集合的并、交、补集(含答案)

合集下载

2020年新高考数学复习求同存异解决集合的交、并、补运算问题专题解析

2020年新高考数学复习求同存异解决集合的交、并、补运算问题专题解析

2020年新高考数学复习求同存异解决集合的交、并、补运算问题专题解析考纲要求:1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3、能使用韦恩(Venn)图表达集合的关系及运算.基础知识回顾:1、集合的基本运算集合的并集集合的交集集合的补集若全集为U,则集合A的补集为符号表示A∪B A∩B∁UA图形表示意义{x|x∈A,或x∈B} {x|x∈A,且x∈B} {x|x∈U,且x∉A}2、集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A,∁U(A∪B)=∁U A∩∁U B,∁U(A∩B)=∁U A∪∁U B应用举例:类型一:已知集合中的元素,求其交集、并集或补集 例1.已知集合,,则为( )A.B.C.D.【答案】C例2.全集{}2,1,0,1,2U =--, {}2,2A =-, 2{|10}B x x =-=,则图中阴影部分所表示的集合为( )A. {}1,0,1-B. {}1,0-C. {}1,1-D. {}0 【答案】D【解析】试题分析:根据韦恩图得到表示的是()U C A B ⋃,根据题意求得集合B ,再求集合A 并B ,再求补集即可.详解: {}{}2|1011B x x =-==-,,阴影部分表示的集合为()U C A B ⋃, {}2,1,1,2A B ⋃=--,(){}0U C A B ⋃=故答案为:D.点睛:这个题目考查了韦恩图的应用,一般先读懂韦恩图所代表的集合的含义,再将区域用集合的交并补形式表示出来,最终求解即可.例3.已知全集,集合,,则中元素的个数是()A. 0B. 1C. 2D. 3【答案】D【解析】分析:先解分式不等式得集合U,解绝对值不等式得集合A,解二次不等式得集合B,最后根据并集以及补集定义得结果.详解:因为,所以,因为,所以,因为,所以,因此,元素的个数是3,选D,点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.类型二:已知集合交集、并集或补集中的元素,求其集合中的元素例4.设全集,,,则集合()A. B. C. D.【答案】B【例5】设全集{}()1,2,3,4,5,U U C A B ==U {}(){}1,A 3U C B =I ,则集合B =( )A .{}1,2,4,5B .{}2,4,5C .{}2,3,4D .{}3,4,5【答案】B【解析】如图,{2,4,5}B =.故选B .13U :1,2,3,4,5BA类型三:已知集合关系求参数的值或范围 例6.已知集合,,若,则实数的取值范围是( )A. B.C.D.【答案】B例7.已知集合,集合,集合,若A B C ⋃⊆,则实数m 的取值范围是______________. 【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题意, {|12}A B x x ⋃=-<< , ∵集合{|10}C x mx A B C =+⋃⊆>, , ①111102022m x m m m m -∴-≥∴≥-∴-≤<,<,,,<;②m 0= 时,成立;③1101101m x m m m m -∴-≤-∴≤∴≤>,>,,,<,综上所述, 112m -≤≤,故答案为112m -≤≤.例8.已知函数()41log ,,416f x x x ⎡⎤=∈⎢⎥⎣⎦的值域是集合A ,关于x 的不等式()3122x ax a R +⎛⎫>∈ ⎪⎝⎭的解集为B ,集合5|01x C x x -⎧⎫=≥⎨⎬+⎩⎭,集合{}()|1210D x m x m m =+≤<->. (1)若A B B ⋃=,求实数a 的取值范围; (2)若D C ⊆,求实数m 的取值范围. 【答案】(1)(),4-∞-;(2)(]0,3.解:(1)因为41>,所以()f x 在区间1416⎡⎤⎢⎥⎣⎦,上单调递增,所以()()44min max 1log 2,log 4116f x f x ==-==,所以[]2,1A =-.由()3122x ax a R +⎛⎫>∈ ⎪⎝⎭,可得()322x a x -+>,即3x a x -->,所以4a x <-,所以,4a B ⎛⎫=-∞- ⎪⎝⎭.又因为A B B ⋃=,所以A B ⊆. 所以14a->,解得4a <-, 所以实数a 的取值范围为(),4-∞-.方法、规律归纳:1、一个性质:要注意应用A ⊆B 、A ∩B =A 、A ∪B =B 、∁U A ⊇∁U B 、A ∩(∁U B )=∅这五个关系式的等价性. 两种方法2、两种方法:韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心. 实战演练:1.已知集合{}21,1M xN y y x x ⎧⎫=<==-⎨⎬⎩⎭,则()R C M N ⋂= A. (]0,2 B. []0,2 C. ∅ D. []1,2 【答案】B【解析】因为(){}[)212,,10,M xN y y x x ∞⎧⎫=<+==-=+∞⎨⎬⎩⎭=,则(]R ,2C M =-∞, ()[]0,2R C M N ⋂=.故选B.2.已知全集为,集合,,则( )A.B.C.D.【答案】C3.已知集合,,则( )A. B. C. D.【答案】C【解析】分析:集合为函数的值域,集合为函数的定义域,分别求出它们后可求出交集及其补集. 详解:,,故,所以,故选C.点睛:本题为集合和函数性质的综合题,一般地,表示函数的值域,表示函数的定义域,解题中注意集合中代表元的含义. 4.设集合,,则的真子集的个数为( )A. 3B. 4C. 7D. 8 【答案】C5.设集合1|,36k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭, 2|,63k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( ) A. M N = B. M N ⊂≠C. NM ⊂≠D. M N ⋂=∅【答案】B【解析】 因为()()112121,2,366636k k x k x k k Z =+=+=+=+∈,所以M N ⊂≠,故选B.6.已知集合,,若,则A. B. C. D.【答案】B 【解析】分析:由可得是方程的两根,再根据韦达定理列方程求解即可.详解: ,由,可得是方程得两根, 由韦达定理可得,即,故选B.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提; (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决; (3)注意划归思想的应用,常常转化为方程问题以及不等式问题求解. 7.集合,,若只有一个元素,则实数的值为( )A. 1B. -1C. 2D. -2 【答案】B 【解析】因为只有一个元素,而, 所以 或,选B.8.集合,,,则的取值范围是_______.【答案】9.已知集合1{|}2M x x =≥-, 32{|310}A x M x x a =∈-+-=, {|20}B x M x a =∈--=,若集合A B ⋃的子集的个数为8,则a 的取值范围为__________. 【答案】51,11,28⎡⎫⎛⎫--⋃-⎪ ⎪⎢⎣⎭⎝⎭【解析】作函数()()321131,,2,22h x x x x g x x x ⎛⎫⎛⎫=-+≥-=-≥- ⎪ ⎪⎝⎭⎝⎭图像,因为集合A B ⋃的子集的个数为8,所以集合A B ⋃的子集的元素为3,因此()5111112228g a h a f ⎛⎫⎛⎫-=-≤<-=≠=- ⎪ ⎪⎝⎭⎝⎭且,即a 的取值范围为51,11,28⎡⎫⎛⎫--⋃-⎪ ⎪⎢⎣⎭⎝⎭.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10.函数()()2lg f x x ax b =++的定义域为集合A ,函数()243g x kx x k =+++的定义域为集合B ,若(∁R A )∩B =B , (∁R A )∪B ={x |-2≤x ≤3}.求实数,a b 的值及实数k 的取值范围.【答案】1,6a b =-=-, 24,3k ⎡⎤∈--⎢⎥⎣⎦.。

