内力组合计算表

合集下载

钢结构框架柱截面强度稳定计算表

钢结构框架柱截面强度稳定计算表

弯矩作用平面外稳定验算: N/(Aφ_y )+(β_tx M_x)/(φ_b#DIV/0! W_x ) #DIV/0! #DIV/0!
M_x M_x M_x N N N A A 0A 0 0 0 W_x W_x W_x μ μ 0μ 0 H H 0H 0 i_x i_x i_x 0 0 λ_x #DIV/0! λ_x #DIV/0! λ_x #DIV/0! φ_x φ_x 0 φ_x 0 N_Ex^, #DIV/0! N_Ex^, #DIV/0! N_Ex^, #DIV/0! φ_y φ_y 0 φ_y 0 φ_b φ_b φ_ b 0 0 λ_y #DIV/0! λ_y #DIV/0! λ_y #DIV/0! i_y i_y 0 i_y 0 内力组合Ⅰ 内力组合Ⅱ 内力组合Ⅲ M_x M_x M_x N N N A 0A 0A 0 0 0 0 W_x W_x W_x μ μ 0μ 0 H H 0H 0 i_x 0 i_x 0 i_x 0 λ_x #DIV/0! λ_x #DIV/0! λ_x #DIV/0! φ_x φ_x 0 φ_x 0 N_Ex^, #DIV/0! N_Ex^, #DIV/0! N_Ex^, #DIV/0! φ_y φ_y 0 φ_y 0 φ_b φ_b 0 φ_b 0 λ_y #DIV/0! λ_y #DIV/0! λ_y #DIV/0! i_y i_y 0 i_y 0 内力组合Ⅰ 内力组合Ⅱ 内力组合Ⅲ M_x M_x M_x N N N A 0A 0A 0 0 W_x 0 W_x 0 W_x μ μ μ 0 0 H H 0H 0 i_x 0 i_x 0 i_x 0 λ_x #DIV/0! λ_x #DIV/0! λ_x #DIV/0! φ_x φ_x 0 φ_x 0 N_Ex^, #DIV/0! N_Ex^, #DIV/0! N_Ex^, #DIV/0! φ_y φ_y 0 φ_y 0 φ_b #DIV/0! φ_b #DIV/0! φ_b #DIV/0! λ_y #DIV/0! λ_y #DIV/0! λ_y #DIV/0! i_y i_y 0 i_y 0 内力组合Ⅰ 内力组合Ⅱ 内力组合Ⅲ M_x M_x M_x N N N A 0A 0A 0 0 W_x 0 W_x 0 W_x μ μ 0μ 0 H H 0H 0 i_x 0 i_x 0 i_x 0 λ_x λ_ x λ_ x #DIV/0! #DIV/0! #DIV/0! φ_x φ_x 0 φ_x 0 N_Ex^, #DIV/0! N_Ex^, #DIV/0! N_Ex^, #DIV/0! φ_y φ_y 0 φ_y 0 φ_b #DIV/0! φ_b #DIV/0! φ_b #DIV/0! λ_y #DIV/0! λ_y #DIV/0! λ_y #DIV/0! i_y i_y 0 i_y 0 内力组合Ⅰ 内力组合Ⅱ 内力组合Ⅲ M_x M_x M_x N N N A 0A 0A 0 0 W_x 0 W_x 0 W_x μ μ 0μ 0 H H 0H 0 i_x 0 i_x 0 i_x 0 λ_x #DIV/0! λ_x #DIV/0! λ_x #DIV/0! φ_x φ_x 0 φ_x 0 N_Ex^, #DIV/0! N_Ex^, #DIV/0! N_Ex^, #DIV/0! φ_y φ_y 0 φ_y 0 φ_b φ_b 0 φ_b 0 λ_y #DIV/0! λ_y #DIV/0! λ_y #DIV/0! i_y i_y 0 i_y 0 内力组合Ⅰ 内力组合Ⅱ 内力组合Ⅲ M_x M_x M_x N N N A 0A 0A 0 0 W_x 0 W_x 0 W_x μ μ 0μ 0 H H 0H 0 i_x i_x i_x 0 0 0 λ_x #DIV/0! λ_x #DIV/0! λ_x #DIV/0! φ_x φ_x 0 φ_x 0 N_Ex^, #DIV/0! N_Ex^, #DIV/0! N_Ex^, #DIV/0! φ_y φ_y 0 φ_y 0 φ_b φ_ b φ_ b #DIV/0! #DIV/0! #DIV/0! λ_y #DIV/0! λ_y #DIV/0! λ_y #DIV/0! i_y i_y i_y 0 0

