2014-2015年江门市蓬江区第二中学九年级数学上学期统考卷

合集下载

九年级上册江门数学期末试卷中考真题汇编[解析版]

九年级上册江门数学期末试卷中考真题汇编[解析版]

九年级上册江门数学期末试卷中考真题汇编[解析版] 一、选择题 1.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x += B .220x x --= C .2320x xy -= D .240y -=2.sin 30°的值为( )A .3B .3C .12D .2 3.若x=2y ,则x y 的值为( ) A .2 B .1 C .12 D .134.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-5.sin30°的值是( )A .12B .22C .32D .16.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <17.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A .19 B .13 C .12 D .238.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)9.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值310.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103)B .(16345)C .(20345)D .(163,3 11.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( )A .12×108B .1.2×108C .1.2×109D .0.12×10912.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.14.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.15.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.16.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.17.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).18.数据2,3,5,5,4的众数是____.19.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 20.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.21.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.22.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).23.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.24.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.三、解答题25.2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至M处,观测指挥塔P位于南偏西30方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达N处,再观测指挥塔P位于南偏西45 方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)26.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶2.设BG的长为2x米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x 为何值时,区域③的面积最大?最大面积是多少?27.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.28.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标.29.某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?(1)设提价了x 元,则这种衬衫的售价为___________元,销售量为____________件. (2)列方程完成本题的解答.30.如图,⊙O 的直径为AB ,点C 在⊙O 上,点D ,E 分别在AB ,AC 的延长线上,DE ⊥AE ,垂足为E ,∠A =∠CDE .(1)求证:CD 是⊙O 的切线;(2)若AB =4,BD =3,求CD 的长.31.在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)32.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.2210x x +=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=12故选C此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.3.A解析:A【解析】【分析】将x=2y 代入x y 中化简后即可得到答案. 【详解】将x=2y 代入x y得: 22x y y y ==, 故选:A.【点睛】此题考查代数式代入求值,正确计算即可. 4.C解析:C【解析】【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:∵(1)(2)0x x --=,∴x -1=0或x -2=0,解得:1x =或2x =.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.5.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12. 故选:A .【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 7.B解析:B【解析】【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是3193=. 故选:B .【点睛】本题考查了概率,熟练掌握概率公式是解题的关键. 8.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .9.A解析:A【解析】【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.10.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=453.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,3).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.11.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120 000 000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题13.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.3【解析】【分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x ,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.【详解】由题意可知:∠AOB =2∠ACB =2×40°=80°,设扇形半径为x ,故阴影部分的面积为πx 2×80360=29×πx 2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.15.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.16.9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 17.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S =故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得635x=,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用.20.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:5 8【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.21.5 【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.22.【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的解析:60【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.23.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2解析:x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.24.2+【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点解析:【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD 35AB ,BC 35AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC x ,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.三、解答题25.30【解析】【分析】过P 作PH ⊥MN 于H ,构建直角三角形,设PH=x 海里,分别在两个直角三角形△PHN 和△PHM 中利用正切函数表示出NH 长和MH 长,列方程求解.【详解】过P 作PH ⊥MN ,垂足为H ,设PH=x 海里,在Rt △PHN ,tan ∠PNH=PH NH , ∴tan45°=PH NH , ∴NH=tan 45x x ,在Rt △PHM 中,tan ∠PMH=PH MH , ∴tan30°=PH MH , ∴MH=3tan 30xx ,∵MN=30×2=60海里,∴360x x-=,∴30330x .答:“山东舰”与指挥塔之间的最近距离为30330海里.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,找准线段之间的关系,利用锐角三角函数进行解答.26.(1)48-12x;(2)x为1或3;(3)x为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以2可得DF的长度;(2)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x(48-12x)=180,解得x1=1,x2=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-12x)=-60x2+240x=-60(x-2)2+240∵-60<0,∴当x=2时,S有最大值,最大值为240答:x为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.27.(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m 2+3m+4=214 ∴3521(,)24M 综上所述,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,点M 的坐标为1539(,)24M -- 21139(,)24M - 3521(,)24M .【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.28.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.【解析】【分析】(1)先求出A,B 的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.【详解】解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2y x bx c =-++, 得093542b c b c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩, ∴二次函数的表达式为2y x 2x 3=-++.(2)由图像可知,当12y y >时,2x <-或3x >.(3)令0x =,则3y =,∴()0,3C .∵平移,∴AOC DFE ∆≅∆,∴3EF FD ==.设点(),3E a a -,则()3,6D a a +-,∴()()263233a a a -=-++++,∴11a =,26a =-(舍去). ∴()4,5D -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.29.(1)(60x)+,(80020)x -;(2)(60+x−50)(800−20x )=12000,70,见解析【解析】【分析】(1)根据销售价等于原售价加上提价,销售量等于原销售量减去减少量即可;(2)根据销售利润等于单件的利润乘以销售量即可解答.【详解】(1)设这种衬衫应提价x 元,则这种衬衫的销售价为(60+x )元,销售量为(800−1005x )=(800−20x )件. 故答案为(60+x );(800−20x ).(2)根据(1)得:(60+x−50)(800−20x )=12000整理,得x 2−30x +200=0解得:x 1=10,x 2=20.为使顾客获得更多的优惠,所以x =10,60+x =70. 答:这种衬衫应提价10元,则这种衬衫的销售价为70元.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握销售问题的关系式.30.(1)见解析;(2【解析】【分析】(1)连接OC ,根据三角形的内角和得到90EDC ECD ∠+∠︒=,根据等腰三角形的性质得到A ACO ∠∠=,得到90OCD ∠︒=,于是得到结论;(2)根据已知条件得到1=22OC OB AB ==,根据勾股定理即可得到结论. 【详解】(1)证明:连接OC ,∵DE AE ⊥,∴90E ∠︒=,∴90EDC ECD ∠+∠︒=,∵A CDE ∠∠=,∴90A DCE ∠+∠︒=,∵OC OA =,∴A ACO ∠∠=,∴90ACO DCE ∠+∠︒=,∴90OCD ∠︒=,∴OC CD ⊥∵点C 在O 上, ∴CD 是O 的切线(2)解:∵43AB BD =,= ,∴1=22OC OB AB ==, ∴235OD +==, ∴ 2221CD OD OC =-=【点睛】本题主要考查切线的判定以及圆和勾股定理,根据题意准确作出辅助线是求解本题的关键. 31.14【解析】【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P =14. 考点:列表法与树状图法.32.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时, ∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°, 综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC的中垂线MN,以C为圆心,BC的长为半径作弧交MN与点D,连接BD,根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分线交MN于点O以O为圆心OB为半径作圆,交AD于点Q,圆O即为△BCD的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如图③,点Q即为所求.(4)③⑤.①如下图所示,在RtABC中,∠ABC=90°,O为△ABC的内心假设∠BAC=60°,∠ACB=30°∵点O是△ABC的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q . 如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.。

2014-2015学年度上学期期末联考试卷九年级数学(含答案)

2014-2015学年度上学期期末联考试卷九年级数学(含答案)

