高考数学专题复习讲练测——专题五 数列、数学归纳法 专题方法总结

合集下载

高中数学的归纳数列与排列组合的重要性质及解题方法总结

高中数学的归纳数列与排列组合的重要性质及解题方法总结

高中数学的归纳数列与排列组合的重要性质及解题方法总结在高中数学的学习中,归纳数列与排列组合是一类非常重要的概念和方法。

它们不仅在解决实际问题中起着重要作用,还在数学推理和证明中发挥着重要的作用。

本文将介绍归纳数列与排列组合的重要性质以及解题方法,并总结它们在高中数学中的应用。

一、归纳数列的重要性质及解题方法1. 等差数列和等差数列的通项公式等差数列是指数列中任意两项之差都相等的数列。

在解决等差数列问题时,可利用等差数列的通项公式:an = a1 + (n-1)d其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差。

2. 等比数列和等比数列的通项公式等比数列是指数列中任意两项之比都相等的数列。

在解决等比数列问题时,可利用等比数列的通项公式:an = a1 * r^(n-1)其中,an表示等比数列的第n项,a1表示等比数列的首项,r表示等比数列的公比。

3. 斐波那契数列及其性质斐波那契数列是一种特殊的数列,它的每一项都是前两项之和。

斐波那契数列在自然界中有着广泛的应用,如植物的叶子排列、螺旋形状等。

求解斐波那契数列问题时,可以利用递推关系式:Fn = Fn-1 + Fn-2其中,Fn表示斐波那契数列的第n项,Fn-1表示斐波那契数列的第n-1项,Fn-2表示斐波那契数列的第n-2项。

二、排列组合的重要性质及解题方法1. 排列的计算方法排列是指从一组元素中选取一部分进行排列的方法。

在排列问题中,需要关注选取的元素个数、元素的排列顺序和元素是否可重复选取等因素。

排列的计算公式为:A(n,m) = n! / (n-m)!其中,A(n,m)表示从n个元素中选取m个元素进行排列的方法数,n!表示n的阶乘。

2. 组合的计算方法组合是指从一组元素中选取一部分进行组合的方法。

与排列不同,组合不考虑元素的排列顺序。

组合的计算公式为:C(n,m) = n! / (m!(n-m)!)其中,C(n,m)表示从n个元素中选取m个元素进行组合的方法数。

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 11000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

高中数学知识点总结数列与数学归纳法的应用

高中数学知识点总结数列与数学归纳法的应用

高中数学知识点总结数列与数学归纳法的应用高中数学知识点总结:数列与数学归纳法的应用数列是数学中重要的概念之一,在高中数学学习中占据着重要的地位。

而数学归纳法则是数列的证明方法之一,有着广泛的应用。

本文将对数列的相关概念和数学归纳法的应用进行总结和讨论。

一、数列的基本概念数列是指按照一定规律排列的一组数,其中每个数称为通项。

数列常用以下三种表示法:1. 显式表示法:用通项公式表示数列的通项,例如:an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

2. 递推表示法:用通项之间的关系表示数列的通项,例如:an = an-1 + d,其中d为公差。

3. 列表表示法:直接列出数列的每一项,例如:1,3,5,7,9。

二、常见数列类型1. 等差数列:数列中的任意两个相邻项之差都相等的数列。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

2. 等比数列:数列中的任意两个相邻项之比都相等的数列。

等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比。

3. 斐波那契数列:数列中的每一项都等于前两项之和的数列。

斐波那契数列的通项公式为an = an-1 + an-2,其中a1 = 1,a2 = 1。

三、数列的性质与应用1. 数列的有界性:数列可以是有界的或无界的。

有界数列是指数列的所有项都在一定的范围内,无界数列则相反。

例如:1,2,3,...,n,...为无界数列。

2. 数列的递增与递减:数列可以是递增的或递减的。

递增数列是指数列的每一项都比前一项大,递减数列则相反。

例如:1,3,5,7,...为递增数列。

3. 数列的求和:等差数列和等比数列的求和公式分别为Sn = n/2(a1 + an)和Sn = a1(1-q^n)/(1-q),其中Sn为前n项和。

四、数学归纳法的应用数学归纳法是一种证明数列性质的方法,其思想是以一个命题的真假性与它在n=1时的真假性以及它在n=k时的真假性之间的联系来进行推理。

高中数学数列题型归纳及解题方法梳理

高中数学数列题型归纳及解题方法梳理

1数列典型例题分析【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an}的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得=, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n.(Ⅱ)由(Ⅰ)知=2n,由等比数列前n 项和公式得S m =2+22+23+ (2)==2n+1-2.小结与拓展:数列{}na 是等差数列,则数列}{na a 是等比数列,公比为da ,其中a 是常数,d 是{}na 的121d +1812d d++2ma 2(12)12n --公差。