第7讲 集合的交并补运算

第7讲 集合的交并补运算
(3)补集性质:A∩(∁UA)=∅,A∪(∁UA)=U,∁U(∁UA)=A.
3.常用结论
(1))A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB.
(2)∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
考向一:集合间的基本运算
【例1】(1)已知集合A={x|x2-3x-4<0},B={-4,1,
解析:由题意可知-2x=x2+x,所以x=0或x=-3.而当 x=0时不符合元素的互异性,所以舍去.当x=-3时,A ={-6,0,6},所以A∩B={0,6}.
【变式训练2】(1)已知集合A={(x,y)|2x+y=0},B= {(x,y)|x+my+1=0}.若A∩B=∅,则实数m=
【 +解 1=析0】平因行为,A所∩以B=m=∅,12 所以直线2x+y=0与直线x+my
(3)设集合A={1,2,4},B={x|x2-4x+m=0},若A∩B ={1},则B=
【解析】由题意可得1-4+m=0,解得m=3,所以B= {x|x2-4x+3=0}={1,3}
考向二:集合间运算的综合问题
【例2】 (1)设集合A={x|x2-4≤0},B={x|2x+a≤0},
且A∩B={x|-2≤x≤1},则a=
【解析】A={x|x2-2x-3≤0}={x|(x+1)(x-3)≤0}={x|-1≤x≤3},
Байду номын сангаас
B={x|y=ln(2-x)}={x|2-x>0}={x|x<2},则A∩B=[-1,2),
A∪B=(-∞,3] 7.已知集合A={x∈N|x2≤1},集合B={x∈Z|-
1≤x≤3},则图中阴影部分表示的集合是
【解析】因为A={x∈N|x2≤1}={x∈N|-1≤x≤1}={0,1},B={x∈Z|