座位号:2014-2015学年度上学期期末联考试卷九年级数学(全卷共23题,满分100分,时间120分钟)一、选择题(本题8个小题,每小题3分,共24分) 1、下列图形既是轴对称图形又是中心对称图形的是( )2、对于二次函数2)1(22-+=x y 的描述正确的是( ) A 、对称轴是直线1=x B 、顶点坐标)2,1(-- C 、顶点坐标)2,1(- D 、开口向下,有最大值-23、方程02092=+-x x 的两根分别是⊙1O 和⊙2O 的半径,且两圆相切,则圆心距21O O 为( )A 、 1B 、9C 、4或5D 、1或9 4、下列叙述正确的是( )A 、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球B 、“如果b a ,是实数,那么a b b a +=+”是不确定事件C 、为了了解一批炮弹的杀伤力,采用普查的方式比较合适D 、两个相似图形一定是位似图形5、⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A 、 1 cm B 、 7cm C 、 3 cm 或4 cm D 、 1cm 或7cm6、如图,在ABC ∆中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( ) A 、3:8 B 、3:5 C 、5:8 D 、2:57、如图,直线b x y +-=与双曲线xky =交于点A 、B ,则不等式组0≥+->b x x k 的解集为( )A 、x <﹣1或x >2B 、﹣1<x ≤1C 、﹣1<x <0D 、﹣1<x <1 8、某种手机经过四、五月份连续两次降价,每部手机由3200元降到2500元。

设平均每月降价的百分率为x ,则根据题意列出的方程是( ) A 、 2500)1(32002=-x B 、2500)1(32002=+xC 、2500)21(3200=-xD 、250032002=-x二、填空题(本题6个小题,每小题3分,共18分)9、如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π)。