(a>0且a≠1).【题型2】与“前n项和Sn与通项an”、常用求通项公式的结合例 2 已知数列{a n}的前三项与数列{b n}的前三项对应相同,且a1+2a2+22a3+…+2n-1a n=8n对任意的n∈N*都成立,数列{b n+1-b n}是等差数列.求数列{a n}与{b n}的通项公式。

解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ①当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n-1)(n∈N*) ②①-②得2n-1a n=8,求得a n=24-n,在①中令n=1,可得a1=8=24-1,∴a n=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2,2∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n -b n=-4+(n-1)×2=2n-6,+1法一(迭代法)b n=b1+(b2-b1)+(b3-b2)+…+(b n-b n-1)=8+(-4)+(-2)+…+(2n-8)=n2-7n+14(n∈N*).法二(累加法)即b n-b n-1=2n-8,b n-1-b n-2=2n-10,…b3-b2=-2,b2-b1=-4,b1=8,相加得b n=8+(-4)+(-2)+…+(2n-8)34 =8+(n -1)(-4+2n -8)2=n 2-7n +14(n∈N *).小结与拓展:1)在数列{a n }中,前n 项和S n 与通项a n 的关系为:⎩⎨⎧∈≥-===-)N n ,2( )1(111n S S n S a a n n n.是重要考点;2)韦达定理应引起重视;3)迭代法、累加法及累乘法是求数列通项公式的常用方法。

高考数学讲义数列.05用数学归纳法证明数列

高考数学讲义数列.05用数学归纳法证明数列

2014年高考解决方案用数学归纳法证明数列数学归纳法证明数列内容层次要求数列数列的概念与表示 B 理解数列的概念,掌握数列的表示. 等差数列与等比数列的概念B 理解等差数列的概念. 理解等比数列的概念.等差与等比数列的通项与前n 项和公式 C 掌握等差数列的通项公式与前n 项和公式. 掌握等差数列的一些性质. 数列求和 C 掌握非等差、等比数列的几种求法 求数列的通项C掌握非等差、等比数列通项的几种求法.数学归纳法数学归纳法是一种证明与正整数n 有关的数学命题的重要方法.其证题步骤为: (1)设0()P n (0n N ∈)成立;(2)假设()P k (0k n ≥)成立,可推出(1)P k +成立 则()P n 对一切自然数0n n ≥,n N ∈时都成立.在解决数列综合性问题中,有时运用归纳、猜想与证明将非常有效.其一般步骤是:首先利用所给的递推式求出数列的前几项123a a a L ,,,然后猜想出满足递推式的一个通项公式n a ,最后用数学归纳法证明猜想是正确的.题型详解【例1】 已知:数列{}n a 前n 项和为n S ,n n a S n +=,数列{}n b 中11b a =,11n n n b a a ++=-,(1)写出数列{}n a 的前四项;(2)猜想数列{}n a 的通项公式,并加以证明; (3)求数列{}n b 的通项公式.考纲要求知识讲解【例2】 设数列{}n a 的前n 项和为n S ,且方程20n n x a x a --=有一个根是1n S -,123n =L ,,(1)求12a a ,; (2)求{}n a 的通项公式.【例3】 设数列{}n a 的前n 项和为n S ,对一切*n ∈N ,点,n S n n ⎛⎫⎪⎝⎭都在函数()2n a f x x x =+的图象上.求123a a a ,,的值,猜想n a 的表达式,并用数学归纳法证明;【例4】 设数列1a ,2a ,…n a …中的每一项都不为0.证明:{}n a 为等差数列的充分必要条件是:对任何N n *∈,都有1223111111n n n n a a a a a a a a +++++=L .【例5】 在单调递增数列}{n a 中,21=a ,不等式n a n )1(+n na 2≥对任意*n ∈N 都成立.(Ⅰ)求2a 的取值范围;(Ⅱ)判断数列}{n a 能否为等比数列?说明理由; (Ⅲ)设11(11)(1)(1)22n n b =+++L ,)211(6nn c -=,求证:对任意的*n ∈N ,012≥--n n n a c b .【例6】 设数列{}122,3,3,34444n a L :,-,-,-,-,-,-,,-1-1-1-1k k k k k644474448L 个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++L ()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且(1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.。

