直流过压保护电路

合集下载

直流电源过电压过流保护电路

直流电源过电压过流保护电路

直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。

图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。

带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。

具体数值由实验决定。

电路如图16-91所示。

它适用于电动自行车或电动三轮车。

调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。

Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。

过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。

如果负载电流超过预设值,该电子保险将断开直流负载。

重置电路时,只需把电源关掉,然后再接通。

该电路有两个联接点(A、B标记),可以连接在负载的任意一边。

负载电流流过三极管T4、电阻R10和R11。

A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。

当电源刚刚接通时,全部电源电压加在保险上。

三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。

因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。

该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。

保险导电,负载有电流流过。

当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。

保险上的电压(VAB)通常小于2V,具体值取决于负载电流。

当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。

由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。

直流可调稳压电源的过压过流保护技术

直流可调稳压电源的过压过流保护技术

直流可调稳压电源的过压过流保护技术直流可调稳压电源是一种广泛应用于实验室、仪器仪表和电子设备等领域的电源设备。

然而,由于电路设计或使用不当,过压和过流问题可能会导致电源设备的破坏,甚至对用户的安全构成威胁。

因此,过压过流保护技术在直流可调稳压电源中起着至关重要的作用。

本文将探讨几种常用的过压过流保护技术,以及它们的原理和应用。

1. 过压保护技术过压是指电源输出电压超过额定值的情况。

当过压发生时,保护系统应该能够迅速检测到,并采取相应的措施来保护电源设备。

以下是两种常见的过压保护技术:1.1 瞬时过压保护(OVP)瞬时过压保护是一种通过检测电源输出电压,一旦超过设定的阈值,立即采取措施限制电压的上升。

在这种技术中,一般会采用比较器和触发器等元件,通过反馈电路实现对电压的检测和控制。

1.2 渐变过压保护(SVP)渐变过压保护技术是一种在过压情况下逐步限制输出电压上升的技术。

通过控制电源输出电压的增加速度,以减轻过压对电源设备的冲击。

这种技术可以采用电源控制芯片来实现,通过软启动电路来限制电压的上升速度。

2. 过流保护技术过流是指电源输出电流超过额定值的情况。

类似于过压保护技术,过流保护技术也是非常重要的一种保护机制。

以下是两种常见的过流保护技术:2.1 瞬时过流保护(OCP)瞬时过流保护技术是一种通过检测电源输出电流来限制电流超过额定值的技术。

当电流超过设定的阈值时,瞬时过流保护会迅速切断电源输出,以避免电源设备和负载的损坏。

通常会采用电流检测电阻和比较器等元件来实现。

2.2 渐变过流保护(SCP)渐变过流保护技术是一种在过流情况下逐步限制输出电流上升的技术。

它类似于渐变过压保护技术,通过控制电源输出电流的增加速度来减轻过流对电源设备和负载的影响。

这种技术可以通过电流限制电路和反馈控制电路来实现。

在实际应用中,过压和过流保护技术往往是同时采用的,以确保电源设备和负载的安全。

此外,还可以结合其他保护技术,如温度保护、短路保护等,来进一步增强电源设备的安全性和可靠性。

过压保护电路原理

过压保护电路原理

过压保护电路原理
过压保护电路是一种用于保护电子设备免受电源输入过高电压的损害的电路。

它的原理是通过监测电源输入电压,并当电压超过预设阈值时,迅速切断电源,从而保护下游电子设备。

过压保护电路通常由一个电压比较器和一个继电器组成。

电压比较器负责监测电源输入电压,并将其与预设的阈值进行比较。

如果输入电压高于阈值,电压比较器将发出一个触发信号。

触发信号随后被传递给继电器,继电器将被激活,断开电源输入电路。

此外,过压保护电路常常还包括一个电源输入电压检测电路,用于确保准确测量电源输入电压。