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷考试时间100分钟,试卷满分100分一. 选择题(每小题3分,共30分)1.“ a 是实数,0≥a ”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件2. 把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 3.已知反比例函数xy 1=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1 时, 0 <y <1D .当 x <0 时, y 随着 x 的增大而增大 4.如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180° 5.如果关于x 的一元二次方程22(21)10k x k x -++=有两个 不相等的实数根,那么k 的取值范围是() A .14k >-B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 6.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧tan 的值是( )A .1BCD 7.如图,在大小为4×4的正方形网格中与①中三角形相似的是( )A .②B . ③C . ④和③D . ②和④8.已知抛物线k x a y +-=2)2((是常数,>k a a ,0),A (﹣3,y 1)、B (3,y 2)、C (4,y 3)是抛物线上三点,则y 1,y 2,y 3由小到大依序排列为( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 2<y 3<y 1 D .y 3<y 2<y 1 9.如图,△AOB 是等边三角形,B (2,0),将△AOB 绕O 点逆时针方向旋转90°到△A′OB′位置,则点A′ 的坐标是( )(第4题)(第6题)A .(﹣1,)B .(﹣,1)C .(,﹣1)D .(1,﹣)10. 已知二次函数c bx ax y ++=2的图象如图所示,那么 一次函数c bx y +=和反比例函数xay =在同一平面直角坐标系中的图象大致是( )A .B .C .D .二.填空题(每小题3分,共24分.) 11. 已知点M )3,21(m -关于原点对称的点在第一象限,那么的取值范围是________. 12. 如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为 13.一种药品经过两次降价,药价从原来每盒 60 元降至现在的 48.6 元,则平均每次降价的百分率是 .14. 如图,在平面直角坐标系中,点O为坐标原点,点P 在第一象限,☉P 与x 轴交于O 、A 两点,点A 的坐标为(6,0),☉P的半径为13,则点P 的坐标为 .15.如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,AB 上取一点E ,A 、D 、E 三点为顶点组成的三角形与△ABC 相似,AE 的长是_____ _. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (a 3,a )是反比例函数xk y =(k >0)的图象上与正方形的一个交点,若图中阴影部分的 面积等于9,则k 的值为 .(第16题) 17. 轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达 C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔 A 的距离是 海里.18. 二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),下列说法:①若b 2﹣4ac=0,则抛物线的顶点一定在x 轴上; ②若a-b+c=0,则抛物线必过点(-1,0);③若a <0,且一元二次方程ax 2+bx+c=0有两根x 1,x 2(x 1<x 2),则ax 2+bx+c <0的解集为x 1<x <x 2;④若33ca b +=,则方程ax 2+bx+c=0有一根为-3. (第12题) (第14题) (第15题)其中正确的是 (把正确的序号都填上)三.解答题(本大题共有5题,满分46分) 19.(每小题6分,共12分)(1)2tan 603sin 30cos 45+--o o o . (2)解方程:2410x x ++=20.(本题8分) 如图,一次函数y 1=kx+b 的图象与反比例函数2my x=(x >0)的图象交于A (1,6),B (a ,2)两点.(1)求一次函数与反比例函数的解析式; (2)直接写出y 1≤y 2时x 的取值范围.21.(本题8分) 小华和小丽两人玩数字游戏,先由小丽心中任意想一个数记为 x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为 y ,且他们想和猜的数字只能在 1、2、3、4这四个数字中.(1)请用树状图或列表法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通” .求他们“心灵相通”的概率; (3)如果他们想和猜的数字满足x y 1-≤,则称他们“心有灵犀” .求他们“心有灵犀”的概率.22. (本题8分) 如图,直线PM 切⊙O 于点M,直线PO 交⊙O 于A 、B 两点,弦AC ∥PM ,连接OM 、BC. 求证:(1)△ABC ∽△POM ;(2)2OA 2=OP·BC.23. (本题10分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润甲y (万元)与进货量x(吨)近似满足函数关系x y 3.0=甲;乙种水果的销售利润乙y (万元)与进货量x (吨)近似满足函数关系bx ax y +=2乙(其中0≠a ,a ,b 为常数),且进货量x 为1吨时,销售利润乙y 为1.4万元;进货量x 为2吨时,销售利润乙y 为2.6万元.(1)求乙y (万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?2014—2015学年第一学期九年级数学期末质量检测评分标准11.m0< 12.1413.010 14.(3,2) 15.916或16.3 17.25 18.①、②、④三.解答题(本大题共有5题,满分46分)19.(1)21-2⎛⨯⎝…………………………………3分=313+-22…………………………………5分=4………………………………………6分(2)(2)解:2x4x1+=-,2x4x 414++=-+2(x2)3+=…………………………………3分x+2=…………………………………5分12x2,x2==.………………………………………6分20. (1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,…………………………………3分∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=-2x+8,反比例函数的解析式为y2=;…………………6分(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.…………………………………8分(2)根据(1)得所以可能的情况有16中,想和猜的数相同的情况有4种,∴P(心灵相通)=41164=…………………6分(3)根据(1)得所以可能的情况有16中,数字满足|x-y|≤1的情况有10种,∴P(心有灵犀)105168==…………………8分22.(1)证明:∵直线PM切⊙O于点M,∴∠PMO=90°,∵弦AB是直径,∴∠ACB=90°,∴∠ACB=∠PMO,∵AC∥PM,∴∠CAB=∠P,∴△ABC∽△POM;…………………4分(2)∵△ABC∽△POM,∴,又AB=2OA,OA=OM,∴,∴2OA2=OP·BC.…………………8分23.解:(1)由题意,得:解得∴y乙=-0.1x2+1.5x.…………………4分(2)W=y甲+y乙=0.3(10-t)+(-0.1t2+1.5t)∴W=-0.1t2+1.2t+3.W=-0.1(t-6)2+6.6.∴t=6时,W有最大值为6.6.∴10-6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.…………………10分2014-2015学年人教版九年级上学期期末数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣15.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A.B.C.D.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是.(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(﹣,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y=mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.我们规定:函数y=(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=的图象经过点B、E,求该奇特函数的表达式;(3)把反比例函数y=的图象向右平移4个单位,再向上平移个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2014-2015学年人教版九年级上学期期末数学试卷答案解析参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.考点:比例的性质.专题:计算题.分析:根据内项之积等于外项之积得到2x=15,然后解一次方程即可.解答:解:∵=,∴2x=15,∴x=.故选B.点评:本题是基础题,考查了比例的基本性质,比较简单.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定考点:点与圆的位置关系.分析:点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解答:解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.点评:本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.考点:锐角三角函数的定义.分析:首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.解答:解:∵在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC===3,∴sinB==.故选D.点评:本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1考点:反比例函数的性质.分析:如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()解答:解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.点评:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°考点:圆周角定理.分析:已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.解答:解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.点评:本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.考点:概率公式.分析:先统计出奇数点的个数,再根据概率公式解答.解答:解:∵正方体骰子共六个面,点数为1,2,3,4,5,6,奇数为1,3,5,∴点数为奇数的概率为:=.故选:C.点评:此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A .B .C .D .考点: 动点问题的函数图象.分析: 分段讨论,当0≤x ≤2时,作PQ ⊥AC ,根据锐角三角函数和勾股定理求出AQ 、PQ 、CQ 、PC 2;当2<x <4时,PC 在BC 上,是一次函数;当4<x ≤6时,PC 在AC 上,是一次函数,根据函数关系式分析即可得出结论.解答: 解:当0≤x ≤2时,作PQ ⊥AC ,∵AP=x ,∠A=60°∴AQ=,PQ=, ∴CQ=2﹣,∴PC==, ∴PC 2=x 2﹣2x+4=(x ﹣1)2+3;当2<x <4时,PC=4﹣x ,当4<x ≤6时,PC=2﹣(6﹣x )=x ﹣4,故选:C .点评: 本题主要考查了动点问题的函数图形,分段讨论,列出每段函数的解析式是解决问题的关键.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为 6π .考点: 弧长的计算.分析: 直接利用弧长的计算公式计算即可.解答: 解:弧长是:=6π.故答案是:6π.点评:本题考查了弧长的计算公式,正确记忆公式是关键.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是2:5.考点:相似三角形的应用.分析:由题意知三角尺与其影子相似,它们周长的比就等于相似比.解答:解:∵,∴三角尺的周长与它在墙上形成的影子的周长的比是.点评:本题考查相似三角形的性质,相似三角形的周长的比等于相似比.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是③⑤.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.考点:二次函数图象与系数的关系.分析:根据二次函数的图象开口方向即可判断A;由二次函数的图象与y轴的交点位置即可判断B;把x=﹣1代入二次函数的解析式即可判断C;根据二次函数的对称轴即可求出D.解答:解:①∵二次函数的图象开口向上,∴a>0,故本选项错误;②∵二次函数的图象与y轴的交点在点(0,﹣1)的上方,∴c>﹣1,故本选项错误;③、∵二次函数的图象的对称轴是直线x=,∴﹣=,﹣3b=2a,2a+3b=0,故本选项正确;④∵二次函数的图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;⑤∵二次函数的图象的对称轴是直线x=,∴﹣=,∴﹣3b=2a,b=﹣a,∴y最小值=a+b+c=a+×(﹣a)+c=;即y的最小值为,故本选项正确;故答案为:③⑤.点评:本题考查了二次函数的图象和系数的关系,题目具有一定的代表性,是一道比较好的题目,注意用了数形结合思想,二次函数的图象开口方向决定a的符号,二次函数的图形与y轴的交点位置决定c的符号,根据二次函数的图象的对称轴是直线x=得出﹣=,把x=代入y=ax2+bx+c(a≠0)得出y=a+b+c等等.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是(﹣1,1).(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是(4025,﹣1).考点:规律型:点的坐标.分析:(1)把正方形ABCD先沿x轴翻折,则点B关于x轴对称,得到B点的坐标为:(﹣3,1),再向右平移2个单位”后点B的坐标为:(﹣3+2,1),即B1(﹣1,1).(2)首先由正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),然后根据题意求得第1次、2次、3次变换后的点B的对应点的坐标,即可得规律:第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),继而求得把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标.解答:解:(1)∵正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴根据题意得:第1次变换后的点B的对应点的坐标为(﹣3+2,1),即B1(﹣1,1),(2)第2次变换后的点B的对应点的坐标为:(﹣1+2,﹣1),即(1,﹣1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),∴把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标是:(4025,﹣1).故答案为:(﹣1,1);(4025,﹣1).点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点B的对应点的坐标为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n ﹣3,﹣1)是解此题的关键.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.考点:特殊角的三角函数值.分析:将tan30°=,cos60°=,tan45°=1,sin30°=分别代入运算,然后合并即可得出答案.解答:解:原式==.点评:本题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.考点:二次函数的三种形式;二次函数的性质.分析:(1)由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h求解即可;(3)先求出方程x2﹣4x+3=0的两根,再根据二次函数的性质即可求解.解答:解:(1)y=x2﹣4x+3=(x2﹣4x+4)﹣4+3=(x﹣2)2﹣1;(2)∵y=(x﹣2)2﹣1,∴对称轴为直线x=2,顶点坐标为(2,﹣1);(3)解方程x2﹣4x+3=0,得x=1或3.∵y=x2﹣4x+3,a=1>0,∴抛物线开口向上,∴当1<x<3时,函数y<0.点评:本题考查了二次函数解析式的三种形式,二次函数的性质,难度适中.利用配方法将一般式转化为顶点式是解题的关键.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.考点:相似三角形的判定与性质.分析:(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.解答:(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.点评:本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC.解答:解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.点评:本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:计算题.分析:(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r 的方程,求出方程的解即可得到圆的半径r的值.解答:(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.点评:此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.考点:反比例函数与一次函数的交点问题;三角形的面积.专题:计算题.分析:(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,(2)可求得点B的坐标,设P(x,y),由S△PBC=18,即可求得x,y的值.解答:解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),∵S△PBC==18,∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)点评:本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.考点:解直角三角形.专题:计算题.分析:(1)过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,从而求出tanB的值;(2)在Rt△BCD中,先求出BC=k=10,求出k的值,继而得出AB的值.解答:解:(1)过点C作CD⊥AB,垂足为D,(1分)在Rt△ACD中,,(1分)设CD=3k,则AB=AC=5k,(1分)∴.(1分)在△BCD中,∵BD=AB﹣AD=5k﹣4k=k.(1分)∴.(1分)(2)在Rt△BCD中,,(1分)∵BC=10,∴.(1分)∴.(1分)∴AB=.(1分)点评:本题考查了解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.考点:待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.分析:(1)根据待定系数法即可求得;(2)正确画出图形;(3)通过图象可以看出点B纵坐标t的取值范围.解答:解:(1)∵抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).∴,解得,∴抛物线的表达式为y=﹣x2﹣2x+3.(2)此抛物线如图所示.(3)2<t≤4.如图,由图象可知点B纵坐标t的取值范围为2<t≤4.点评:本题考查了待定系数法求解析式,以及画图的能力和识别图形的能力,要熟练掌握.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.考点:切线的性质.分析:(1)连接AE,由圆周角定理和等腰三角形的性质,结合切线的性质可证得∠CBF=∠BAE,可证得结论;(2)由(1)结论结合正弦值,在Rt△ABE中可求得BE,可求出BC,过C作CM⊥BF,在Rt△BCM中可求得BM,CM,再利用平行线分线段成比例可求得BF.解答:(1)证明:如图1,连结AE.∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=∠BAC.∵BF是⊙O的切线,∴∠CBF=∠BAE,∴∠CBF=∠CAB.(2)解:由(1)可知∠CBF=∠BAE,∴sin∠BAE=sin∠CBF=,在Rt△ABE中,sin∠BAE=,∴=,∴BE=,∴BC=2,如图2,过C作CM⊥BF于点M,则sin∠CBF==,即=,解得CM=2,由勾股定理可求得BM=4,又∵AB∥CM,∴=,。

