a″
x
a
投影特性:
b″ 三个投影为倾斜线, 均小于实长;
各投影与投影轴的夹
yW
角不反映直线对投影 面的夹角。
b yH
图2-24 一般位置直线的投影特性
b′
z
三、直线上取点的投影
b″
铅垂线 正垂线
侧垂线
图2-22 投影面垂直线
•投影面垂直线的投影特性
z
a′
b′
x
a″(b″) yW
a
b yH
图2-23 投影面垂直线的投影特性
投影面垂直线投影特性
•在其垂直的投影面上的投影积聚为一点;
•另外两个投影面上的投影反映空间线段的实长,且分 别垂直于相应的投影轴。
点线面的投影

点线面的投影投影是几何学中一个重要的概念,用来描述物体在不同维度中的影子或映像。
在三维空间中,投影通常分为点投影、线投影和面投影三种形式。
本文将对点线面的投影进行讨论,并探索其在现实生活中的应用。
一、点的投影点的投影是指当一个点在一个平面上投影时,与该点连线垂直于平面的投影点。
这个投影点可以将原始点的位置在平面上进行准确表示,而不会改变该点的其他性质,如颜色、大小等。
在现实生活中,点的投影有着广泛的应用。
例如,在建筑设计中,建筑师需要通过对建筑物顶部的点进行投影来确定其在平面图上的位置。
同样,在地图制作中,将地球上各个城市的经纬度进行投影来绘制平面地图也是常见的应用。
二、线的投影线的投影是指当一条线在三维空间中投影到一个平面上时,将线段两个端点对应连接起来的线段。
线的投影可以更直观地展示出线在平面上的位置和方向。
线的投影在工程和制图中有着广泛的应用。
例如,在建筑设计中,工程师可以通过将建筑物的立面进行投影,来更好地展示建筑物的外观和形状。
此外,在工程测量中,通过线的投影可以准确地测量出建筑物内部的各种线段长度和角度,为工程施工提供了重要的参考。
三、面的投影面的投影是指当一个平面在三维空间中投影到另一个平面上时,将原始平面的各个顶点在投影平面上对应连接起来的多边形。
面的投影能够完整地展示出原始平面的形状和大小。
面的投影在几何学和地理学中都有着广泛的应用。
例如,在地图投影中,通过将地球表面的多个面投影到一个平面上,可以制作出我们常见的地图样式。
此外,在几何学研究中,通过面的投影可以确定不同形状的二维图形,为解决问题提供了重要的思路。
总结起来,点线面的投影是几何学中重要的概念,用来描述物体在不同维度下的影子或映像。
它们在建筑设计、地图制作、工程测量等领域都有着重要的应用。
通过理解和应用投影,我们可以更好地理解和展示物体的形状、位置和方向,为解决实际问题提供了有力的工具。
以上是对点线面的投影的简要介绍,希望能够帮助您更好地理解和应用投影的概念。