检测电路通常由电阻、电容和操作放大器等元件组成。

它的功能是为电压比较器提供准确的输入电压值。

检测电路将检测到的电压信号传递给电压比较器,以进行比较。

过压保护电路的工作原理是基于阈值比较和继电器控制。

当输入电压超过设定的阈值时,电路将迅速切断电源。

这个过程是自动进行的,无需人工干预。

一旦电源输入电压恢复正常水平,过压保护电路将重新连接电源,使设备回到正常工作状态。

总之,过压保护电路通过监测电源输入电压,并在电压超过设定阈值时,迅速切断电源,从而保护电子设备免受过高电压的损害。

这种电路通过阈值比较和继电器控制实现,能够自动运行并确保设备的安全运行。

过压保护电路原理

过压保护电路原理

过压保护电路原理
过压保护电路是一种常用的电子保护装置,用于防止电路或电器设备受到过电压的损坏。

其工作原理是通过监测电路中的电压来判断电压是否超过了设定的安全范围,一旦检测到过压情况,就会采取相应的措施来保护电路或设备。

过压保护电路通常由以下几个主要组成部分构成:
1. 电压检测器:通过采集电路中的电压信号来实时监测电压的变化情况。

电压检测器通常采用电阻、电容、二极管等元件构成的电路来完成。

2. 比较器:将电压检测器采集到的电压信号与设定的安全阈值进行比较,判断是否发生了过压。

比较器可以是模拟或数字电路,其功能是判断输入信号是否超过了设定的阈值。

3. 控制器:一旦过压被检测到,控制器会向保护电路发送信号,触发相应的保护措施。

控制器可以是逻辑门电路、微处理器或专用的保护芯片。

4. 保护措施:过压被检测到后,保护措施会被激活以保护电路或设备。

常见的保护措施包括切断电源、短路电流、引入电阻、电容等,以消耗过多的电压或将其分流。

过压保护电路的工作原理是通过不断监测电路中的电压,并判断是否超过设定的阈值,一旦超过阈值,则触发保护措施以防
止电路或设备的损坏。

这种电路广泛应用于各种电子设备和电路中,保护电子器件免受过电压的损坏。

buck型dc-dc变换器中保护电路的设计

buck型dc-dc变换器中保护电路的设计

buck型dc-dc变换器中保护电路的设计Buck型DC-DC变换器是一种常见的降压型电源转换器,广泛应用于各种电子设备中。

在进行Buck型DC-DC变换器的设计过程中,保护电路的设计非常重要,可以保护变换器及其他电路不受损坏,保证电源系统的正常运行。

保护电路主要包括输入端和输出端的保护。

在输入端,保护电路的设计主要是为了防止输入电压过高或过低、瞬时过流和输入短路等情况对变换器产生不利影响。

一般情况下,设计输入端的保护电路主要包括过压保护、欠压保护和输入限流等功能。

首先,过压保护是为了防止输入电压超过变换器的额定输入电压范围,对于Buck 型DC-DC变换器来说,一般输入电压范围是相对稳定的,因此可以通过过压保护电路检测输入电压,并在超过设定阈值时触发保护措施,例如通过断开输入电源或者切断输入端的电流流通路径等方式。

其次,欠压保护是为了防止输入电压过低而影响Buck型DC-DC变换器的正常工作。

一般来说,欠压保护可以通过监测输入电压并在低于设定阈值时触发保护措施,如停止输出电流或关闭整个变换器等方式。

最后,输入限流是为了防止输入电流瞬时过高而损坏Buck型DC-DC变换器。

输入限流电路主要通过设置合适的电流检测电阻和比较器等元件来实现,当输入电流超过预设阈值时,可以通过控制开关管或采取其他措施限制输入电流值。

在输出端,保护电路的设计主要是为了防止输出端负载短路、过载和过压等情况对Buck型DC-DC变换器产生不利影响,同时保护被供电电路不受损坏。

首先,负载短路保护是为了防止输出端负载短路时产生大电流对Buck型DC-DC 变换器和被供电电路造成损坏。

负载短路保护电路主要包括电流检测电阻、比较器和限流电路等元件,当输出电流超过设定阈值时,保护电路会采取相应的控制措施,如限制电流或断开输出电源等。

其次,过载保护是为了防止输出端负载电流过大而超过Buck型DC-DC变换器的额定输出能力,导致器件及电路故障。

过压保护电路

过压保护电路

过压保护电路
最近在做一个东西,以前用的一个过压保护电路,保护范围不够大,测试了一下,超过26V就不行了(26V一下还是很好用的,也在我上传的文库里),但是我的保护电压设定的是28V,所以又另外换了一个方案,电路其实很简单,肯定也有很多人在用这个电路,但是我没见有谁分享出来,所以就贴出来,和大家分享,为需要但又不知如何下手的朋友提供个参考。

下面分析下原理。

1、当VCC_IN电压在28V以内的时候,稳压管D1不会导通,所以Q1就相当于通过R1和R4两个电阻上拉到VCC_IN,Q1截止,注意Q1是PNP的管子!Q1截止,就相当于是个开路,可以将左边部分电路去掉,相当于下面电路
Shao_hx 2012-04-10
这样Q2就会导通,VCC_OUT就会有输出,给后级电路供电。

2、当VCC_IN超过28V,稳压管导通,并使稳压管阴极电压维持在28V,这样,Q1的BE极间电压就不为0,三极管开始导通,从而使Q2的门极电压等于源极电压,使其关断。