江门市2014年初中毕业生学业水平调研测试(数学)试题及答案

江门市2014年初中毕业生学业水平调研测试(数学)试题及答案

江门市 2014年初中毕业生学业水平调研测试数学本试卷共 4页, 25小题,满分 120分,考试时间 100分钟.注意事项:⒈答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用 2B 铅笔把对应号码的标号涂黑.⒉选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上. ⒊非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题 10小题,每小题 3分,共 30分在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-的相反数是A . 2-B . 2C .21-D .212.下面四个图形中,是三棱柱的平面展开图的是A .B .C .D .3.甲、乙两个芭蕾舞团女演员的平均身高是 165 =甲x , 165=乙x ,她们身高的方差是 .512=甲s , .522=乙s .下列说法正确的是A .甲团演员身高更整齐B .乙团演员身高更整齐C .两团演员身高一样更整齐D .无法确定谁更整齐4.下列等式正确的是A . 11(2-=-B . 632222=⨯C . 020=D . 1 1 (2= --5.在数轴上表示不等式 01<-x 的解集,正确的是A .B .C .D .秘密★启用前数学试题第 1页(共 4页数学试题第 2页(共 4页图1 图2图 46.下列图形中,既是轴对称又是中心对称的图形是A .直角三角形B .正五边形C .正六边形D .等腰梯形7.如图 1, CD AB //, BC BD ⊥,∠ 2=50°,则∠ 1=A . 40°B . 50°C . 60°D . 140°8.在我市今年慈善公益万人行活动中,某校九年级有 50人参与了公益捐款, 捐款金额的条形统计图如图 2所示.捐款金额的众数和中位数分别是A . 10, 20B . 20, 50C . 20, 35D . 10, 359.有一根 1m 长的铁丝,怎样用它围成一个面积为 206. 0m 的长方形? 设长方形的长为 x m ,依题意,下列方程正确的是A . 06. 0 1(=-x xB . 06. 0 21(=-x xC . 06. 0 5. 0(=-x xD . 06. 0 21(2=-x x二、填空题(本大题 6小题,每小题 4分,共 24分请将下列各题的正确答案填写在答题卡相应的位置上.11.地球绕太阳公转的速度约为每秒 30000米,这个数据用科学记数法可表示为 .12.因式分解:=+-122x x13.如图 4,圆盘被分成 8个全等的小扇形,分别涂上红、黄、白 3种颜色.如果小明将飞镖随意投中圆盘,投中白色扇形的概率是 .14.命题“对顶角相等”的题设是 ,结论是 .图 3数学试题第 3页(共 4页 AC 图 715. 计算 4332-5443-6554-, =-201200200199 . 16.如图5, ABC ∆中, =∠C 90°, 34tan =A , 以 C 为圆心的圆与 AB 相切于 D .若圆 C 的半径为 1,则阴影部分的面积 =S .三、解答题㈠(本大题 3小题,每小题 6分,共 18分 17.先化简,后求值:111-++x x x ,其中 3=x . 18.如图6, ABC ∆中, =∠C 90°,将ABC ∆绕点 A 旋转得到11C AB ∆,点 C 的对应点 1C 恰好落在 AB 边上.⑴作图:作出11C AB ∆(保留作图痕迹,不要求写作法 ;⑵已知 5=AC , 12=BC ,求 1BB 的长.19. 在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子, 从盒中随机地取出一个棋子, 它是黑色棋子的概率是 83. ⑴写出表示 x 和 y 关系的表达式;⑵如果往盒中再放进 10颗黑色棋子, 则取得黑色棋子的概率变为 21, 求 x 和 y 的值.四、解答题㈡(本大题 3小题,每小题 7分,共 21分20.如图 7,四边形 ABCD 、 DEFG 都是正方形,连接 AE 、CG .求证:⑴ CG AE =;⑵ CG AE ⊥.图 5数学试题第 4页(共 4页图 9; 图8 21.今年植树节,某学校计划安排教师植树 300颗,教师完成植树 120颗后,学校全体团员加入植树活动,植树速度提高到原来的 1.5倍,整个植树过程共用了 3小时.⑴学校原计划每小时植树多少颗?⑵如果团员全程参加,整个植树过程需要多少小时完成?22.如图 8, AB 是⊙ O 的弦, AB OP ⊥交⊙ O 于 C , 2=OC , 030=∠ABC .⑴求 AB 的长;⑵若 C 是 OP 的中点,求证:PB 是⊙ O 的切线.五、解答题㈢(本大题 3小题,每小题 9分,共 27分23.在平面直角坐标系 Oxy 中,抛物线 k x x y +-=42(k 是常数与 x 轴相交于 A 、B 两点(B 在 A 的右边 ,与 y 轴相交于C 点.⑴求 k 的取值范围;⑵若OBC ∆是等腰直角三角形,求 k 的值.24.如图 9,矩形 ABCD 中, E 是 BC 上一点,将矩形沿 AE 翻折后,点 B 恰好与 CD 边上的点 F 重合.已知 5=AB , 3=AD .⑴求 BE ;⑵求 EAF ∠tan .25.如图 10,抛物线 4212--=x x y 与坐标轴相交于 A 、 B 、 C 三点, P 是线段 AB 上一动点(端点除外 ,过 P 作 AC PD //交 BC 于点 D ,连接 CP .⑴直接写出 A 、 B 、 C 的坐标;⑵求PCD ∆面积的最大值,并判断当PCD ∆的面积取最大值时,以 PA 、 PD 为邻边的平行四边形是否为菱形.数学试题第 5页(共 4页评分参考一、选择题 BAADC CADCB二、填空题11. 4103⨯12. 2 1(-x13. 41 14.两个角是对顶角(2分 ,这两个角相等(2分 15. 402001-16. 24625π- 三、解答题㈠17.原式1(1( 1( 1(-+++-=x x x x x …… 2分(分子、分母各 1分 1122-+=x x …… 4分 3=x 时,原式 1 3(13(22-+=…… 5分2=…… 6分18.⑴作图(图略…… 3分(确定 1C 点 1分,确定 1B 点 1分,其他 1分⑵由已知得13=AB …… 4分, 85131=-=BC , 1211=C B …… 5分所以4128221=+=BB …… 6分19.⑴ 83=+y x x (或等价关系式…… 2分⑵依题意,21 10(10=+++y x x …… 3分解方程组⎪⎪⎩⎪⎪⎨⎧=+++=+21 10(1083y x x y x x 即⎩⎨⎧++=+=y x x y x 1020235…… 5分x 15 得,即 x 和 y 的值分别为 15 和25 ……6 分. y 25 四、解答题㈡ 20.⑴依题意, AD CD , GD ED ……1 分CDG ADE 900 ADG ……2 分∴ADE ≌CDG ……3 分, AE CG ……4 分⑵设 AE 与 DG 相交于 M , AE 与 CG 相交于 N ,在GMN 和DME 中,由⑴得CGDAED ……5 分,又GMN DME ……6 分所以GNM MDE 900 , AE CG ……7 分. 21.⑴设学校原计划每小时植树 x 颗……1 分依题意得, 120 1803 ……3 分 x 1.5 x 300 300 2.5 (小时)……6 分 1.5 x 120 解方程得, x 80 ……4 分,检验, x 80 是原分式方程的解……5 分⑵团员全程参加,整个植树过程需要答(略)……7 分. 22.⑴连接 OA 、OB ……1 分,∵ABC 300 ,∴AOC 600 ......2 分设 OP AB 于 D ,则 AD OA sin AOC 3 ......3 分又∵ OP AB ,∴ AB 2 AD 2 3 ......4 分⑵由⑴知BOC 600 ,从而OBC OCB 600 ......5 分 C 是 OP 的中点, CP CO CB ,从而PBC 1 OCB 30 0 ......6 分 2 所以OBP 900 ( OB BP ), PB 是⊙ O 的切线 (7)分.五、解答题㈢ 23.⑴依题意, ( 4 2 4k 0 ……1 分解不等式得, k 4......2 分⑵依题意,C (0 , k ......3 分,从而B(| k | , 0 ......5 分 | k |2 4 | k | k 0 (6)分 k 0 时,k 2 3k 0 ,解得 k 3 ;k 0 时,k 2 5k 0 ,解得 k5 …… 9 分(注:正确求得 k 3 、 k 5 中任何一个给 2 分,全对给 3 分).数学试题第6 页(共 4 页)24.⑴(方法一)依题意, AF AB 5 , DF AF 2 AD2 4 ......2 分在 Rt CEF 中,CF CD DF 1 ,CFE DAF 900 AFD (3)分, cos CFE cos DAF ……4 分,所以解得 EF CF AD ……5 分 EF AF CF AF 5 5 ,所以 BE EF ……7 分 AD 3 3 (方法二)依题意, AF AB5 , DF AF 2 AD2 4 ……2 分设 BE x ,在 Rt CEF 中,CF CD DF 1 ,EF BE x ,CE 3 x ……3 分, x 2 12 (3 x 2 ……5 分,解得 BE x ⑵ tan EAF tan EAB ……8 分, 5 ……7 分 3 BE 1 ……9 分. AB 3 25.⑴ A(4 , 0 、 B( 2 , 0 、 C (0 , 4 ……2 分(对 1-2 个给 1 分,全对 2 分)⑵设 P( x , 0 ( 2 x 4 ),因为 PD // AC ,所以 PD BP 2 2 ……3 分,解得PD ( x 2 ……4 分 AC AB 3 C 到 PD 的距离(即 P 到 AC 的距离)d PA sin 450 2 (4 x ……5 分 2 1 1 1 2 8 PCD 的面积 S PD d ( x 2( 4 x x 2 x ……6 分 2 3 3 3 3 1 S ( x 1 2 3 ,PCD 面积的最大值为3 ……7 分 3 PCD 的面积取最大值时, x 1 ,PA 4 x 3 ,PD 2 2 ( x2 2 23 ……8 分因为 PA PD ,所以以 PA 、 PD 为邻边的平行四边形不是菱形……9 分.数学试题第 7 页(共4 页)。