高三数学集合的运算试题答案及解析

高三数学集合的运算试题答案及解析

高三数学集合的运算试题答案及解析1. [2014·苏北五市模拟]已知集合A={x||x-a|≤1},B={x|x2-5x+4≥0},若A∩B=∅,则实数a 的取值范围是________.【答案】(2,3)【解析】∵集合B中,x2-5x+4≥0,∴x≥4或x≤1.又∵集合A中,|x-a|≤1,∴a-1≤x≤1+a.∵A∩B=∅,∴a+1<4且a-1>1.∴2<a<3.2.已知集合,,则 ( )A.{x|0<x<}B.{x|<x<1}C.{x|0<x<1}D.{x|1<x<2}【答案】B【解析】=,=,所以{x|<x<1},故选B.【考点】1.集合的运算.2.指数函数的性质.3. (2014·天门模拟)设P和Q是两个集合,定义集合P+Q={x|x∈P或x∈Q且x∉P∩Q}.若P={x|x2-(x2-2x-15)},那么P+Q等于()3x-4≤0},Q={x|y=log2A.[-1,4]B.(-∞,-1]∪[4,+∞)C.(-3,5)D.(-∞,-3)∪[-1,4]∪(5,+∞)【答案】D【解析】由题意可知P={x|-1≤x≤4},Q={x|x<-3或x>5}.所以P+Q={x|x<-3或-1≤x≤4或x>5}.4.已知集合A={x|},B={x|},则集合=()A.{x| 0<x<4}B.{x| 0<x<5}C.{x| 1<x ≤ 4}D.{x| 4≤x<5}【答案】C【解析】,.选C.【考点】集合的基本运算.5.已知集合,,则.【答案】【解析】求两集合的交集,就是求它们共同元素的集合.集合A为无限集,集合B为有限集,所以将集合B中元素逐一代入集合A验证,得.【考点】集合基本运算.6.已知a≤1时,集合[a,2-a]中有且只有3个整数,则a的取值范围是________.【答案】-1<a≤0【解析】因为a≤1,所以2-a≥1,所以1必在集合中.若区间端点均为整数,则a=0,集合中有0,1,2三个整数,所以a=0适合题意;若区间端点不为整数,则区间长度2<2-2a<4,解得-1<a<0,此时,集合中有0,1,2三个整数,-1<a<0适合题意.综上,a的取值范围是-1<a≤0.7.已知非空集合和,规定,那么等于()A.B.C.D.【答案】B【解析】解法一:设集合,,根据定义,则,因此,故选B.解法二:根据定义,则对任意,且,则,因此,所以,故选B.【考点】1.新定义;2.集合的运算8.设集合则( )A.{x|x<-2或x>2}B.{x|x>2}C.{x|x>1}D.{x|x<1}【答案】B【解析】由,即可得或.又因为.所以.【考点】1.绝对值不等式的解法.2.集合的交集的运算.9.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围.【答案】a=1或a≤-1【解析】由A∩B=B得B⊆A,而A={-4,0},Δ=4(a+1)2-4(a2-1)=8a+8,当Δ=8a+8<0,即a<-1时,B=⌀,符合B⊆A;当Δ=8a+8=0,即a=-1时,B={0},符合B⊆A;当Δ=8a+8>0,即a>-1时,B中有两个元素,而B⊆A={-4,0};∴B={-4,0}得a=1.∴a=1或a≤-1.10.设集合若,则的范围是( )A.B.C.D.【答案】B【解析】因为,根据题意,,而,在数轴上表示可得,必有,故选B.【考点】集合与集合之间关系.11.已知全集U={y|y=log2x,x>1},集合P=,则∁UP=().A.B.C.(0,+∞)D.(-∞,0)∪【答案】AP=.【解析】集合U={y|y>0},P={y|0<y<},∴∁U12.己知全集,集合,,则 .【答案】【解析】本题首先求出集合A,B,再求它们的运算,这两个集合都是不等式的解集,故解得,,因此.【考点】集合的运算.13.已知全集U,A,B,那么 __.【答案】【解析】这是基本题型,考查集合的运算,,即B的补集由全集U中不属于B的元素所组成.两个集合的并集简单地讲就是把两个集合的元素合在一起,相同的只写一个即可.【考点】集合的运算.14.已知全集=N,集合Q=则( )A.B.C.D.【答案】C【解析】由于P中含1、2、3、4、6,Q中含有1、2、3,而没有4、6,所以求就应将P中的1、2、3排除,而只留4和6,即.【考点】集合的基本运算.A)∩B=()15.已知集合A={x|lg(x-2)≥0},B={x|x≥2},全集U=R,则(CUA. {x|-1<x≤3}B. {x|2≤x﹤3}C. {x|x=3}D.【答案】B【解析】∵,,∴.【考点】1.对数不等式的解法;2.集合的交、补运算.16.设全集是实数集,,N={x|},则图中阴影部分表示的集合是( )A.{x|-2≤x<1B.{x|-2≤x≤2}C.{x|1<x≤2D.{x|x<2}【答案】C.【解析】从韦恩图可知阴影部分是扣除了集合M与N的公共部分的那部分.由,所以,所阴影部分的集合为{x|1<x≤2故填C.【考点】1.二次不等式的解法.2.补集的概念.3.韦恩图的应用.17.设函数.(1)在区间上画出函数的图象;(2)设集合. 试判断集合和之间的关系,并给出证明.【答案】(1)详见解析; (2).【解析】(1)根据函数的具体特点采用列表描点的基本方法,区间的端点要单独考虑,另外还要考虑到函数的零点,含有绝对值函数的图象的规律:轴上方的不变,轴下方的翻到轴上方,这样就可画出函数在区间上的图象; (2)由不等式可转化为求出方程的根,再结合(1)中所作函数的图象,利用函数图象的单调性,即可确定出不等式的解集,借助于数轴可分析出的关系.试题解析:(1)函数在区间上画出的图象如下图所示:5分(2)方程的解分别是和,由于在和上单调递减,在和上单调递增,因此. 8分由于. 10分【考点】1.函数的图象和性质;2.集合的运算18.已知全集,集合,则()A.B.C.D.【答案】C【解析】,,则.【考点】集合的运算19.已知全集,集合,,那么()A.B.C.D.【答案】D【解析】,,,,故选D.【考点】1.集合的基本运算;2.一元二次不等式的解法20.已知集合,集合,则 ( )A.(-)B.(-]C.[-)D.[-]【答案】B.【解析】解:,故选B.【考点】1.简单不等式的解;2.集合的运算(交集、补集).21.设,则()A.B.C.D.【答案】C【解析】,所以.【考点】集合的运算.22.设集合,,则 ( )A.B.C.D.【答案】A【解析】因为,由图知:.【考点】1.集合的运算;2.一元二次不等式的解法.23.已知集合,,则.【答案】【解析】分别在数轴上表示集合A和B,取并集.【考点】集合的运算24.已知集合则集合=________.【答案】[4,6]【解析】根据题意,由于集合可知,B={x| },A=[-5,6],那么根据交集的定义可知=[4,6],故答案为[4,6]。