高考数学中的数列与数学归纳法题解技巧

高考数学中的数列与数学归纳法题解技巧

高考数学中的数列与数学归纳法题解技巧数列和数学归纳法是高考数学中的重要考点,掌握相关解题技巧对于提高数学成绩至关重要。

本文将介绍高考数学中的数列和数学归纳法题解技巧,帮助考生更好地应对考试。

一、数列的基本概念和性质数列是由一系列按照一定规律排列的数所组成的序列。

在高考数学中,常见的数列有等差数列、等比数列和等差中项数列。

掌握数列的基本概念和性质是解题的基础。

以等差数列为例,设数列的首项为a₁,公差为d,第n项为aₙ,则有公式:aₙ = a₁ + (n - 1)d通过这一公式,我们可以求得数列的任意一项的值。

同时,还需了解等差数列的前n项和公式:Sₙ = (a₁ + aₙ) × n/2此外,还需掌握等比数列的通项公式和前n项和公式,以及等差中项的计算方法等相关性质。

二、数学归纳法的基本原理数学归纳法是解决数列相关问题常用的数学推理方法,也是高考数学中常见的一种解题技巧。

掌握数学归纳法的基本原理对于解题至关重要。

数学归纳法的基本原理分为三步:1. 验证基本情况:证明当n取某个特定值时命题成立。

2. 假设成立:假设当n=k时命题成立,即前k项满足题设条件。

3. 推理步骤:利用假设成立和题设条件推导出n=k+1时,命题也成立。

通过以上步骤,我们可以得出命题对于一切自然数n都成立的结论。

三、数列与数学归纳法的综合应用在高考数学中,数列和数学归纳法常常结合使用,解决一些复杂的问题。

以下是一个综合应用的示例题目:【例】设数列{an}满足an = 2^n - 1,证明aₙ > n,其中n为自然数。

解析:我们通过数学归纳法来解决这道题目。

(1)验证基本情况:当n=1时,a₁ = 2¹ - 1 = 1 > 1,基本条件成立。

(2)假设成立:假设当n=k时命题成立,即aₙ > k。

(3)推理步骤:当n=k+1时,aₙ₊₁ = 2^(k+1) - 1 = 2 × 2^k - 1 = 2 × (2^k - 1) + 1根据假设成立的条件,aₙ > k,我们可以得到aₙ₊₁ > 2k + 1 > k + 1所以,通过数学归纳法可知,数列{an}满足an = 2^n - 1时,aₙ > n,命题成立。

高中数学的归纳数列与数学归纳法总结

高中数学的归纳数列与数学归纳法总结数学归纳法是高中数学中一个重要的思维工具和证明方法,常用于证明关于自然数的命题。

而归纳数列则是通过数学归纳法得出的一种特殊数列。

本文将对高中数学中的归纳数列与数学归纳法进行总结和讨论。

一、数学归纳法(Mathematical Induction)数学归纳法是一种重要的证明方法,一般用于证明递推关系式或命题在整数集上的成立。

其基本思想是:首先证明当n等于某个特定值时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题也成立,从而得出当n为任意自然数时命题都成立的结论。

使用数学归纳法时,一般需要按照以下步骤进行:1. 第一步,证明基础情况:证明当n等于某个特定值(通常是1或者0)时,命题成立。

2. 第二步,归纳假设:假设当n=k时命题成立,即前提条件下命题为真。

3. 第三步,归纳证明:在假设前提下,证明当n=k+1时命题也成立。

4. 第四步,综合:由步骤2和步骤3,得出当n为任意自然数时命题都成立的结论。

数学归纳法的有效性建立在数学归纳法原理的基础上,即若命题关于自然数集N上的某个命题是真的,且若对于自然数n∈N,当命题对n成立时命题对n+1亦成立,则该命题对于自然数集N上的每一个自然数都成立。

二、归纳数列(Recursive Sequence)归纳数列是通过数学归纳法得到的一类特殊数列。

在定义归纳数列时,通常需要给出首项和递推关系式。

以斐波那契数列为例,斐波那契数列是一个典型的归纳数列。

其递推关系式为F(n) = F(n-1) + F(n-2),其中F(1) = 1,F(2) = 1为其前两项。

通过数学归纳法,可以证明斐波那契数列的每一项都可以由前两项求得。

归纳数列在数学和实际问题中有着重要的应用。

通过找到递推关系式和初始条件,我们可以计算出序列中的任意一项的值,从而解决各类问题。

三、应用与拓展除了归纳数列之外,数学归纳法还有着广泛的应用。

在高中数学中,我们常常使用数学归纳法证明数列递推公式、不等式、等式以及各种数学关系的成立。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。