最新2014-2015学年人教版九年级上册数学期末测试卷及答案

最新2014-2015学年人教版九年级上册数学期末测试卷及答案

2014-2015学年度九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是 ( )2.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( ) A .y =2(x -1)2-3 B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+33.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于 ( )A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. 36 D. 6 5.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B .2C .2D .26.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( ) A .35° B .45° C .55° D .75°7.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若221-<<x x ,则( )A.21y y < B.21y y > C.21y y = D.1y 、2y 的大小不确定 8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .B .C .D .9.一次函数y ax b =+与二次函数2y ax bx c =++在同一坐标系中的图像可能是( )第3题图 第6题图第4题图A .B .C .D .10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A.3B.3根号3 C.D.4二、填空题:1112.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB= °.13.若函数221y mx x=++的图象与x轴只有一个公共点,则常数m的值是_______ 14.抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.15.如图,在一个正方形围栏中均匀地散步者许多米粒,正方形内有一个圆(正方形的内切园),一只小鸡仔围栏内啄食,则“小鸡正在院内”啄食的概率为_______.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A 经过的路线与直线l所围成的面积是_________ .三、解答下列各题1.解方程:(1)122=+xx(2)0)3(2)3(2=-+-xx第12题图第14题图第15题图2.已知关于x 的一元二次方程2(31)30kx k x +++=(0)k ≠. (1)求证:无论k 取何值,方程总有两个实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为整数,求k 的值.3.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于原点O 逆时针旋转90°得到△A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2. (2)△A 2B 2C 2中顶点B 2坐标为 .4.某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A 1表示,女生用B 1表示)和九年(2)班的1名男生1名女生(男生用A 2表示,女生用B 2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.5.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?6、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.7、如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?参考答案1.DA 、是中心对称图形,不是轴对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、既是中心对称图形又是轴对称图形,故本选项正确. 2.D将函数y =2x 2的图象向左平移1个单位,得: y =2(x +1)2,,再向上平移3个单位,可得到的抛物线是y =2(x +1)2+3.故选:D. 考点:抛物线的平移. 3.C .∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C 、A 、B 1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°-55°=125°, ∴旋转角等于125°. 4.D.∵OC ⊥AB ,OC 过圆心O 点,∴BC=AC=21AB=21×16=8,在Rt △OCB 中,由勾股定理得:68102222=-=-=BC OB OC5.B .连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,因而面积是因而正六边形的面积 6.A【解析】连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵∠ABD =55°,∴∠A =90°-∠ABD =35°,∴∠BCD =∠A =35°. 7.A因为函数m x x y +--=822的图象抛物线开口向下,所以在对称轴8224b x a -=-=-=--左侧,y 随x 的增大而增大,因为221-<<x x ,所以21y y <,故选:A. 8.A【解析】过O 点作OC⊥AB,垂足为D ,交⊙O 于点C ,由折叠的性质可知OD 为半径的一半,而OA为半径,可求∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理求∠AOB,然后求得弧AB的长,利用弧长公式求得围成的圆锥的底面半径,最后利用勾股定理求得其高即可.解:过O点作OC⊥AB,垂足为D,交⊙O于点C,由折叠的性质可知,OD=OC=OA,由此可得,在Rt△AOD中,∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理,得∠AOB=180°﹣∠A﹣∠B=120°,∴弧AB的长为=2设围成的圆锥的底面半径为r,则2πr=2π,∴r=1cm.∴圆锥的高为=.故选A.9.C.A.由一次函数y ax b=+的图象可得:a>0,b>0,此时二次函数2=++的y ax bx c图象应该开口向上,故A错误;B.由一次函数y ax b=+的图象可得:a>0,b>0,此时二次函数2=++的y ax bx c图象应该开口向上,对称轴x=﹣<0,故B错误;C.由一次函数y ax b=+的图象可得:a<0,b<0,此时二次函数2=++的y ax bx c图象应该开口向下,对称轴x=﹣<0,故C正确.D.由一次函数y ax b=+的图象可得:a<0,b<0,此时二次函数2=++的y ax bx c图象应该开口向下,故D错误;10.求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解:圆锥的底面周长是6,则6=,∴n=180°,即圆锥侧面展开图的圆心角是180度. 则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度. ∴在圆锥侧面展开图中BP=m .故小猫经过的最短距离是m .11.(1,2).已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.试题解析:∵y=x 2-2x+3=x 2-2x+1-1+3=(x-1)2+2, ∴抛物线y=x 2-2x+3的顶点坐标是(1,2). 12.根据旋转可得AC=AD ,∠CAD=∠BAE , ∵AC=AD ,∠C=80°, ∴∠C=∠ADC=80°,∴∠CAD=180°-80°-80°=20°, ∴∠BAE=20°.13.需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m 的值.试题解析:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点; ②若m≠0,则函数y=mx 2+2x+1,是二次函数. 根据题意得:△=4-4m=0, 解得:m=1.故答案为:0或1.14.根据图象可知抛物线的对称轴为x=-1,一个交点为(1,0),那么可推出另一交点为(-3,0),结合图象即可求出y >0时,x 的范围. 解:根据抛物线的图象可知:抛物线的对称轴为x=-1,已知一个交点为(1,0), 根据对称性,则另一交点为(-3,0), 所以y >0时,x 的取值范围是-3<x <1. 15.设正方形的边长为a ,再分别计算出正方形与圆的面积,计算出其比值即可. 试题解析:设正方形的边长为a ,则S 正方形=a 2,因为圆的半径为2a,所以S 圆=π(2a )2=24a ,所以“小鸡正在圆圈内”啄食的概率为:2244a a ππ=.16.∵在Rt △ACB 中,BC=2,AC=2∴由勾股定理得:AB=4,∴AB=2BC ,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=22120490125236036023πππ⨯⨯++⨯⨯=+17.解:()1212=+x x 方程两边同时加1得: 2122=++x x ()212=+x 21±=+x 所以: 21±-=x()()()032322=-+-x x()()0233=+--x x()()013=--x x所以:13==x x 或小题(1)用配方法好解,小题(2)适合用提公因式法。

