桥式整流电路的工作原理
桥式整流电路的原理

桥式整流电路的原理桥式整流电路是一种常用的电子电路,它可以将交流电转换为直流电。
在很多电子设备中都会用到桥式整流电路,比如电源适配器、电视机、音响等。
那么,桥式整流电路是如何工作的呢?接下来,我们将详细介绍桥式整流电路的原理。
首先,我们来看一下桥式整流电路的基本结构。
桥式整流电路由四个二极管组成,它们被连接成一个桥形结构,其中两个二极管连接在交流电源的正负极上,另外两个二极管连接在负负极上。
这种连接方式可以使得电流在两个方向上都能通过负载,从而实现了对交流电的整流。
当交流电源施加在桥式整流电路上时,当交流电源的正极电压高于负极电压时,D1和D3导通,D2和D4截止,电流通过负载方向为从左到右;当交流电源的正极电压低于负极电压时,D2和D4导通,D1和D3截止,电流通过负载方向为从右到左。
通过这样的方式,桥式整流电路可以将交流电转换为直流电。
在桥式整流电路中,二极管的导通和截止是根据电压的极性来控制的,当电压为正值时,与正极相连的二极管导通,与负极相连的二极管截止;当电压为负值时,与负极相连的二极管导通,与正极相连的二极管截止。
因此,桥式整流电路可以实现对交流电的全波整流,从而得到稳定的直流电输出。
除了基本的桥式整流电路外,还可以通过在桥式整流电路中加入滤波电容和稳压电路来得到更稳定的直流电输出。
滤波电容可以平滑直流电输出的波形,稳压电路可以保持输出电压的稳定性。
这些附加元件的加入可以提高桥式整流电路的性能,使得它在实际应用中更加可靠。
总之,桥式整流电路通过四个二极管的桥形连接,可以将交流电转换为直流电。
它的工作原理简单明了,而且在实际应用中具有广泛的用途。
希望通过本文的介绍,您对桥式整流电路的原理有了更深入的了解。
整流桥-桥式整流工作原理

整流桥-桥式整流工作原理整流桥-桥式整流工作原理整流桥有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。
整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。
四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。
应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。
图一整流桥(桥式整流)工作原理图二各类整流桥(有些整流桥上有一个孔,是加装散热器用的)这款电源的整流桥部分采用了一体式的整流桥,整流桥的作用就是能够通过二极管的单向导通的特性将电平在零点上下浮动的交流电转换为单向的直流电,通常电源中采用的整流桥除了这种单颗集成式的还有采用四颗二极管实现的,它们的原理完全相同作用就是整流,把交流电变为直流电。
实质上就是把4个硅二极管接成桥式整流电路之后封装在一起用塑料包装起来,引出4个脚,其中2个脚接交流电源,用~~符号表示,2个脚是直流输出,用+ -表示。
特点是方便小巧。
不占地方。
规格型号一般直接用参数表示:50伏1安,100伏5安等等。
如果你要使用整流桥,选择的时候留点余量,例如要做12伏2安培输出的整流电源,就可以选择25伏5安培的桥。
选择整流桥要考虑整流电路和工作电压.整流桥堆整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。
全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。
全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。
常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。
整流桥命名规则一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V如:KBL410 即4A,1000VRS507 即5A,700V整流这一个术语,它是通过二极管的单向导通原理来完成工作的,通俗的来说二极管它是正向导通和反向截止,也就是说,二极管只允许它的正极进正电和负极进负电。
桥式整流电路图及工作原理

桥式整流电路图及工作原理桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻R L组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→RL→D3回到TR次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→RL→D4回到Tr次级上端,在负载RL上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压vo=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压vo=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
桥式整流电路工作原理

桥式整流电路工作原理
桥式整流电路是一种常用的电路结构,用于将交流电转换为直流电。
它由四个二极管和一个负载组成。
工作原理如下:
1. 基本电路:首先,将交流电源连接到桥式整流电路的输入端。
交流电源的正负端与桥式整流电路的两个对角线上的连接点相连接,形成交流电的输入接点,而另外两个对角线上的连接点则作为直流电的输出接点。
2. 正半周:当交流电压为正半周期时,输入电流流经二极管1
和二极管4,然后通过负载,最后回到交流电源。
3. 负半周:当交流电压为负半周期时,输入电流流经二极管2
和二极管3,然后通过负载,最后回到交流电源。
4. 筛选:在交流电压为正半周期时,二极管1导通,而二极管4截止。
反之,当交流电压为负半周期时,二极管2导通,而
二极管3截止。
这样,可以通过筛选作用将交流电转换成了只包含正半周期或负半周期的电流。
5. 整流:最后,在负载的作用下,只有正半周期或负半周期的电流通过,并且流向负载的方向一致。
而对于相反的半周期,电流则无法通过。
通过以上的工作原理,桥式整流电路能够将交流电转换为负载
所需的直流电。
这种电路结构简单,效率高,广泛应用于电源供应等领域。
桥式整流电路工作原理-概述说明以及解释