高一数学集合与函数的概念试题答案及解析

高一数学集合与函数的概念试题答案及解析

高一数学集合与函数的概念试题答案及解析1. 设,则等于( )A .B .C .D .【答案】C 【解析】,所以. 【考点】集合交集,并集,补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系.在求交集时注意区间端点的取舍.熟练画数轴来解交集、并集和补集的题目.2. 下列命题正确的是( ) A .∁U (∁U P )={P}B .若M={1,∅,{2}},则{2}⊆MC .∁R Q=QD .若N={1,2,3},S={x|x ⊆N},则N ∈S【答案】D【解析】根据集合的定义和补集运算法则,集集合子集的性质,对A 、B 、C 、D 四个选项进行一一判断;解:A 、∁U (∁U P )=p ,∵{P},∴p ∈{P},故A 错误;B 、集合M 中的元素,有1和,∅,{2},知1是数,∅,{2}是集合,∴1和,∅,{2},不能构成集合B ,故B 错误;C 、∵∁R Q 为无理数集,而Q 为有理数集,故C 错误;D 、∵N={1,2,3},S={x|x ⊆N},∴N 的所有子集构成集合S ,∴N ∈S ,故D 正确; 故选D .点评:此题主要考查集合的定义及其元素与集合的关系,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.3. 已知M={y|y=x 2+1,x ∈R},N={y|y=﹣x 2+1,x ∈R},则M∩N=( ) A .{0,1} B .{(0,1)} C .{1} D .以上均不对【答案】C【解析】根据函数值域求得集合M=[1,+∞),N}=(﹣∞,1],根据集合交集的求法求得M∩N . 解;集合M={y|y=x 2+1,x ∈R}=[1,+∞), N={y|y=﹣x 2+1,x ∈R}=(﹣∞,1], ∴M∩N={1} 故选C .点评:此题是个基础题.考查交集及其运算,以及函数的定义域和圆的有界性,同时考查学生的计算能力.4. 若U={x|x 是三角形},P={x|x 是直角三角形}则∁U P=( ) A .{x|x 是直角三角形} B .{x|x 是锐角三角形} C .{x|x 是钝角三角形}D .{x|x 是钝角三角形或锐角三角形}【答案】D【解析】根据三角形的分类得到三角形为锐角三角形,直角三角形或钝角三角形,即可求出P的补集.解:∵U={x|x是三角形},P={x|x是直角三角形},∴∁P={x|x是钝角三角形或锐角三角形}.U故选D点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.5.已知集合P={x|x2+x﹣6=0},M={x|mx﹣1=0},若M⊊P,求实数m的取值范围.【答案】{0,,﹣}.【解析】由题设得P={﹣3,2},根据M⊆P,根据集合中元素个数集合B分类讨论,P=∅或{2}或{﹣3},由此求解实数m的取值范围.解:对于P:由x2+x﹣6=0得,x=﹣3或x=2,即P={﹣3,2},∵M⊊P,∴M是P的真子集,则M=∅或{2}或{﹣3},当M=∅时,mx﹣1=0无解,则m=0;当M={2}时,2m﹣1=0,解得m=;当M={﹣3}时,3m﹣1=0,解得m=﹣,综上得,实数m的取值范围是:{0,,﹣}.点评:本题考查了集合的包含关系,用列举法求出已知集合的子集,以及二次方程的解法等,体现了分类讨论思想.6.设集合P={3,4,5},Q={4,5,6,7},定义P⊕Q={(a,b)|a∈P,b∈Q},则P⊕Q的真子集个数()A.23﹣1B.27﹣1C.212D.212﹣1【答案】D【解析】由所定义的运算先求出P⊕Q中元素的个数,然后再求集合P⊕Q的所有真子集的个数.解:由所定义的运算可知,集合P⊕Q中元素(x,y)中的x取自3,4,5三个的一个,y取自4,5,6,7四个的一个,故根据乘法原理,P⊕Q中实数对的个数是:3×4=12,∴P⊕Q的所有真子集的个数为212﹣1.故选D.点评:若集合中有n个元素,则集合中有2n﹣1真子集.7.在“①高一数学课本中的难题;②所有的正三角形;③方程的实数解”中,能够表示成集合的是A.②B.③C.②③D.①②③【答案】C【解析】①不满足集合元素的确定性,②③能构成集合,③为.故选C.【考点】集合的含义.8.函数的定义域为,且对其内任意实数均有:,则在上是A.增函数B.减函数C.奇函数D.偶函数【答案】B【解析】当时,则即当时,则即所以函数在上是减函数。