2014-2015年第一学期九年级数学试题答案

2014-2015年第一学期九年级数学试题答案

2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。

江门市2014年初中毕业生学业水平调研测试(数学)试题及答案

江门市2014年初中毕业生学业水平调研测试(数学)试题及答案江门市2014年初中毕业生学业水平调研测试数学试卷共25小题,满分120分,考试时间100分钟。

注意事项包括:填写姓名、考生号等信息,选择题用铅笔涂黑答题卡上对应的选项,非选择题用黑色字迹钢笔或签字笔作答,保持答题卡整洁,不使用铅笔和涂改液。

一、选择题共10小题,每小题3分,共30分。

每小题给出四个选项,只有一个是正确的。

例如,第一题的正确答案是C,即-2的相反数是2.二、非选择题包括15小题,共90分。

其中,第三题是关于方差的问题,给出了甲、乙两个芭蕾舞团女演员的平均身高和方差,要求选择哪个团演员身高更整齐。

正确答案是D,即无法确定谁更整齐。

第九题是一个关于长方形面积的问题,给出了一根1m长的铁丝和要围成的长方形面积,要求设长方形的长为x,列出方程并解出x。

正确答案是C,即x(.5-x)=.06.其余题目没有明显错误,不需要改写。

二、选择题11.B12.(x-1)^213.3/814.命题:两个角互为对顶角。

结论:这两个角相等。

15.S = 1/216.-2.3.1/2.2/3三、解答题17.化简后得到:x/(x+1) + (x+1)/x = 4x/(x^2-1),代入x=3得到左边等于12/5,因此答案为12/5.18.⑴⑵根据勾股定理得到AB=13,因此BC=5.由于AC=5,所以BB'=5,根据相似三角形得到BB'=BC/AC*AB=13/5,因此BB=BB'-BC=8.19.⑴ x/(x+y)⑵ 3/8 = x/(x+10+y),解得x=15,代入得到y=20.四、解答题20.⑴由于AB=BC=CD,DE=EF=FG,因此XXX=CG。

⑵因为AB=BC,DE=EF,所以AE和CG平行。

又因为AE=CG,所以AE和CG垂直。

21.⑴教师每小时植树的速度为120/3=40颗,因此学校原计划每小时植树40颗。

2014-2015学年第一学期期末质量检测九年级数学试卷附答案

2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。

1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。

2024年广东省江门二中学九年级数学第一学期开学学业质量监测试题【含答案】

2024年广东省江门二中学九年级数学第一学期开学学业质量监测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A .①,②B .①,④C .③,④D .②,③2、(4分)如图,在中,已知是边上的高线,平分,交于点,,,则的面积等于()A .B .C .D .3、(4分)下列由左到右的变形,属于因式分解的是()A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x-+=+-+4、(4分)如图,在正方形ABCD 中,点E,F 分别在CD,BC 上,且AF=BE,BE 与AF 相交于点G,则下列结论中错误的是()学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………A .BF=CEB .∠DAF=∠BEC C .AF⊥BED .∠AFB+∠BEC=90°5、(4分)菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为()A .3:1B .4:1C .5:1D .6:16、(4分)如图,在ABC ∆中,3AB =,2AC =,30BAC ∠=︒,将ABC ∆绕点A 逆时针旋转60︒得到△11AB C ,连接BC ,则1BC 的长为()A .5B 13C .4D .67、(4分)如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A .24、25B .25、24C .25、25D .23、258、(4分)七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a ,中位数是b ,众数是c ,则有()A .c>b>a B .b>c>a C .c>a>b D .a>b>c 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)用反证法证明:“三角形中至少有两个锐角”时,首先应假设这个三角形中_____.10、(4分)一粒米的重量约为0.000036克,用科学记数法表示为_____克.11、(4分)长方形的长是宽的2倍,对角线长是5cm ,则这个长方形的长是______.12、(4分)在4个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8个红球.2个白球,3号袋中有5个红球.5个白球,4号袋中有2个红球,8个白球.从各个袋子中任意摸出1个球,摸到白球的可能性最大的是_____(填袋子号).13、(4分)如图,在平面直角坐标系中,已知△ABC 与△DEF 位似,原点O 是位似中心,位似比12OA AD =,若AB =1.5,则DE =_____.三、解答题(本大题共5个小题,共48分)14、(12分)在数学兴趣小组活动中,小明将边长为2的正方形ABCD 与边长为的正方形AEFG 按如图1方式放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.(1)请你猜想BE 与DG 之间的数量与位置关系,并加以证明;(2)在图2中,若将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,求出BE 的长;(3)在图3中,若将正方形ABCD 绕点A 继续逆时针旋转,且线段DG 与线段BE 相交于点H ,写出GHE ∆与BHD ∆面积之和的最大值,并简要说明理由.15、(8分)某校检测学生跳绳水平,抽样调查了部分学生的“一分钟跳绳”成绩,并绘制了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)抽样的人数是________人,补全频数分布直方图,扇形中m =________;(2)本次调查数据的中位数落在________组;(3)如果“一分钟跳绳”成绩大于等于120次为优秀,那么该校2250名学生中“1分钟跳绳”成绩为优秀的大约有多少人?16、(8分)正方形ABCD 的边长为6,点E 、F 分别在AB 、BC 上,将AD 、DC 分别沿DE 、DF 折叠,点A 、C 恰好都落在P 处,且2AE =.()1求EF 的长;()2求BEF 的面积.17、(10分)有两个不透明的布袋,其中一个布袋中有一个红球和两个白球,另一个布袋中有一个红球和三个白球,它们除了颜色外其他都相同.在两个布袋中分别摸出一个球,(1)用树形图或列表法展现可能出现的所有结果;(2)求摸到一个红球和一个白球的概率.18、(10分)解一元二次方程:(1)6x 2﹣x ﹣2=0(2)(x+3)(x ﹣3)=3B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点A (2,1).当x>2时,1y _____________________2y .(填“>”或“<”)20、(4分)一个正多边形的每个外角等于72°,则它的边数是__________.21、(4分)若直线y =kx +b 与直线y =2x 平行,且与y 轴相交于点(0,﹣3),则直线的函数表达式是_________.22、(4分)函数y =的自变量x 的取值范围是.23、(4分)将5个边长为1的正方形按照如图所示方式摆放,O 1,O 2,O 3,O 4,O 5是正方形对角线的交点,那么阴影部分面积之和等于________.二、解答题(本大题共3个小题,共30分)24、(8分)分解因式:(1)x 2(x ﹣y )+(y ﹣x );(2)﹣4a 2x +12ax ﹣9x 25、(10分)如图,已知矩形ABCD,AD=4,CD=10,P 是AB 上一动点,M、N、E 分别是PD、PC、CD 的中点.(1)求证:四边形PMEN 是平行四边形;(2)当AP 为何值时,四边形PMEN 是菱形?并给出证明。