则后级供电也就断开了。

图中VD2是为了保护三极管的BE极电压不要超过范围,稳压管的稳压值不的高于三极管BE级间电压所能承受的范围。

如果觉得对您有帮助,请朋友推荐一下,谢谢!
本人QQ:330597893,愿结识有共同爱好的朋友。

Shao_hx 2012-04-10。

过压保护电路

过压保护电路

过压保护电路MAX6495-MAX6499/MAX6397/MAX6398过压保护(OVP)器件用于保护后续电路免受甩负载或瞬间高压的破坏。

器件通过控制外部串联在电源线上的n沟道MOSFET实现。

当电压超过用户设置的过压门限时,拉低MOSFET的栅极,MOSFET关断,将负载与输入电源断开。

过压保护器件数据资料中提供的典型电路可以满足大多数应用的需求(图1)。

然而,有些应用需要对基本电路进行适当修改。

本文讨论了两种类似应用:增大电路的最大输入电压,在过压情况发生时利用输出电容存储能量。

图1 过压保护的基本电路增加电路的最大输入电压虽然图1电路能够工作在72V瞬态电压,但有些应用需要更高的保护。

因此,如何提高OVP器件的最大输入电压是一件有意义的事情。

图2所示电路增加了一个电阻和齐纳二极管,用来对IN的电压进行箝位。

如果增加一个三极管缓冲器(图3),就可以降低对并联稳压器电流的需求,但也提高了设计成本。

图2 增大最大输入电压的过压保护电路图3 功过三极管缓冲器增大输入电压的过压保护电路齐纳二极管的选择,要求避免在正常工作时消耗过多的功率,并可承受高于输入电压最大值的电压。

此外,齐纳二极管的击穿电压必须小于OVP的最大工作电压(72V),击穿时齐纳二极管电流最大。

串联电阻(R3)既要足够大,以限制过压时齐纳二极管的功耗,又要足够小,在最小输入电压时能够维持OVP器件正常工作。

图2中电阻R3的阻值根据以下数据计算:齐纳二极管D1的击穿电压为54V;过压时峰值为150V,齐纳二极管的功率小于3W。

根据这些数据要求,齐纳二极管流过的最大电流为:3W/54V = 56mA根据这个电流,R3的下限为:(150V - 54V)/56mA = 1.7kWR3的峰值功耗为:(56mA)2 ×1.7kW = 5.3W如果选择比5.3W对应电阻更小的阻值,则会在电阻和齐纳二极管上引起相当大的功率消耗。

为了计算电阻R3的上限,必须了解供电电压的最小值。

buck型dc-dc变换器中保护电路的设计

buck型dc-dc变换器中保护电路的设计

buck型DC-DC变换器是一种常见的电源转换器,用于将高压直流电源转换为稳定的低压直流电源,广泛应用于电子设备和通信系统中。

在设计buck型DC-DC变换器时,保护电路的设计至关重要,可以有效保护电路和相关元器件,提高整个系统的可靠性和稳定性。

本文将从保护电路的设计入手,对buck型DC-DC变换器进行深入研究和分析。

1. 保护电路的作用保护电路是buck型DC-DC变换器中的重要组成部分,其主要作用是防止过流、过压、过温等异常情况对电路和元器件造成损坏。

通过及时检测异常信号并采取相应的保护措施,可以有效避免电路的故障和损坏,延长系统的使用寿命。

2. 过流保护电路设计过流是buck型DC-DC变换器中常见的故障情况之一,如果电流超过设定的安全范围,将会对电路和元器件造成严重的损害。

在设计过流保护电路时,需要合理选择电流传感器和保护元件,并设置合适的保护触发门槛。

常用的过流保护电路包括电流限制器、熔断器和过流保护芯片等,通过这些器件的合理组合可以实现对电路的有效保护。

3. 过压保护电路设计过压是另一种常见的故障情况,当输入电压超过设定的安全范围时,将对电路和元器件产生严重的影响。

在设计过压保护电路时,需要考虑输入电压的波动范围和保护触发门槛,并选择合适的过压保护器件进行搭配。

常用的过压保护电路包括过压保护芯片、击穿二极管和电容滤波器等,通过这些器件的合理配置可以有效防止过压对电路的损坏。

4. 过温保护电路设计过温是buck型DC-DC变换器中的另一个重要故障情况,当工作温度超过元器件的最大承受温度时,将会导致电路的失效和损坏。

在设计过温保护电路时,需要合理选择温度传感器和保护器件,并设置适当的保护触发温度。

常用的过温保护电路包括温度开关、热敏电阻和温度保护芯片等,通过这些器件的合理配置可以实现对电路的及时保护。

5. 其他保护电路设计除了上述提到的过流、过压和过温保护电路外,buck型DC-DC变换器的保护系统还需要考虑短路保护、输入欠压保护和输出失稳保护等其他故障情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流过压保护电路
 直流过压保护电路
 笔者介绍附图所示的电源,不仅可用于仪表电路,也可用于视频或功率小于50W的音频放大器。

 工作原理:该电源电路简单,它用变压器T把市电220V降压为30V,该低压经D1~D4整流,再用C1、C2的大容量电解电容器4700μF滤波,结果在A点可获得纹波很低的直流(DC)电压。

电路的稳压部分是一种串联的稳压器,其中三端稳压器IC1(LM7805)的输出供给稳压器输出管(大功率三极管T)基极的基准参考电压。

IC1的公共端又外加稳压管ZD1和LED(红色)作偏置电压,结果稳压器的输出直流电压可达+12.2V。

相关文档
最新文档