人教版数学高一单元测试卷第6课时集合的并集、交集、补集的综合运算含解析

人教版数学高一单元测试卷第6课时集合的并集、交集、补集的综合运算含解析
11.(13分)已知集合A={x|2<x<7},B={x|2<x<10},C={x|5-a<x<a}.
(1)求A∪B,(A)∩B;
(2)若C⊆B,求实数a的取值范围.
解:(1)A∪B={x|2<x<10}.
∵A={x|x≤2或x≥7},
∴(A)∩B={x|7≤x<10}.
(2)①当C=∅时,满足C⊆B,此时5-a≥a,得a≤;
答案:{x|x≤-2或x≥6}
解析:(A∪B)={x|-2<x<6}
又U=R,所以可得∁U(A∪B)={x|x≤-2或x≥6}.
8.如图所示,阴影部分表示的集合为________.
答案:(A∪B)∪(A∩B)解析:阴影部分有两类:(1)(A∪B);(2)A∩B.
9.设集合M={x|x>1,x∈R},N={y|y=2x2,x∈R},P={(x,y)|y=x-1,x∈R,y∈R},则(M)∩N=________,M∩P=________.
答案:{x|0≤x≤1}∅
解析:因为M={x|x>1,x∈R},所以M={x|x≤1,x∈R},又N={y|y=2x2,x∈R}={y|y≥0},所以(M)∩N={x|0≤x≤1}.因为M={x|x>1,x∈R}表达数集,而P={(x,y)|y=x-1,x∈R,y∈R}表示点集,所以M∩P=∅.
三、解答题(本大题共4小题,共45分)
3.设全集U=Z,集合A={-1,1,2},B={-1,1},则A∩(B)为()
A.{1,2} B.{1}
C.{2} D.{-1,1}
答案:C
解析:因为U=Z,B={-1,1},所以B为除-1,1外的所有整数的集合,而A={-1,1,2},所以A∩(B)={2}.