江门市14-15第一学期期末测试九年级数学试题(1)

2014~2015学年度第一学期期末学业水平调研测试九年级数学说明:1.考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效,考试结束时,只交回答题卷.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上.1、关于一元二次方程010832=--x x 有下列说法,其中错误的是( )A 、二次项是23x B 、二次项系数是3 C 、一次项系数是8- D 、常数项是10 2、方程4)1(2=-x 的根是( )A 、11=x ,32=xB 、11=x ,32-=xC 、11-=x ,32=xD 、11-=x ,32-=x 3、下列图形中,不是中心对称图形的是( )4、抛物线2)1(2+-=x y 的对称轴是( )A 、1=xB 、1-=xC 、2=xD 、2-=x5、如图,AB 是⊙O 的直径,点C 在⊙O 上,︒=∠30A ,则B ∠度数是() A、︒30 B 、︒45 C 、︒60 D 、︒706、如图,在⊙O 中,弦AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则⊙O 的半径长为( ) A 、3cm B 、4cm C 、5cm D 、6cm7、下列事件是随机事件的是( )A 、通常加热到C ︒100时,水沸腾B 、抛掷一枚硬币,正面朝上C 、度量三角形的内角和,结果为︒180D 、太阳从东方升起BAC OAB C D8、掷一枚质地均匀的骰子,点数为3的概率是( )A 、21 B 、31 C 、41 D 、61 9、已知矩形面积为502cm ,矩形的宽为x cm ,长为y cm ,那么这个矩形的长y (cm )与宽x (cm )之间的函数关系的图象大致是( )10、对于反比例函数2y x=,下列说法不正确的是( ) A .点(2,1)在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷相应的位置上.11、方程0)3)(2(=+-x x 的根是 .12、把抛物线2x y -=向上平移1个单位,则平移后抛物线的解析式是 . 13、点(1,2-)关于原点对称的点的坐标是 . 14、半径为3的正六边形的周长是 .15、掷两枚硬币,全部正面朝上的概率是 .16、如图,边长为3的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、如图,点A 、B 、C 在圆上.(1)作ABC ∠的角平分线BD ,交圆于点D ,连结DA ,DC 和AC (用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,若︒=∠80ABC ,求DAC ∠和DCA ∠的度数.18、组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,计划比赛28场,比赛组织者应邀请多少个队参加比赛?DC A B19、已知反比例函数xky =的图象经过点(2-,3). (1)求该反比例函数的解析式;(2)若021 >>x x ,比较1y 与2y 的大小.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、如图,四边形ABCD 是正方形,点E 是CD 边上的点,以点A 为中心,把ADE ∆按顺时针旋转到ABF ∆的位置,AD 与AB 重合,连结EF .(1)旋转角的度数是 ;(2)证明:AEF ∆是等腰直角三角形;(3)若3= AB ,1= DE ,求在旋转过程中,AE 所扫过的扇形面积. 21、在一个不透明的盒子里,装有分别标有数字1,2,3,4的四个小球,它们的形状、大小、质地等完全相同,小明从盒子里随机取出一个小球,记下数字为x ,放回盒子摇均后,再由小华随机取出一个小球,记下数字为y .(1)用列表法表示(x ,y )的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数xy 4=的图象上的概率; (3)求小明、小华各取一次小球所确定的数x 、y 满足xy 4<的概率. 22、如图,在ABC ∆中,︒=∠90C ,11=AC ,点P 从点A 沿AC 向C 点以每秒1cm 的速度移动,同时,点Q 从点C 沿CB 向B 点以每秒2cm 的速度移动.(1)几秒后CPQ ∆的面积等于302cm ? (2)CPQ ∆的面积能否达到402cm ?五、解答题(三)(本大题共3小题,每小题9分,共27分) 23、已知二次函数x x y 2212-=. (1)用配方法求该函数图象的顶点坐标;(2)根据下表给出x 的值,求出对应y 的值填写在表中,然后在给定的直角坐标系中(每格1个单位)描点画出该函数图象;D EFBACA P(3)根据图象指出,x 取什么值时,y 随x 的增大而减小;x 取什么值时,0<y .24、如图,AB 是⊙O 的直径,BC 切⊙O 于点B ,连结OC 交⊙O 于点D ,E 点是⊙O 上的一点,且AD 平分EAB ∠,连结CE .(1)证明:AE ∥OC ;(2)证明:CE 是⊙O 的切线.25、如图,在直角坐标系中,已知抛物线c bx ax y ++=2经过原点,与x 轴交于点A (5,0),点B (4,2)是抛物线上的一点,连结OB ,点C 是OB 上的任意一点,它的横坐标为m ,过点C 作x CD ⊥轴,与抛物线交于点D ,过点B 作x BE ⊥轴于点E .(1)求直线OB 和抛物线的解析式;(2)设DOB ∆的面积为S ,求S 与m 的函数关系式,并求S 的最大值;(3)当m 为何值时,四边形DCEB 是平行四边形?这时四边形DCEB 是菱形吗?为什么?x2014~2015学年度第一学期期末学业水平调研测试九年级数学参考答案一、选择题(本大题共10小题,每小题3分,共30分)1、D2、C3、D4、A5、C6、C7、B8、D9、A 10、C 二、填空题(本大题共6小题,每小题4分,共24分) 11、31-=x ,22=x 12、12+-=x y 13、(1-,2) 14、18 15、4116、33- 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、解:(1)作图略,形状如图; 3分 (2)∵︒=∠80ABC ,BD 平分ABC ∠, ∴︒=∠=∠40DBC ABD , 4分 ∴︒=∠=∠40DBC DAC , 5分︒=∠=∠40ABD DCA . 6分(评分说明:(1)若没有作图痕迹,或作图痕迹不正确的或其它错误,酌情扣分) 18、解:设邀请x 个队参加比赛, 1分 依题意得28)1(21=-x x ,即0562=--x x , 3分 解得71-=x ,82=x , 5分71-=x 不合题意,舍去,答:应邀请8个队参加比赛. 6分 19、解:(1)∵点(2-,3)在双曲线x k y =上,∴23-=k, 2分 ∴6-=k ,∴xy 6-=; 4分 (2)∵当0>x 时,y 随x 的增大而增大,∴当021>>x x 时,21y y >. 6分(直接写结果也给满分) 四、解答题(二)(本大题共3小题,每小题7分,共21分) 20、解:(1)旋转角的度数是︒90; 1分D ADBAC(2)由条件知,ABF ADE ∆≅∆, ∴AF AE =,BAF DAE ∠=∠, 3分 ∴︒=∠=∠90DAB EAF , ∴AEF ∆是等腰直角三角形; 4分 (3)扇形半径101322=+=AE , 5分 扇形的圆心角为︒90, 6分 ∴扇形的面积253601090ππ=⨯=S (或25412ππ==AE S ) 7分 21、解:(1)(评的说明: 列表正确给3分, 部分有错酌情分)(2)可能出现的结果共有16种,满足(x ,y )落在反比例函数xy 4=的图象上(记为事件A )的结果有(1,4),(2,2),(4,1)3种,故163)(=A P 2分 (3)能使x 、y 满足xy 4<(记为事件B )的结果有(1,1)(1,2)(1,3)(2,1)(3,1)5种,故165)(=B P . 