混凝土结构excel计算表

混凝土结构excel计算表

注: 1.内力的单位,弯矩为kN▪m,轴力为kN,剪力为kN;
2.表中弯矩和剪力符号对杆端以顺时针转动为正,轴向力以压为正;
3.表中第一项恒荷载包括屋盖自重、柱自重、吊车梁及轨道自重;
4.组合时第3项与第4项、第5项与第6项、第7项与第8项二者不能同时组合;
5.有Fh值作用必须有Dmax或Dmin同时作用。
nk 326.5333333
36.35
0
0
0
0
0
0
M
-47.99 -8.36
48.88
-56.86
99.58
12.8
16.5
-16.5
Ⅱ-Ⅱ截面
N
421.09 50.89
0
0
437.1
147.84
0
0
mk -39.9916667 -5.97142857 34.91428571 -40.6142857 71.12857143 9.142857143 11.78571429 -11.7857143
-44.656
1+0.9(2+3+5+7)
486.793
907.171
55.001
1+0.9(4+6+8)
1+4
1+0.9(4+6+8)或1+3
Nmin
-81.429
391.84
-104.85
421.09
-440.603 371.74
601.036 467.98
-44.656 53.53
注:1.由永久荷载效应控制组合,其组合值不是最不利,计算从略;
2.根据《规范荷载》第3.2.3条条文说明,可采取简化规则进行荷载组合;

主梁内力计算

主梁内力计算

主梁的内力计算主梁的内力计算包括恒载内力计算和活载内力计算。

根据上述梁跨结构纵、横截面的布置,计算活载作用下的梁桥荷载横向分布系数,求出各主梁控制截面(取跨中、四分点、变化点截面及支点截面)的恒载和最大活载内力,然后再进行主梁内力组合。

一、恒载内力计算1、恒载集度⑴预制梁自重(第一期恒载)①.跨中截面段主梁自重(四分点截面至跨中截面,长7.25m )(1)0.861625.07.25156.165g KN =⨯⨯=②.马蹄抬高与腹板变宽段梁的自重近似计算(长3.7m ) 主梁端部截面面积为A=1.176m 2()(2) 1.17600.8616 3.725.0/294.239g KN =+⨯⨯=③.支点段梁的自重(长3.55m )(3) 1.1760 3.5525.0=104.37g KN =⨯⨯④.横隔梁的自重 中横隔梁体积为:()30.16 1.590.920.240.72/20.120.12/20.219072m ⨯⨯-⨯-⨯= 端横隔梁体积为:()30.25 1.840.80.20.6/20.353m ⨯⨯-⨯=故半跨内横隔梁重量()(4)20.21907210.3532519.7786g KN =⨯+⨯⨯=⑤.主梁永久作用集度()156.16594.239104.3719.7786/14.9825.00/g KN m KN m I =+++= (2)第二期恒载①翼缘板中间湿接缝集度()50.40.1625.0 1.6/g KN m =⨯⨯=②现浇部分横隔梁一片中横隔梁(现浇部分)体积:30.16 1.590.20.05088m ⨯⨯= 一片端横隔梁(现浇部分)体积:30.250.2 1.840.092m ⨯⨯= 故()()630.0508820.09225.0/29.960.2809/g KN m =⨯+⨯⨯=③桥面铺装层6cm 沥青混凝土铺装:0.0612.52317.25/KN m ⨯⨯=将桥面铺装重量均分给五片主梁,则()717.25/5 3.45/g KN m ==④防撞栏:两侧防撞栏均分给五片主梁,则()87.52/53/g KN m =⨯=⑤主梁二期永久作用集度II 1.60.2809 3.4538.3309/g KN m =+++=2、永久作用效用:下面进行永久作用效用计算(参照图1-4),设c 为计算截面至左侧支座的距离,并令/a c l =。