第10讲 集合的运算 (解析版)

第10讲 集合的运算  (解析版)

第10讲 集合的基本运算一、 集合的运算 (一)交集文字语言对于两个给定的集合A ,B ,由属于A 又属于B 的所有元素构成的集合,叫做A ,B 的交集,记作A ∩B ,读作“A 交B ”符号语言A ∩B ={x |x ∈A 且x ∈B }图形语言阴影部分为A ∩B .例如(1){}{}1,2,3,4,5,3,4,5,6,8A B ==,{}3,4,5AB =(2)}31|{<<=x x A ,}42|{<<=x x B ,}32|{<<=x x B A性质A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅∩A =∅,如果A ⊆B ,则A ∩B =A【例1】交集(1)已知集合A ={1,2,3},B ={-1,2},则A ∩B 等于( )A .{1}B .{2}C .{-1,2}D .{1,2,3} 【答案】B【解析】由题得A ∩B ={}2(2)已知A ={y |y ≤1},B ={x|x ≥0},则集合A ∩B 等于( )A .∅B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1} 【答案】C,利用数轴,容易得到答案。

这里注意,不少同学会认为是A 答案,为什么不对? (3)已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z},则A ∩B =________. 【答案】{(0,1),(-1,2)}【解析】A ,B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.(4)集合A ={x |2k <x <2k +1,k ∈Z},B ={x |1<x <6},求A ∩B ; (4)A ∩B ={x |2<x <3或4<x <5}.【变式1】(1)设集合{1,2,3,4}A =,{2,4}B =,则集合A B = .答案:(1)AB ={2,4}(2)集合A ={x |-2<x <3},B ={x |x ≤0或x >5},求A ∩B ; 答案:(2)A ∩B ={x |-2<x ≤0}.(3)集合A ={(x ,y )|y =x +2},B ={(x ,y )|y =x +3},求A ∩B . 答案:(3)A ∩B =∅.(4)设集合{}{}290,30A x x B x x a =-≤=+≥,且{}13A B x x ⋂=≤≤,则a =( )A .1-B .3-C .1D .3【答案】B 【分析】求出集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】{}{}29033A x x x x =-≤=-≤≤,3a B x x ⎧⎫=≥-⎨⎬⎩⎭,由{}13A B x x ⋂=≤≤,所以13a-=,即3a =-. 故选:B.(二)并集,阴影部分为A ∈B例如(1){}{}{}1,3,52,3,4,62,3,4,5,6=(2)}31|{<<=x x A ,}42|{<<=x x B ,}41|{<<=x x B A性质A ∈B =B ∈A ,A ∈A =A ,A ∈∅=∅∈A =A ,如果A ∈B ,则A ∈B =B .【例2(1) 设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4} 【答案】A【解析】∈A ={1,2,3},B ={2,3,4},∈A ∈B ={1,2,3,4}.故选A. (2) A ={x |-1<x <2},B ={x |x ≤1或x >3},求A ∈B . 【解析】如图:由图知A ∈B ={x |x <2或x >3}.(3)已知集合2{|20}A x x x =-≥,{|}B x x a =<,且A B =R ,则实数a 的取值范围是 . 【答案】2a ≥ 【分析】先求出集合A ,然后由条件A B =R 结合数轴可得答案. 【详解】由220x x -≥解得0x ≤或2x ≥,则{|0,A x x =≤或}2x ≥,又{|}B x x a =<,若A B =R , 则2a ≥.故选:D .(4)A ={(x ,y )|x =2},B ={(x ,y )|y =2}.求A ∈B ,并说明其几何意义.【解析】A ∈B ={(x ,y )|x =2或y =2},其几何意义是直线x =2和直线y =2上所有的点组成的集合.【变式2】(1)已知集合{}=23A x x -≤≤,{}240B x x x =-≤,则AB = .A .[]2,4-B .[]2,0-C .[]0,3D .[]4,3-【答案】A 【分析】先解出集合B ,再求A B .【详解】由{}240B x x x =-≤解得:{}04B x x =≤≤,所以A B =[]2,4-.故选:A(2)已知集合A =⎩⎨⎧x ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B .解 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3},解不等式3>2m -1得m <2, 则B ={m |m <2}.用数轴表示集合A 和B ,如图所示,则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.(三)补集 (1)全集定义:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.记法:全集通常记作U . (2)补集例如(1)}{1,2,3,4,5=U ,{3,4}=A ,{1,2,5}=A C U(2)}51|{<<=x x U ,}32|{<<=x x B ,,21|{≤<=x x A C U 或}53<≤x性质A ∈∈A =U ;A ∩∈A =∈;∈(∈A )=A .【例3】(1)设集合U ={1,2,3,4,5},集合A ={1,2},则A C U =________. 【答案】{3,4,5}(2)若全集U ={x ∈R|-2≤x ≤2},A ={x ∈R|-2≤x ≤0},求A C U 【解析】∈U ={x ∈R|-2≤x ≤2},A ={x ∈R|-2≤x ≤0}, ∈A C U ={x ∈R|0<x ≤2}.(3)设全集U ={x |x 是三角形},A ={x |x 是锐角三角形},B ={x |x 是钝角三角形},求A ∩B ,)(B A C U . 【解析】根据三角形的分类可知,A ∩B =∈,A ∈B ={x |x 是锐角三角形或钝角三角形},)(B A C U ={x |x 是直角三角形}.【变式3】(1)设U ={x |x 是小于9的正整数},A ={1,2,3},B ={3,4,5,6},求A C U ,B C U .【解析】根据题意可知,U ={1,2,3,4,5,6,7,8},所以A C U ={4,5,6,7,8},B C U ={1,2,7,8}. (2)已知集合U =R ,A ={x |x 2-x -2≥0},则A C R =________. 【答案】{x |-1<x <2}(四)集合运算的综合【例4】(1)已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=______,(∁U A )∩(∁U B )=________. 答案 {x |0<x <1} {x |0<x <1}解析 A ∪B ={x |x ≤0或x ≥1},∁U (A ∪B )={x |0<x <1}.∁U A ={x |x >0},∁U B ={x |x <1},∴(∁U A )∩(∁U B )={x |0<x <1}.(2)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( )A .-1<a ≤2B .a >2C .a ≥-1D .a >-1 【答案】D【解析】因为A ∩B ≠∅,所以集合A ,B 有公共元素,在数轴上表示出两个集合,如图所示,易知a >-1.故选D 。