桥式整流电路工作原理-概述说明以及解释1.引言1.1 概述概述部分的内容:在现代电子设备中,电流的整流是一项非常重要的工作。
桥式整流电路作为一种常用的整流方法,被广泛应用于各类电子设备中。
它能够将交流电转换为直流电,为电子设备的正常运行提供可靠的电源。
桥式整流电路是一种基于二极管工作原理的电路,它由一组电子元件组成,包括四个二极管和一个负载电阻。
通过精确的布置和控制,桥式整流电路能够将交流电信号的正半周和负半周分别转换为直流电信号的正半周和负半周,从而实现电流的单向导通。
桥式整流电路的工作原理可以简单描述如下:当输入的交流电信号的正半周到达桥式整流电路时,这时二极管D1和D3导通,二极管D2和D4截止。
这使得正半周的电流经过D1、D3和负载电阻,形成了一个普通的单向直流电。
当输入的交流电信号的负半周到达时,二极管D2和D4导通,二极管D1和D3截止。
这使得负半周的电流经过D2、D4和负载电阻,同样形成了一个单向的直流电。
通过上述工作原理,桥式整流电路能够将输入的交流电转换为稳定的直流电输出。
这种输出电流不仅电压稳定,而且频率与输入信号一致,能够满足各类电子设备对电源的要求。
总的来说,桥式整流电路是一种可靠的、高效的电流整流方法,其工作原理简单易懂。
在今后的发展中,桥式整流电路有望在各类电子设备中得到更广泛的应用。
1.2文章结构1.2 文章结构本文将围绕桥式整流电路的工作原理展开讨论。
首先,在引言部分概述桥式整流电路的基本概念和重要性。
其次,正文部分将详细介绍桥式整流电路的基本原理和工作过程。
在结论部分,我们将对桥式整流电路的工作原理进行总结,并展望其在未来的应用前景。
通过这样的文章结构,读者可以系统地了解桥式整流电路的工作原理以及其应用的潜力。
接下来,让我们进入正文部分,详细探讨桥式整流电路的基本原理。
目的部分的内容可以如下所示:1.3 目的本文的目的是深入探讨桥式整流电路的工作原理。
通过对桥式整流电路的基本原理和工作过程进行详细的分析和解释,旨在帮助读者更好地理解该电路的工作原理及其应用。
桥式整流电路图及工作原理介绍

桥式整流电路图及工作原理介绍桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
关于桥式整流电路原理

关于桥式整流电路原理桥式整流电路是一种将交流电转换为直流电的电路,其原理如下:
1.桥式整流电路的基本结构
桥式整流电路主要由四个二极管和两个电容组成。
四个二极管分别连接在交流电源的两端,形成一座“桥”。
两个电容分别连接在桥的两端,用于储存电能并平滑输出直流电。
2.工作原理
当交流电源正半周时,电流通过二极管D1和D2流向负载,同时电容C1和C2充电。
当交流电源负半周时,电流通过二极管D3和D4流向负载,同时电容C1和C2放电。
由于四个二极管的交替导通,使得负载上得到的电流是连续的直流电。
3.整流效果
桥式整流电路可以将正负半周的交流电转换为单向的直流电,实现整流效果。
输出电压的极性可以通过改变二极管的连接方式来改变。
4.滤波效果
在桥式整流电路中,两个电容C1和C2起到了滤波的作用。
它们可以储存电能,并平滑输出直流电,使输出电压更加稳定。
电容的选择应考虑其耐压值和容量,以适应不同的应用需求。
5.应用领域
桥式整流电路因其简单、可靠、高效等优点被广泛应用于各种电子设备中,如电源、充电器、电子仪器等。
同时,它也是各种电力电子设备中的重要组成部分,如变频器、逆变器等。
综上所述,桥式整流电路的原理是通过四个二极管的交替导通和电容的滤波作用,将正负半周的交流电转换为单向的直流电,实现整流效果。
其优点在于简单、可靠、高效等,被广泛应用于各种电子设备和电力电子设备中。
单相桥式全控整流电路基本工作原理