门式刚架荷载计算及内力组合

门式刚架荷载计算及内力组合

(一)荷载分析及受力简图:1、永久荷载永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。

恒载标准值(对水平投影面):板及保温层 0.30kN/㎡檩条 0.10kN/㎡悬挂设备 0.10kN/㎡0.50kN/㎡换算为线荷载:7.50.5 3.75 3.8/=⨯=≈q KN m2、可变荷载标准值门式刚架结构设计的主要依据为《钢结构设计规范》(GB50017-2003)和《冷弯薄壁型钢结构技术规范》(GB50018-2002)。

对于屋面结构,《钢结构设计规范》m,但构件的荷载面积大于602m的可乘折减系数0.6,门规定活荷载为0.5KN/2m。

由荷载规范查得,大连地区式刚架符合此条件,故活荷载标准值取0.3KN/2雪荷载标准值为0.40kN/㎡。

屋面活荷载取为 0.30kN/㎡雪荷载为 0.40kN/㎡取二者较大值 0.40kN/㎡换算为线荷载:7.50.43/q KN m =⨯=3、风荷载标准值 :0k z s z ωβμμω=(1) 基本风压值 20kN/m 6825.065.005.1=⨯=ω(2) 高度Z 处的风振系数z β 取1.0(门式刚架高度没有超过30m ,高宽比不大于1.5,不考虑风振系数)(3) 风压高度变化系数z μ由地面粗糙度类别为B 类,查表得:h=10m ,z μ=1.00;h=15m ,z μ=1.14 内插:低跨刚架,h=10.5m ,z μ= 1.14 1.111.00(10.510)1510-+⨯--=1.014;高跨刚架,h=15.7m ,z μ= 1.25 1.141.14(15.715)2015-+⨯--=1.155。

(4) 风荷载体型系数s μ-0.5-0.6-0.4-0.4-0.5-0.5-0.2+0.8μsμs1其中,s μ=0.2010.24.760.032301230arctg -⨯=⨯=+ 1s μ=12 1.00.6(1)0.6(12)0.36915.710.5h h ⨯-=⨯-=+-各部分风荷载标准值计算:w 1k =0z s z βμμω=7.5×1.0×0.8×1.014×0.6825=4.15 kN/m w 2k =0z s z βμμω=7.5×1.0×0.032×1.014×0.6825=0.17kN/m w 3k =0z s z βμμω=7.5×1.0×(-0.6)×1.014×0.6825=-3.11kN/m w 4k = 0z s z βμμω=7.5×1.0×0.369×1.014×0.6825=1.91 kN/m w 5k = 0z s z βμμω=7.5×1.0×(-0.2)×1.014×0.6825=-1.04 kN/mw 6k = w 7k =w 8k =0z s z βμμω=7.5×1.0×(-0.5)×1.014×0.6825=-2.60 kN/m w 9k = w 10k =0z s z βμμω=7.5×1.0×(-0.4)×1.014×0. 6825=-2.08 kN/m 用PKPM 计算门式刚架风荷载结果如下:其中,'1k ω=4.2KN/m ≈1k ω=4.15 kN/m ;'2kω=0.2KN/m ≈2k ω=0.17 kN/m ; '3k ω=-3.1N/m ≈1k ω=-3.11 kN/m ;'4kω=2.2KN/m ≈2k ω=1.91 kN/m ; '5k ω=-1.2KN/m ≈1k ω=-1.04kN/m ;'6kω=-3.0KN/m ≈6k ω=-2.60kN/m ; '7kω=-3.0KN/m ≈7k ω=-2.60kN/m ;'8k ω=-2.6KN/m =8k ω; '9k ω=-2.1KN/m ≈9k ω=-2.08kN/m ;'10kω=-2.1KN/m ≈10k ω=-2.08kN/m 。

门式刚架荷载计算及内力组合

门式刚架荷载计算及内力组合

(一)荷载分析及受力简图:1、永久荷载永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。

恒载标准值(对水平投影面):板及保温层 0.30kN/㎡檩条 0.10kN/㎡悬挂设备 0.10kN/㎡0.50kN/㎡换算为线荷载:7.50.5 3.75 3.8/q KN m =⨯=≈2、可变荷载标准值门式刚架结构设计的主要依据为《钢结构设计规范》(GB50017-2003)和《冷弯薄壁型钢结构技术规范》(GB50018-2002)。