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算一、并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集.(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)图形语言;如图所示.二、交集交集的三种语言表示:(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集.(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)图形语言:如图所示.三、并集与交集的运算性质题型一 并集及其运算例1 (1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P ={x |x <3},Q ={x |-1≤x ≤4},那么P ∪Q 等于( ) A.{x |-1≤x <3} B.{x |-1≤x ≤4} C.{x |x ≤4}D.{x |x ≥-1} (3).已知集合=A {}31<≤-x x ,=B {}52≤<x x ,则B A ⋃=( )A .{}32<<x xB .{}51≤≤-x xC .{}51<<-x xD .{}51≤<-x x变式练习1 已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2.若集合=A {}x ,3,1,=B {}2,1x ,B A ⋃={}x ,3,1,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个题型二 交集及其运算例2 (1)设集合M ={m ∈Z |-3<m <2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2}D.{-1,0,1,2}(2)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A.{x |2<x ≤3} B.{x |x ≥1} C.{x |2≤x <3} D.{x |x >2}变式练习2(1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________. (2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3).设集合=M {}23<<-∈m Z m ,{}31≤≤-∈=n Z n N ,则N M ⋂=( ) A .{}1,0 B .{}1,0,1- C .{}2,1,0 D .{}2,1,0,1-(4).集合=A {}121+<<-a x a x ,=B {}10<<x x ,若=⋂B A ∅,求实数a 的取值范围.题型三已知集合的交集、并集求参数例3已知集合A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围变式练习3设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.例4设集合A={x|x2-x-2=0},B={x|x2+x+a=0},若A∪B=A,求实数a 的取值范围.变式练习4设集合A={x|x2-3x+2=0},集合B={x|2x2-ax+2=0},若A∪B =A,求实数a的取值范围.例5 (1)设集合A={(x,y)|x-2y=1},集合B={(x,y)|x+y=2},则A∩B 等于( )A.∅B.{53,13}C.{(53,13)} D.{x=53,y=13}(2)已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R},求A∩B.变式练习5(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B;(2)设集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =-x 2+2x +34,x ∈R },求A ∩B .6.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.课后练习 一、选择题1.设集合A ={-1,0,-2},B ={x |x 2-x -6=0},则A ∪B 等于( ) A.{-2} B.{-2,3} C.{-1,0,-2}D.{-1,0,-2,3}2.已知集合M ={x |-1≤x ≤1,x ∈Z },N ={x |x 2=x },则M ∩N 等于( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0,1}3.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个4.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}三、解答题5.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.6.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.7.(1)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值;(2)若P={1,2,3,m},Q={m2,3},且满足P∩Q=Q,求m的值.四、全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.五、补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言为∁U A={x|x∈U,且x∉A}图形语言为六、补集的性质①A∪(∁U A)=U;②A∩(∁U A)=∅;③∁U U=∅,∁U∅=U,∁U(∁U A)=A;④(∁U A)∩(∁U B)=∁U(A∪B);⑤(∁U A )∪(∁U B )=∁U (A ∩B ).题型一 补集运算例1 (1)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A 等于( ) A.{1,2} B.{3,4,5} C.{1,2,3,4,5}D.∅(2)若全集U =R ,集合A ={x |x ≥1},则∁U A =________.变式练习 1 已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则A C U =________.2.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.题型二 补集的应用例2 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.变式练习2若全集U={2,4,a2-a+1},A={a+4,4},∁U A={7},则实数a=________.题型三并集、交集、补集的综合运算例3 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).变式练习3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.题型四利用Venn图解题例4 设全集U={不大于20的质数},A∩∁U B={3,5},(∁U A)∩B={7,11},(∁U A)∩(∁UB)={2,17},求集合A,B.变式练习4全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.变式练习5已知集合A={x|x2-4ax+2a+6=0},B={x|x<0},若A∩B≠∅,求a的取值范围.课后作业一、选择题1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于( )A.{1,3,4}B.{3,4}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(∁U B)等于( )A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)等于( )UA.∅B.{d }C.{a ,c }D.{b ,e }4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A.{a |a ≤1}B.{a |a <1}C.{a |a ≥2}D.{a |a >2}5.设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则(∁R M )∩N 等于( )A.{x |x <-2}B.{x |-2<x <1}C.{x |x <1}D.{x |-2≤x <1}6.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0},若全集U =R ,且A ⊆∁U B ,则a 的取值范围为________.7.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.8.已知全集U =R ,A ={x ||3x -1|≤3},B ={x |⎩⎨⎧ 3x +2>0,x -2<0},求∁U (A ∩B ).9.已知集合A ={x |3≤x <6},B ={x |2<x <9}.(1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.10.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.11.已知集合{}31<≤-=x x A ;{}242-≥-=x x x B .(1)求B A ⋂;(2)若集合{}02>+=a x x C ,满足C C B =⋃,求实数a 的取值范围.12.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.。