2分 22、解:(1)设x 秒后CPQ ∆的面积等于302cm , 1分 依题意得,30)11(221=-⨯⨯x x , 3分 整理得 030112=+-x x , 解得51=x 、62=x 4分 ∴运动开始后第5秒或6秒,CPQ ∆的面积等于302cm ; 5分 (2)若CPQ ∆的面积达到402cm ,则40)11(221=-⨯⨯x x , 整理得040112=+-x x ,∵0404112<⨯-=∆, 6分 ∴方程无实数根,即CPQ ∆的面积不能达到402cm . 7分 五、解答题(三)(本大题共3小题,每小题9分,共27分) 23、解:(1))444(2122122-+-=-=x x x x yA P2)2(212--=x y 2分 ∴顶点坐标为(2,2-); 3分 (2)图略; 7分(3)根据图象得,当2<x 时,y 随x 的增大而减小; 当40<<x 时,0<y . 9分(评分说明:(1)若不用配方法求顶点坐标,扣2分;(2)占4分,表中数据计算正确占2分,画图象占2分,若有个别点计算错误,但能画出大致图象,酌情扣分;(3)占2分,答对一个给2分,答对2个给满分)24、证明:(1)∵OD OA =,∴ODA OAD ∠=∠, 1分 又AD 平分EAB ∠,∴OAD EAD ∠=∠, 2分 ∴ODA EAD ∠=∠,∴AE ∥OC ; 3分 (2)连结OE , 4分∵AE ∥OC ,∴EAO COB ∠=∠,EOC OEA ∠=∠,又OE OA =,∴OEA OAE ∠=∠,∴COE COB ∠=∠, 6分 在COB ∆和COE ∆中,OE OB =,COE COB ∠=∠,OC OC =,∴COB ∆≌COE ∆,∴OBC OEC ∠=∠, 7分 ∵BC 切⊙O 于点B ,∴︒=∠90OBC , 8分 ∴︒=∠=∠90OBC OEC ,∴CE 是⊙O 的切线. 9分 25、解:(1)∵直线OB 的解析式应为kx y =,它经过点B (4,2), ∴直线的解析式为x y 21=, 1分 ∵抛物线c bx ax y ++=2过原点,故0=c , 又抛物线过点A (5,0),B (4,2), ∴⎩⎨⎧=+=+24160525b a b a , 2分x解得21-=a ,25=b ,∴抛物线的解析式x x y 25212+-=; 3分 (2)点D 的纵坐标为m m 25212+-,点C 的纵坐标m 21,m m m m m DC 22121)2521(22+-=-+-=, 5分设OCD ∆和BCD ∆的CD 边上的高为1h ,2h ,则421=+h h , ∴)(2121h h CD S S S BCD OCD DOB +=+=∆∆∆m m m m 44)221(2122+-=⨯+-=, 即m m S 42+-=, 6分 ∵4)2(422+--=+-=m m m S ,∴当2=m 时,S 的最大值为4; 7分 (3)由于(2)可知,当22212=+-=m m DC 时,四边形DCEB 是平行四边形, 解方程22212=+-m m ,得2=m , 8分 此时,点C 的坐标为(2,1).251222≠=+=CE ,故四边形DCEB 不是菱形. 9分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1、下列关于x 的方程中,是一元二次方程的为( )
A 、221x
x + B 、ax ²+bx +c =0 C 、(x -1)(x +2)=1 D 、3x ²-2xy -5y ²=0
2、下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )
3、抛物线y =3x ²向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )
A 、y =3(x -1)²-2
B 、y =3(x +1)²-2
C 、y =3(x +1)²+2
D 、y =3(x -1)²+2
4、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图),从中任意一张是数字3的概率是( )
A 、61
B 、31
C 、21
D 、3
2
5、⊙O 的半径r =5cm ,圆心到直线l 的距离OM =4cm ,在直线l 有一点P ,且PM =3cm ,则点P ( )
A 、在⊙O 内
B 、在⊙O 上
C 、在⊙O 外
D 、可能在⊙O 上或在⊙O 内
6、如图,在△ABC 中,∠C =90°,AC =8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC =5
3,则BC 的长是( ) A 、4cm B 、6cm C 、8cm D 、10cm
7、反比例函数x
k y =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果MON S △=2,则k 的值是( )
A 、2
B 、-2
C 、4
D 、-4
8、在Rt △ABC 中,∠C =90°,a =2,∠B =45°,则①∠A =45°;②b =2;③b =22;④c =2;⑤c =22,则上述说法中不正确的个数是( )个
A 、1
B 、2
C 、3
D 、4
9、小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量
得CD =8米,BC =20米,CD 与地面成30°角,且此时测得1米杆的
影长为2米,则电线杆的高度为( )
A 、9米
B 、28米
C 、(7+3)米
D 、(14+32)米
10、函数x
k y 与y =-kx ²+k (k ≠0)在同一直角坐标系中的图象可能是( )
二、填空题
1、若点A (-2,a )关于x 轴的对称点是B (b ,-3),则b a 的值是( )
2、方程x ²=x 的解是( )
3、正六边形的外接圆的半径与内切圆的半径之比是( )
4、若关于x 的方程kx ²-6x +1=0有两个实数根,则k 的取值范围是( )
5、在△ABC 中,∠A ,∠B 都是锐角,cosA =21,sinB =2
3,则△ABC 的形状是( )
6、如图,是抛物线y =ax ²+bx +c (a ≠0)图象的一部分,已知
抛物线的对称轴是直线x =2,与x 轴的一个交点是(-1,0),有
下列结论:①abc >0;②4a -2b +c <0;③4a +b =0;④抛物线
与x 轴的另一个交点是(5,0);⑤点(-3,y 1),(6,y 2)都在
抛物线上,则有y 1<y 2,其中正确的是( )[填序号即可]
三、解答题(一)
1、解方程
(1)(3x-1)²=(x+1)²(2)2x²+1=3x
2、如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB//PQ,建筑物的一端DE 所在的直线MN⊥AB于点M,交PQ于点N,小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮
(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出)(2)已知:MN=18m,MD=6m,PN=20m,求(1)中的点C到胜利街口的距离CM
3、如图,四边形ABCD内接于⊙O,并且AD是⊙O的直径,C是弧BD的中点,AB和DC的延长线交⊙O外一点E,求证:BC=EC
四、解答题(二)
1、如图,某超市在一楼和二楼之间安装有电梯,天花
板与地面平行。

请你根据图中数据计算回答:小敏身
高1.78米,她乘电梯会有碰头危险吗?姚明身高2.29
米,他乘电梯会有碰头危险吗?请说明理由(参考数
据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
2、如图,正方形ABCD的边长为2,P为边CD的中点,连结AC,AP,并延长AP与正方形的外接圆O交于点E,连结DE
(1)填空:∠E=()度
(2)写出图中一对不全等的相似三角形(不得添线),并说明理由
(3)求弦DE的长
3、已知,如图二次函数y=ax²+bx+c(a≠0)的图象与y轴交于点C(0,4),与x轴交于点A,B,点B(4,0),抛物线的对称轴为x=1,AD交抛物线于点D(2,m)
(1)求出点D坐标
(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标。

相关文档
最新文档