对于屋面结构,《钢结构设计规范》规定活荷载为0.5KN/2m ,但构件的荷载面积大于602m 的可乘折减系数0.6,门式刚架符合此条件,故活荷载标准值取0.3KN/2m 。

由荷载规范查得,大连地区雪荷载标准值为0.40kN/㎡。

屋面活荷载取为 0.30kN/㎡雪荷载为 0.40kN/㎡取二者较大值 0.40kN/㎡换算为线荷载:7.50.43/q KN m =⨯=3、风荷载标准值 :0k z s z ωβμμω=(1) 基本风压值 20kN/m 6825.065.005.1=⨯=ω(2) 高度Z 处的风振系数z β 取1.0(门式刚架高度没有超过30m ,高宽比不大于1.5,不考虑风振系数)(3) 风压高度变化系数z μ由地面粗糙度类别为B 类,查表得:h=10m ,z μ=1.00;h=15m ,z μ=1.14内插:低跨刚架,h=10.5m ,z μ= 1.14 1.111.00(10.510)1510-+⨯--=1.014; 高跨刚架,h=15.7m ,z μ= 1.25 1.141.14(15.715)2015-+⨯--=1.155。

(4) 风荷载体型系数s μ其中,s μ=0.2010.2 4.760.032301230arctg -⨯=⨯=+ 1s μ=12 1.00.6(1)0.6(12)0.36915.710.5h h ⨯-=⨯-=+- 各部分风荷载标准值计算:w 1k =0z s z βμμω=7.5×1.0×0.8×1.014×0.6825=4.15 kN/mw 2k =0z s z βμμω=7.5×1.0×0.032×1.014×0.6825=0.17kN/mw 3k =0z s z βμμω=7.5×1.0×(-0.6)×1.014×0.6825=-3.11kN/mw 4k = 0z s z βμμω=7.5×1.0×0.369×1.014×0.6825=1.91 kN/mw 5k = 0z s z βμμω=7.5×1.0×(-0.2)×1.014×0.6825=-1.04 kN/mw 6k = w 7k =w 8k =0z s z βμμω=7.5×1.0×(-0.5)×1.014×0.6825=-2.60 kN/mw 9k = w 10k =0z s z βμμω=7.5×1.0×(-0.4)×1.014×0. 6825=-2.08 kN/m用PKPM 计算门式刚架风荷载结果如下:其中,'1k ω=4.2KN/m ≈1k ω=4.15 kN/m ;'2kω=0.2KN/m ≈2k ω=0.17 kN/m ; '3k ω=-3.1N/m ≈1k ω=-3.11 kN/m ;'4kω=2.2KN/m ≈2k ω=1.91 kN/m ; '5k ω=-1.2KN/m ≈1k ω=-1.04kN/m ;'6kω=-3.0KN/m ≈6k ω=-2.60kN/m ; '7kω=-3.0KN/m ≈7k ω=-2.60kN/m ;'8k ω=-2.6KN/m =8k ω; '9k ω=-2.1KN/m ≈9k ω=-2.08kN/m ;'10kω=-2.1KN/m ≈10k ω=-2.08kN/m 。

第七章-内力组合

第七章-内力组合

第7章 框架结构的内力组合§7.1框架结构梁内力组合§7.1.1. 框架结构梁的内力组合在竖向荷载作用下,可以考虑梁端塑性变形内力重分布而对梁端负弯距进行调幅,调幅系数为现浇框架:0.8-0.9,本设计取0.85。

计算结果见表7-1 横梁弯矩调幅。

由于风荷载作用下的组合与考虑地震组合相比,一般较小,对于结构设计不起控制作用,故不考虑。

只考虑以下三种组合形式: 一.由可变荷载效应控制的组合:1.2 1.4QK QKS S S =+(71)-二.由永久荷载效应控制的组合:1.35 1.40.7QK QK S S S =+⨯⨯ (72)-三.竖向荷载与水平地震作用下的组合:1.2(0.5) 1.3QK QK EK S r S S =+⨯+ (73)-具体组合过程见表7.2,其中弯矩KN.m ,剪力KN ,弯矩的上部受拉为负,剪力的产生顺时针为正。