交集、并集、补集、全集

交集、并集、补集、全集

交集、并集、补集、全集一、学习内容:1.理解交集、并集、全集与补集的概念。

2.熟悉交集、并集、补集的性质,熟练进行交、并、补的运算二、例题第一阶梯例1、什么叫集合A、B的交集?并集?答案:交集:A∩B={x | x∈A , 且x∈B}并集:A∪B={x | x∈A , 或x∈B}说明:上面用描述法给出的交集、并集的定义,要特别注意逻辑联结词"且"、"或"的准确意义,在交集中用"且"在并集中用"或交、并运算有下列推论:例2、什么叫全集?补集?答案:在研究集合与集合的关系时,相对于所研究的问题,存在一个集合I,使得问题中的所有集合都是I的子集,我们就把集合I看作全集,全集通常用I表示。

补集:。

说明:全集和补集都是相对的概念。

全集相对于所研究的问题,我们可以适当地选取全集,而补集又相对于全集而言。

如果全集改设了,那么补集也随之而改变。

为了简化问题可以巧设全集或改设全集,"选取全集"成为解题的巧妙方法。

补运算有下列推论:①;②;③。

例3、(1)求证:,。

(2)画出下列集合图(用阴影表示):①;②;③;④。

提示:(1)证明两个集合M和P相等可分两步完成:第一步证明"由x∈M T x ∈P";第二步证明"由x∈PTx∈M "。

(2)利用(1)的结果画③、④。

答案:说明:(1)中的两个等式是集合的运算定律,很容易记住它,解题时可以应用它。

这个证明较难,通常不作要求。

但其证明是对交、并、补运算及子集的很好练习。

(2)中的四个集合图也是集合的图示法的很好练习。

图(1)叫做"左月牙",图2叫做"右月牙"。

画图3、图4时要利用集合的两个运算律来画。

第二阶梯例1、已知A={x | 2x4+5x3-3x2=0},B={x | x2+2|x|-15=0},求A∩B,A∪B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的并、交、补集
一、单选题(共12道,每道8分)
1.设集合,,则=( )
A.{0}
B.{0,2}
C.{-2,0}
D.{-2,0,2}
答案:D
解题思路:
试题难度:三颗星知识点:并集及其运算
2.若集合,,则=( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:交集及其运算
3.已知集合,,若={2,5},则a+b的值为( )
A.10
B.9
C.7
D.4
答案:C
解题思路:
试题难度:三颗星知识点:交集及其运算
4.设集合,,若,则a的值为( )
A.0
B.1
C.-1
D.±1
答案:C
解题思路:
试题难度:三颗星知识点:交集及其运算
5.已知全集,集合,则( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:补集及其运算
6.若集合,集合,则( )
A.)
B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:补集及其运算
7.设集合,,则满足的集合有( )
A.1个
B.2个
C.3个
D.4个
答案:B
解题思路:
试题难度:三颗星知识点:交集及其运算
8.满足,且的集合M有( )
A.1个
B.2个
C.3个
D.4个
答案:B
解题思路:
试题难度:三颗星知识点:子集与真子集
9.若,则满足条件的集合共有( )个.
A.1
B.2
C.3
D.4
答案:D
解题思路:
试题难度:三颗星知识点:并集及其运算
10.如图,U是全集,A,B,C是U的3个子集,则阴影部分所表示的集合是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:Venn图表达集合的关系及运算
11.已知全集,,那么下列结论中不成立的是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:子集与交集、并集运算的转换
12.已知集合,,若,则实数a的取值范围是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:交集及其运算。

相关文档
最新文档