单相桥式全控整流电路基本工作原理
1.脉冲触发控制器:在单相桥式全控整流电路中,采用脉冲触发控制器来对可控硅元件进行控制。
脉冲触发控制器通常是由脉冲发生器和触发电路组成,它可以产生一系列的脉冲信号,用于触发可控硅元件的导通。
2.控制信号生成:脉冲触发控制器根据需要调整输出电压的大小,生成对应的控制信号。
控制信号的频率一般高于输入电压的频率,一般在几十赫兹到几百赫兹之间。
3.触发可控硅元件:通过控制信号触发器,可控硅元件可以被控制导通。
在单相桥式全控整流电路中,有两个可控硅元件在正半周导通,另外两个在负半周导通,通过交替改变导通硅元件,可以实现对输入交流电压的整流。
4.交流电压的整流:当可控硅元件导通时,电流可以通过它们流入负载电阻,实现对交流电压的整流。
通过调整可控硅元件的导通角,可以控制电流的大小,从而实现对输出电压的调整。
5.滤波电路:由于可控硅元件导通时,电流是脉冲的,因此需要通过滤波电路将电流进行平滑处理,以获得平稳的直流电压。
滤波电路通常由电容和电感组成,能够滤去电流的脉动成分。
6.直流电压输出:经过滤波电路处理后,可以得到平稳的直流电压输出。
输出电压的大小取决于可控硅元件的导通角,可以通过调整控制信号的频率和宽度来控制导通角,从而实现对输出电压的调节。
总之,单相桥式全控整流电路利用可控硅元件的导通和关断,根据控制信号的调整,实现对输入交流电压的整流,并通过滤波电路获得所需的
直流输出电压。
这种电路结构简单、效果稳定,广泛应用于工业和家用电气设备中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥式整流电路的工作原理
电子系统的正常运行离不开稳定的电源,除了在某些特定场合下采用太阳能电池或化学电池作电源外,多数电路的直流电是由电网的交流电转换来的。
这种直流电源的组成以及各处的电压波形如图所示。
直流电源的组成
图中各组成部分的功能如下838电子:
⑴电源变压器:将电网交流电压(220V或380V)变换成符合需要的交流电压,此交流电压经过整流后可获得电子设备所需的直流电压。
因为大多数电子电路使用的电压都不高,这个变压器是降压变压器新艺图库。
⑵整流电路:利用具有单向导电性能的整流元件,把方向和大小都变化的50Hz交流电变换为方向不变但大小仍有脉动的直流电。
⑶滤波电路:利用储能元件电容器C两端的电压(或通过电感器L的电流)不能突变的性质,把电容C(或电感L)与整流电路的负载RL并联(或串联),就可以将整流电路输出中的交流成分大部分加以滤除,从而得到比较平滑的直流电。
在小功率整流电路中,经常使用的是电容滤波。
⑷稳压电路:当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。
利用二极管的单向导电性组成整流电路,可将交流电压变为单向脉动电压。
本章为便于分析整流电路,把整流二极管当作理想元件,即认为它的正向导通电阻为零,而反向电阻为无穷大。
但在实际应用中,应考虑到二极管有内阻,整流后所得波形,其输出幅度会减少0.6~1V,当整流电路输入电压大时,这部分压降可以忽略。
但输入电压小时,例如输入为3V,则输出只有2V 多,需要考虑二极管正向压降的影响。
在小功率直流电源中,常见的几种整流电路有单相半波、全波、桥式和三相整流电路等。
整流(和滤波)电路中既有交流量,又有直流量。
对这些量经常采用不同的表述方法:输入(交流)——用有效值或最大值;输出(直流)——用平均值;二极管正向电流——用平均值;二极管反向电压——用最大值。
838电子
单相全波桥式整流器电路的工作原理
由图可看出,电路中采用四个二极管,互相接成桥式结构。
利用二极管的电流导向作用,在交流输入电压U2的正半周内,二极管D1、D3导通,D2、D4截止,在负载R L上得到上正下负的输出电压;在负半周内,正好相反,D1、D3截止,D2、D4导通,流过负载R L的电流方向与正半周一致。
因此,利用变压器的一个副边绕组和四个二极管,使得在交流电源的正、负半周内,整流电路的负载上都有方向不变的脉动直流电压和电流。
桥式整流的名称只是说明电路连接方法是桥式的接法,桥式整流二极管:大家常用的一般是由4只单个二极管封装在一起的元件,取名桥式整流二极管,整流桥或全桥二极管。
桥式整流电路,桥式整流电路计算及公式桥式整流电路
桥式整流电路如图5所示,其中图(a)、(b)、(c)是它的三种不同画法。
它是由电源变压器、四只整流二极管D1~4 和负载电阻R L组成。
四只整流二极管接成电桥形式,故称桥式整流。
桥式整流电路的工作原理如图6所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由T R次级上端经D1→ R L →D3回到TR次级下端,在负载RL上得到一半波整流电压。
在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ R L→D4回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即
UL = 0.9U2 GS0709
I L = 0.9U2/R L GS0710
流过每个二极管的平均电流为
I D= I L/2 = 0.45 U2/R L
每个二极管所承受的最高反向电压为
目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z0705(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
根据图10.1.2(b)可知,输出电压是单相脉动电压。
通常用它的平均值与直流电压等效。
流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析。
此时谐波分量中的二次谐波幅度最大,最低次谐波的幅值与平均值的比值称为脉动系数S。
3.单相桥式整流电路的负载特性曲线
单相桥式整流电路的负载特性曲线是指输出电压与负载电流之间的关系曲线该曲线如图10.1.3所示。
曲线的斜率代表了整流电路的内阻。
图10.1.3 负载特性曲线。