数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。

下面对数列题型及解题方法进行归纳总结。

一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。

2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。

通常用a1表示首项,d表示公差。

3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。

通常用a1表示首项,r表示公比。

二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。

使用通项公式a_n = a1 + (n-1)d。

(2)已知相邻两项的值,求公差。

根据 a_(n+1) - a_n = d,解方程即可。

(3)已知首项和第n项的值,求公差。

根据 a_n = a1 + (n-1)d,解方程即可。

2. 找前n项和:(1)已知首项、公差和项数,求前n项和。

使用公式S_n= (n/2)(a1 + a_n)。

(2)已知首项、末项和项数,求公差。

由于S_n =(n/2)(a1 + a_n),可以列方程求解。

(3)已知首项、公差和前n项和,求项数。

可以列方程并解出项数。

3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。

可以列方程,并解出项数。

三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。

使用通项公式a_n = a1 * r^(n-1)。

(2)已知相邻两项的值,求公比。

根据 a_n / a_(n-1) = r,解方程即可。

(3)已知首项和第n项的值,求公比。

根据 a_n = a1 * r^(n-1),解方程即可。

2. 找前n项和:(1)已知首项、公比和项数,求前n项和。

使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。

最新高三教案-高考数学专题复习讲练测——专题五数列、数学归纳法专题方法总结 精品

专题方法总结本专题由数列和数学归纳法两部分主要内容组成,它融代数、三角、几何于一体,性质多、技巧性强、方法灵活、应用广泛、综合能力要求高.等差、等比数列的运算和性质是本专题复习的重点,以等差、等比数列为载体的代数推理问题,数列的实际应用问题及数学归纳法的应用是难点,它们都是高考命题的热点;方程观点、等价转换、消元法、待定系数法是贯穿于本专题的重要数学思想和方法;运算能力、逻辑思维能力、分析问题和解决问题的能力是复习好本专题的基本要求.1.关于等差、等比数列(1)等差、等比数列的判定:①利用定义判定;②an+an+2=2an+1{an}是等差数列,anan+2=an+12(an≠0){an}是等比数列;③an=an+b(a,b为常数){an}是等差数列,Sn=an2+bn(a,b为常数,Sn是数列{an}的前n项和){an}是等差数列.(2)等差、等比数列性质的应用:注意脚码、奇偶项的特点等.(3)数列是定义域为自然数集(或自然数集的子集)的函数,即an=f(n)(n∈N).因此我们可运用函数的思想方法去研究处理数列问题.如等差数列当公差d≠0时的通项公式为n的一次函数,前n项和为n的二次函数,有关前n项和的最大、最小问题可运用二次函数的性质来解决.2.关于一般数列(1)已知数列的前n项和,求通项公式,这类问题常利用an=S1(n=1),求解.Sn-Sn-1(n≥2)(2)用递推公式给出来的数列,常利用“归纳—猜想—证明”的方法求解.3.关于数列的求和(1)公式法:①等差、等比数列的前n项和公式;②自然数的方幂和公式.(2)错位相减法.(3)倒序相加法.(4)裂(拆)项法.4.关于数学归纳法(1)数学归纳法的原理.(2)数学归纳法的应用:①证明与自然数有关的恒等式;②用数学归纳法证明不等式;③用数学归纳法证明整除性问题.(3)归纳—猜想—证明.。

(完整)数列题型及解题方法归纳总结,推荐文档

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题方法总结
本专题由数列和数学归纳法两部分主要内容组成,它融代数、三角、几何于一体,性质多、技巧性强、方法灵活、应用广泛、综合能力要求高.等差、等比数列的运算和性质是本专题复习的重点,以等差、等比数列为载体的代数推理问题,数列的实际应用问题及数学归纳法的应用是难点,它们都是高考命题的热点;方程观点、等价转换、消元法、待定系数法是贯穿于本专题的重要数学思想和方法;运算能力、逻辑思维能力、分析问题和解决问题的能力是复习好本专题的基本要求.
1.关于等差、等比数列
(1)等差、等比数列的判定:①利用定义判定;②an+an+2=2an+1{an}是等差数列,anan+2=an+12(an≠0){an}是等比数列;③an=an+b(a,b为常数){an}是等差数列,Sn=an2+bn(a,b为常数,Sn是数列{an}的前n项和){an}是等差数列.
(2)等差、等比数列性质的应用:注意脚码、奇偶项的特点等.
(3)数列是定义域为自然数集(或自然数集的子集)的函数,即an=f(n)(n∈N).因此我们可运用函数的思想方法去研究处理数列问题.如等差数列当公差d≠0时的通项公式为n的一次函数,前n项和为n的二次函数,有关前n项和的最大、最小问题可运用二次函数的性质来解决.2.关于一般数列
(1)已知数列的前n项和,求通项公式,这类问题常利用
an=S1(n=1),
求解.Sn-Sn-1(n≥2)
(2)用递推公式给出来的数列,常利用“归纳—猜想—证明”的方法求解.
3.关于数列的求和
(1)公式法:①等差、等比数列的前n项和公式;②自然数的方幂和公式.
(2)错位相减法.
(3)倒序相加法.
(4)裂(拆)项法.
4.关于数学归纳法
(1)数学归纳法的原理.
(2)数学归纳法的应用:①证明与自然数有关的恒等式;②用数学归纳法证明不等式;③用数学归纳法证明整除性问题.
(3)归纳—猜想—证明.。

相关文档
最新文档