表7-1 横梁弯矩调幅§7.1.2 梁端弯矩控制值梁的支座截面考虑了柱支撑宽度的影响,按支座边缘截面的弯矩计算,即:`/2=-⨯(7-4),M M V b式中:M为梁内力组合表中支座轴线的弯矩值;V为相应的支座剪力;b为相应的柱的宽度;计算结果见表7-3表7-3 梁端弯矩控制值§7.1.3梁端截面组合的剪力设计值调整为防止梁在弯曲屈服前发生剪切破坏,即保证“强剪弱弯”截面设计须对有地震作用的组合剪力设计值按(7-5)进行调整。

()/lr vb b b n GB V M M l V η=-+ (7-5)式中:n l 为梁的净跨;GB V :为梁的重力荷载代表值,按简支梁分析的梁端截面剪力设计值;,l r b b M M :分别为梁左右净截面,逆时针或顺时针方向的弯矩设计值;vb η:为梁端剪力增大系数,对于二级框架取1.2 计算结果见表7-4§7.2框架结构柱的内力组合§7.2.1框架结构柱的内力组合柱上端控制值截面在梁底,下端在梁顶,应按轴线计算简图所得的柱端内力值换成控制截面的相应值,此计算为简化起见,采用轴线处内力值。

框架在地震作用下内力计算

框架在地震作用下内力计算

框架在地震和重力作用下内力计算学生姓名:张育霜学号:20120322029指导老师:1建筑说明 (1)1.1工程概况 (1)1.2 设计资料 (1)1.3总平面设计 (1)1.4主要房间设计 (1)1.5辅助房间设计 (1)1.6交通联系空间的平面设计 (2)1.7剖面设计 (2)1.8立面设计 (3)1.9构造设计 (3)2框架结构布置 (3)2.1计算单元 (4)2.2框架截面尺寸 (4)2.3梁柱的计算高度(跨度) (4)2.4框架计算简图 (5)3恒荷载及其内力分析 (6)3.1屋面恒荷载 (6)3.2楼面恒荷载 (7)3.3构件自重 (7)3.6恒荷载作用下内力分析 (10)4活荷载及其内力分析 (13)4.1屋面活荷载 (13)4.2楼面活荷载 (13)4.3内力分析 (13)5重力荷载及水平振动计算 (17)5.1重力荷载代表值计算 (17)5.2水平地震作用计算 (17)6内力组合计算 (22)6.1框架梁内力组合 (22)6.2框架柱内力组合 (25)7截面设计 (31)7.1框架梁的配筋计算 (31)7.2框架柱的配筋计算 (40)7.3框架梁、柱配筋图 (52)8基础设计 (55)8.1对A柱基础配筋计算 (55)8.2 对B柱基础配筋计算....................................... 错误!未定义书签9双向板的设计...................................................... 错误!未定义书签9.1设计资料................................................. 错误!未定义书签9.2荷载设计值............................................... 错误!未定义书签参考文献.......................................................... 错误!未定义书签1建筑说明1.1工程概况本建筑位于北京市某高校内,六层现浇钢筋混凝土框架结构,房间开间7.2米,层高3.6米。

内力组合计算书

内力组合计算书

内力组合《抗震规范》第条规定如下。

截面抗震验算结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算:G GE Eh Ehk Ev Evk w w wkS S S S S γγγψγ=+++ ()式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值;γG ——重力荷载分项系数,一般情况应采用,当重力荷载效应对构件承载能力有利时,不应大于; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表 采用; γw ——风荷载分项系数,应采用;s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ;ψw ——风荷载组合值系数,一般结构取,风荷载起控制作用的高层建筑应采用。

注:本规范一般略去表示水平方向的下标。

表 地震作用分项系数结构构件的截面抗震验算,应采用下列设计表达式:RE RS γ=式中: γRE ——承载力抗震调整系数,除另有规定外,应按表采用;R ——结构构件承载力设计值。

表 承载力抗震调整系数当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用。

本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表结构安全等级设为二级,故结构重要性系数为0 1.0γ=根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。

其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+⨯ 活荷载控制下:Gk Qk S 1.2S 1.4S =+有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+±对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为,,,,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档